Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Wiener klinische Wochenschrift 5/2015

01.12.2015 | review article

Modern stem cell therapy: approach to disease

verfasst von: Assist. Dr. Mateja Zemljic, Bozena Pejkovic, Ivan Krajnc, Lidija Kocbek

Erschienen in: Wiener klinische Wochenschrift | Sonderheft 5/2015

Einloggen, um Zugang zu erhalten
share
TEILEN

Summary

Various types of stem cells exist, each with their own advantages and disadvantages. Considering the current available evidence, important preclinical and clinical studies regarding the therapeutic potential of stem cells, stem cell therapy might be the important strategy for tissue repair. The development of stem cell therapy for tissue repair has primarily relied on stem cells, especially mesenchymal stem cells. Multilineage differentiation into all of the described cells are considered as important candidates for a range of diseases like neurological diseases, cardiovascular diseases, gastrointestinal cancer and genetic defects, as well as for acute and chronic wounds healing and pharmaceutical treatment. We review the properties and multipotency of stem cells and their differentiation potential, once cultured under specific growth conditions, for use in cell-based therapies and functional tissue replacement.
Literatur
1.
Zurück zum Zitat Neirinckx V, Coste C, Rogister B, Wislet-Gendebien S. Concise review: adult mesenchymal stem cells, adult neural crest stem cells, and therapy of neurological pathologies: a state of play. Stem Cells Transl Med. 2013;2(4):284–96. CrossRefPubMedPubMedCentral Neirinckx V, Coste C, Rogister B, Wislet-Gendebien S. Concise review: adult mesenchymal stem cells, adult neural crest stem cells, and therapy of neurological pathologies: a state of play. Stem Cells Transl Med. 2013;2(4):284–96. CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Pozzobon M, Piccoli M, De Coppi P. Stem cells from fetal membranes and amniotic fluid: markers for cell isolation and therapy. Cell Tissue Bank. 2014;15(2):199–211. PubMed Pozzobon M, Piccoli M, De Coppi P. Stem cells from fetal membranes and amniotic fluid: markers for cell isolation and therapy. Cell Tissue Bank. 2014;15(2):199–211. PubMed
3.
Zurück zum Zitat Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7. CrossRefPubMed Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7. CrossRefPubMed
4.
Zurück zum Zitat Hofstetter CP, Schwarz EJ, Hess D, et al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci USA. 2002;99(4):2199–204. CrossRefPubMedPubMedCentral Hofstetter CP, Schwarz EJ, Hess D, et al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci USA. 2002;99(4):2199–204. CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Swanger SA, Neuhuber B, Himes BT, Bakshi A, Fischer I. Analysis of allogeneic and syngeneic bone marrow stromal cell graft survival in the spinal cord. Cell Transplant. 2005;14(10):775–86. CrossRefPubMed Swanger SA, Neuhuber B, Himes BT, Bakshi A, Fischer I. Analysis of allogeneic and syngeneic bone marrow stromal cell graft survival in the spinal cord. Cell Transplant. 2005;14(10):775–86. CrossRefPubMed
6.
Zurück zum Zitat Ritfeld GJ, Roos RA, Oudega M. Stem cells for central nervous system repair and rehabilitation. PM R. 2011;3(6 Suppl 1):S117–22. CrossRefPubMed Ritfeld GJ, Roos RA, Oudega M. Stem cells for central nervous system repair and rehabilitation. PM R. 2011;3(6 Suppl 1):S117–22. CrossRefPubMed
7.
Zurück zum Zitat Kim EY, Lee KB, Kim MK. The potential of mesenchymal stem cells derived from amniotic membrane and amniotic fluid for neuronal regenerative therapy. BMB Rep. 2014;47(3):135–40. CrossRefPubMedPubMedCentral Kim EY, Lee KB, Kim MK. The potential of mesenchymal stem cells derived from amniotic membrane and amniotic fluid for neuronal regenerative therapy. BMB Rep. 2014;47(3):135–40. CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Lerou PH, Daley GQ. Therapeutic potential of embryonic stem cells. Blood Rev. 2005;19(6):321–31. CrossRefPubMed Lerou PH, Daley GQ. Therapeutic potential of embryonic stem cells. Blood Rev. 2005;19(6):321–31. CrossRefPubMed
9.
Zurück zum Zitat Shufaro Y, Reubinoff BE. Therapeutic applications of embryonic stem cells. Best Pract Res Clin Obstet Gynaecol. 2004;18(6):909–27. CrossRefPubMed Shufaro Y, Reubinoff BE. Therapeutic applications of embryonic stem cells. Best Pract Res Clin Obstet Gynaecol. 2004;18(6):909–27. CrossRefPubMed
10.
Zurück zum Zitat Martinez-Montiel Mdel P, Gomez-Gomez GJ, Flores AI. Therapy with stem cells in inflammatory bowel disease. World J Gastroenterol. 2014;20(5):1211–27. CrossRefPubMed Martinez-Montiel Mdel P, Gomez-Gomez GJ, Flores AI. Therapy with stem cells in inflammatory bowel disease. World J Gastroenterol. 2014;20(5):1211–27. CrossRefPubMed
12.
Zurück zum Zitat Fox IJ, Daley GQ, Goldman SA, et al. Stem cell therapy. Use of differentiated pluripotent stem cells as replacement therapy for treating disease. Science. 2014;345(6199):1247391. CrossRefPubMedPubMedCentral Fox IJ, Daley GQ, Goldman SA, et al. Stem cell therapy. Use of differentiated pluripotent stem cells as replacement therapy for treating disease. Science. 2014;345(6199):1247391. CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292(5819):154–6. CrossRefPubMed Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292(5819):154–6. CrossRefPubMed
14.
15.
Zurück zum Zitat Stojkovic M, Lako M, Strachan T, Murdoch A. Derivation, growth and applications of human embryonic stem cells. Reproduction. 2004;128(3):259–67. CrossRefPubMed Stojkovic M, Lako M, Strachan T, Murdoch A. Derivation, growth and applications of human embryonic stem cells. Reproduction. 2004;128(3):259–67. CrossRefPubMed
16.
Zurück zum Zitat Smith AG. Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol. 2001;17:435–62. CrossRefPubMed Smith AG. Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol. 2001;17:435–62. CrossRefPubMed
17.
Zurück zum Zitat Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol. 2000;18(4):399–404. CrossRefPubMed Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol. 2000;18(4):399–404. CrossRefPubMed
18.
Zurück zum Zitat Wang Y, Qian DJ, Zhong WY, et al. TGF-beta1 induces the formation of vascular-like structures in embryoid bodies derived from human embryonic stem cells. Exp Ther Med. 2014;8(1):52–8. PubMedPubMedCentral Wang Y, Qian DJ, Zhong WY, et al. TGF-beta1 induces the formation of vascular-like structures in embryoid bodies derived from human embryonic stem cells. Exp Ther Med. 2014;8(1):52–8. PubMedPubMedCentral
19.
Zurück zum Zitat Zhang L, Xu Q. Stem/progenitor cells in vascular regeneration. Arterioscler Thromb Vasc Biol. 2014;34(6):1114–9. CrossRefPubMed Zhang L, Xu Q. Stem/progenitor cells in vascular regeneration. Arterioscler Thromb Vasc Biol. 2014;34(6):1114–9. CrossRefPubMed
20.
Zurück zum Zitat Sharma A, Wu JC, Wu SM. Induced pluripotent stem cell-derived cardiomyocytes for cardiovascular disease modeling and drug screening. Stem Cell Res Ther. 2013;4(6):150. CrossRefPubMedPubMedCentral Sharma A, Wu JC, Wu SM. Induced pluripotent stem cell-derived cardiomyocytes for cardiovascular disease modeling and drug screening. Stem Cell Res Ther. 2013;4(6):150. CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Gerecht-Nir S, Itskovitz-Eldor J. The promise of human embryonic stem cells. Best Pract Res Clin Obstet Gynaecol. 2004;18(6):843–52. CrossRefPubMed Gerecht-Nir S, Itskovitz-Eldor J. The promise of human embryonic stem cells. Best Pract Res Clin Obstet Gynaecol. 2004;18(6):843–52. CrossRefPubMed
22.
Zurück zum Zitat Kim WS, Park BS, Sung JH, et al. Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci. 2007;48(1):15–24. CrossRefPubMed Kim WS, Park BS, Sung JH, et al. Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci. 2007;48(1):15–24. CrossRefPubMed
23.
Zurück zum Zitat Dai Y, Li J, Li J, et al. Skin epithelial cells in mice from umbilical cord blood mesenchymal stem cells. Burns. 2007;33(4):418–28. CrossRefPubMed Dai Y, Li J, Li J, et al. Skin epithelial cells in mice from umbilical cord blood mesenchymal stem cells. Burns. 2007;33(4):418–28. CrossRefPubMed
24.
Zurück zum Zitat Perng CK, Ku HH, Chiou SH, et al. Evaluation of wound healing effect on skin-defect nude mice by using human dermis-derived mesenchymal stem cells. Transplant Proc. 2006;38(9):3086–7. CrossRefPubMed Perng CK, Ku HH, Chiou SH, et al. Evaluation of wound healing effect on skin-defect nude mice by using human dermis-derived mesenchymal stem cells. Transplant Proc. 2006;38(9):3086–7. CrossRefPubMed
25.
Zurück zum Zitat Shih DT, Lee DC, Chen SC, et al. Isolation and characterization of neurogenic mesenchymal stem cells in human scalp tissue. Stem Cells. 2005;23(7):1012–20. CrossRefPubMed Shih DT, Lee DC, Chen SC, et al. Isolation and characterization of neurogenic mesenchymal stem cells in human scalp tissue. Stem Cells. 2005;23(7):1012–20. CrossRefPubMed
26.
Zurück zum Zitat Jones EA, Kinsey SE, English A, et al. Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis Rheum. 2002;46(12):3349–60. CrossRefPubMed Jones EA, Kinsey SE, English A, et al. Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis Rheum. 2002;46(12):3349–60. CrossRefPubMed
27.
Zurück zum Zitat Toda A, Okabe M, Yoshida T, Nikaido T. The potential of amniotic membrane/amnion-derived cells for regeneration of various tissues. J Pharmacol Sci. 2007;105(3):215–28. CrossRefPubMed Toda A, Okabe M, Yoshida T, Nikaido T. The potential of amniotic membrane/amnion-derived cells for regeneration of various tissues. J Pharmacol Sci. 2007;105(3):215–28. CrossRefPubMed
28.
Zurück zum Zitat Barzilay R, Kan I, Ben-Zur T, et al. Induction of human mesenchymal stem cells into dopamine-producing cells with different differentiation protocols. Stem Cells Dev. 2008;17(3):547–54. CrossRefPubMed Barzilay R, Kan I, Ben-Zur T, et al. Induction of human mesenchymal stem cells into dopamine-producing cells with different differentiation protocols. Stem Cells Dev. 2008;17(3):547–54. CrossRefPubMed
29.
Zurück zum Zitat Carraro G, Perin L, Sedrakyan S, et al. Human amniotic fluid stem cells can integrate and differentiate into epithelial lung lineages. Stem Cells. 2008;26(11):2902–11. CrossRefPubMedPubMedCentral Carraro G, Perin L, Sedrakyan S, et al. Human amniotic fluid stem cells can integrate and differentiate into epithelial lung lineages. Stem Cells. 2008;26(11):2902–11. CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Petsche Connell J, Camci-Unal G, Khademhosseini A, Jacot JG. Amniotic fluid-derived stem cells for cardiovascular tissue engineering applications. Tissue Eng Part B Rev. 2013;19(4):368–79. CrossRefPubMedPubMedCentral Petsche Connell J, Camci-Unal G, Khademhosseini A, Jacot JG. Amniotic fluid-derived stem cells for cardiovascular tissue engineering applications. Tissue Eng Part B Rev. 2013;19(4):368–79. CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Sun NZ, Ji HS. In vitro differentiation of human placenta-derived adherent cells into insulin-producing cells. J Int Med Res. 2009;37(2):400–6. CrossRefPubMed Sun NZ, Ji HS. In vitro differentiation of human placenta-derived adherent cells into insulin-producing cells. J Int Med Res. 2009;37(2):400–6. CrossRefPubMed
32.
Zurück zum Zitat Moussavou G, Kwak DH, Lim MU, et al. Role of gangliosides in the differentiation of human mesenchymal-derived stem cells into osteoblasts and neuronal cells. BMB Rep. 2013;46(11):527–32. CrossRefPubMedPubMedCentral Moussavou G, Kwak DH, Lim MU, et al. Role of gangliosides in the differentiation of human mesenchymal-derived stem cells into osteoblasts and neuronal cells. BMB Rep. 2013;46(11):527–32. CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Liu S, Qu Y, Stewart TJ, et al. Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc Natl Acad Sci USA. 2000;97(11):6126–31. CrossRefPubMedPubMedCentral Liu S, Qu Y, Stewart TJ, et al. Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc Natl Acad Sci USA. 2000;97(11):6126–31. CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Ivanova NB, Dimos JT, Schaniel C, et al. A stem cell molecular signature. Science. 2002;298(5593):601–4. CrossRefPubMed Ivanova NB, Dimos JT, Schaniel C, et al. A stem cell molecular signature. Science. 2002;298(5593):601–4. CrossRefPubMed
35.
Zurück zum Zitat Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA. “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science. 2002;298(5593):597–600. CrossRefPubMed Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA. “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science. 2002;298(5593):597–600. CrossRefPubMed
36.
Zurück zum Zitat Pluchino S, Zanotti L, Deleidi M, Martino G. Neural stem cells and their use as therapeutic tool in neurological disorders. Brain Res Brain Res Rev. 2005;48(2):211–9. CrossRefPubMed Pluchino S, Zanotti L, Deleidi M, Martino G. Neural stem cells and their use as therapeutic tool in neurological disorders. Brain Res Brain Res Rev. 2005;48(2):211–9. CrossRefPubMed
37.
Zurück zum Zitat Hess DC, Borlongan CV. Stem cells and neurological diseases. Cell Prolif. 2008;41(Suppl 1):94–114. PubMed Hess DC, Borlongan CV. Stem cells and neurological diseases. Cell Prolif. 2008;41(Suppl 1):94–114. PubMed
38.
Zurück zum Zitat Khalil MA, Hrabeta J, Cipro S, et al. Neuroblastoma stem cells—mechanisms of chemoresistance and histone deacetylase inhibitors. Neoplasma. 2012;59(6):737–46. CrossRefPubMed Khalil MA, Hrabeta J, Cipro S, et al. Neuroblastoma stem cells—mechanisms of chemoresistance and histone deacetylase inhibitors. Neoplasma. 2012;59(6):737–46. CrossRefPubMed
39.
Zurück zum Zitat Ciurea ME, Georgescu AM, Purcaru SO, et al. Cancer stem cells: biological functions and therapeutically targeting. Int J Mol Sci. 2014;15(5):8169–85. CrossRefPubMedPubMedCentral Ciurea ME, Georgescu AM, Purcaru SO, et al. Cancer stem cells: biological functions and therapeutically targeting. Int J Mol Sci. 2014;15(5):8169–85. CrossRefPubMedPubMedCentral
41.
43.
Zurück zum Zitat Swiderska M, Choromanska B, Dabrowska E, et al. The diagnostics of colorectal cancer. Contemp Oncol (Pozn). 2014;18(1):1–6. Swiderska M, Choromanska B, Dabrowska E, et al. The diagnostics of colorectal cancer. Contemp Oncol (Pozn). 2014;18(1):1–6.
44.
Zurück zum Zitat Laurent LC, Ulitsky I, Slavin I, et al. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell. 2011;8(1):106–18. CrossRefPubMedPubMedCentral Laurent LC, Ulitsky I, Slavin I, et al. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell. 2011;8(1):106–18. CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Sadan O, Shemesh N, Cohen Y, Melamed E, Offen D. Adult neurotrophic factor-secreting stem cells: a potential novel therapy for neurodegenerative diseases. Isr Med Assoc J. 2009;11(4):201–4. PubMed Sadan O, Shemesh N, Cohen Y, Melamed E, Offen D. Adult neurotrophic factor-secreting stem cells: a potential novel therapy for neurodegenerative diseases. Isr Med Assoc J. 2009;11(4):201–4. PubMed
46.
Zurück zum Zitat Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98(5):1076–84. CrossRefPubMed Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98(5):1076–84. CrossRefPubMed
47.
Zurück zum Zitat Crigler L, Robey RC, Asawachaicharn A, Gaupp D, Phinney DG. Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol. 2006;198(1):54–64. CrossRefPubMed Crigler L, Robey RC, Asawachaicharn A, Gaupp D, Phinney DG. Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol. 2006;198(1):54–64. CrossRefPubMed
48.
Zurück zum Zitat Uccelli A, Benvenuto F, Laroni A, Giunti D. Neuroprotective features of mesenchymal stem cells. Best Pract Res Clin Haematol. 2011;24(1):59–64. CrossRefPubMed Uccelli A, Benvenuto F, Laroni A, Giunti D. Neuroprotective features of mesenchymal stem cells. Best Pract Res Clin Haematol. 2011;24(1):59–64. CrossRefPubMed
49.
Zurück zum Zitat Guilak F, Estes BT, Diekman BO, Moutos FT, Gimble JM. 2010 Nicolas Andry Award: multipotent adult stem cells from adipose tissue for musculoskeletal tissue engineering. Clin Orthop Relat Res. 2010;468(9):2530–40. CrossRefPubMedPubMedCentral Guilak F, Estes BT, Diekman BO, Moutos FT, Gimble JM. 2010 Nicolas Andry Award: multipotent adult stem cells from adipose tissue for musculoskeletal tissue engineering. Clin Orthop Relat Res. 2010;468(9):2530–40. CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Yamakawa H, Ieda M. Strategies for heart regeneration: approaches ranging from induced pluripotent stem cells to direct cardiac reprogramming. Int Heart J. 2015;56(1):1–5. CrossRefPubMed Yamakawa H, Ieda M. Strategies for heart regeneration: approaches ranging from induced pluripotent stem cells to direct cardiac reprogramming. Int Heart J. 2015;56(1):1–5. CrossRefPubMed
51.
Zurück zum Zitat Edlinger C, Schreiber C, Wernly B, et al. Stem cell therapy for myocardial infarction 2001–2013 revisited. Stem Cell Rev. 2015;11(5):743–51. CrossRefPubMed Edlinger C, Schreiber C, Wernly B, et al. Stem cell therapy for myocardial infarction 2001–2013 revisited. Stem Cell Rev. 2015;11(5):743–51. CrossRefPubMed
52.
53.
Zurück zum Zitat Batista CE, Mariano ED, Marie SK, et al. Stem cells in neurology—current perspectives. Arq Neuropsiquiatr. 2014;72(6):457–65. CrossRefPubMed Batista CE, Mariano ED, Marie SK, et al. Stem cells in neurology—current perspectives. Arq Neuropsiquiatr. 2014;72(6):457–65. CrossRefPubMed
55.
56.
Zurück zum Zitat Angelopoulou MK, Tsirkinidis P, Boutsikas G, Vassilakopoulos TP, Tsirigotis P. New insights in the mobilization of hematopoietic stem cells in lymphoma and multiple myeloma patients. Biomed Res Int. 2014;2014:835138. CrossRefPubMedPubMedCentral Angelopoulou MK, Tsirkinidis P, Boutsikas G, Vassilakopoulos TP, Tsirigotis P. New insights in the mobilization of hematopoietic stem cells in lymphoma and multiple myeloma patients. Biomed Res Int. 2014;2014:835138. CrossRefPubMedPubMedCentral
57.
Zurück zum Zitat Romano M, De Francesco F, Pirozzi G, et al. Expression of cancer stem cell biomarkers as a tool for a correct therapeutic approach to hepatocellular carcinoma. Oncoscience. 2015;2(5):443–56. CrossRefPubMedPubMedCentral Romano M, De Francesco F, Pirozzi G, et al. Expression of cancer stem cell biomarkers as a tool for a correct therapeutic approach to hepatocellular carcinoma. Oncoscience. 2015;2(5):443–56. CrossRefPubMedPubMedCentral
58.
Zurück zum Zitat Chauveau S, Brink PR, Cohen IS. Stem cell-based biological pacemakers from proof of principle to therapy: a review. Cytotherapy. 2014;16(7):873–80. CrossRefPubMedPubMedCentral Chauveau S, Brink PR, Cohen IS. Stem cell-based biological pacemakers from proof of principle to therapy: a review. Cytotherapy. 2014;16(7):873–80. CrossRefPubMedPubMedCentral
60.
Zurück zum Zitat Flores AI, Gomez-Gomez GJ, Masedo-Gonzalez A, Martinez-Montiel MP. Stem cell therapy in inflammatory bowel disease: a promising therapeutic strategy? World J Stem Cells. 2015;7(2):343–51. CrossRefPubMedPubMedCentral Flores AI, Gomez-Gomez GJ, Masedo-Gonzalez A, Martinez-Montiel MP. Stem cell therapy in inflammatory bowel disease: a promising therapeutic strategy? World J Stem Cells. 2015;7(2):343–51. CrossRefPubMedPubMedCentral
61.
Zurück zum Zitat Kozlik M, Wojcicki P. The use of stem cells in plastic and reconstructive surgery. Adv Clin Exp Med. 2014;23(6):1011–7. CrossRefPubMed Kozlik M, Wojcicki P. The use of stem cells in plastic and reconstructive surgery. Adv Clin Exp Med. 2014;23(6):1011–7. CrossRefPubMed
63.
Zurück zum Zitat de Lazaro I, Yilmazer A, Kostarelos K. Induced pluripotent stem (iPS) cells: a new source for cell-based therapeutics? J Control Release. 2014;185C:37–44. CrossRef de Lazaro I, Yilmazer A, Kostarelos K. Induced pluripotent stem (iPS) cells: a new source for cell-based therapeutics? J Control Release. 2014;185C:37–44. CrossRef
64.
Zurück zum Zitat Gieseck RL III, Colquhoun J, Hannan NR. Disease modeling using human induced pluripotent stem cells: lessons from the liver. Biochim Biophys Acta. 2015;1851(1):76–89. CrossRefPubMedPubMedCentral Gieseck RL III, Colquhoun J, Hannan NR. Disease modeling using human induced pluripotent stem cells: lessons from the liver. Biochim Biophys Acta. 2015;1851(1):76–89. CrossRefPubMedPubMedCentral
65.
Zurück zum Zitat Teng M, Huang Y, Zhang H. Application of stems cells in wound healing—an update. Wound Repair Regen. 2014;22(2):151–60. CrossRefPubMed Teng M, Huang Y, Zhang H. Application of stems cells in wound healing—an update. Wound Repair Regen. 2014;22(2):151–60. CrossRefPubMed
Metadaten
Titel
Modern stem cell therapy: approach to disease
verfasst von
Assist. Dr. Mateja Zemljic
Bozena Pejkovic
Ivan Krajnc
Lidija Kocbek
Publikationsdatum
01.12.2015
Verlag
Springer Vienna
Erschienen in
Wiener klinische Wochenschrift / Ausgabe Sonderheft 5/2015
Print ISSN: 0043-5325
Elektronische ISSN: 1613-7671
DOI
https://doi.org/10.1007/s00508-015-0903-7