Skip to main content

Advertisement

Log in

Seeing Stem Cells at Work In Vivo

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Stem cell based-therapies are novel therapeutic strategies that hold key for developing new treatments for diseases conditions with very few or no cures. Although there has been an increase in the number of clinical trials involving stem cell-based therapies in the last few years, the long-term risks and benefits of these therapies are still unknown. Detailed in vivo studies are needed to monitor the fate of transplanted cells, including their distribution, differentiation, and longevity over time. Advancements in non-invasive cellular imaging techniques to track engrafted cells in real-time present a powerful tool for determining the efficacy of stem cell-based therapies. In this review, we describe the latest approaches to stem cell labeling and tracking using different imaging modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jacobson, L. O., Simmons, E. L., & Bethard, W. F. (1950). Studies on hematopoietic recovery from radiation injury. The Journal of Clinical Investigation, 29(6), 825.

    CAS  PubMed  Google Scholar 

  2. Simmons, E. L., Jacobson, L. O., Marks, E. K., & Gaston, E. O. (1959). Long-term survival of irradiated mice treated with homologous tissue suspensions. Nature, 183(4660), 556.

    CAS  PubMed  Google Scholar 

  3. Jacobson, L. O., & Simmons, E. L. (1960). Comparison of the effects of isologous, homologous, and heterologous hematopoietic tissues on post-irradiation survival. Radiology, 75, 6–10.

    CAS  PubMed  Google Scholar 

  4. Barnes, D. W., & Loutit, J. F. (1953). Protective effects of implants of splenic tissue. Proceedings of the Royal Society of Medicine, 46(4), 251–252.

    CAS  PubMed  Google Scholar 

  5. Main, J. M., & Prehn, R. T. (1957). Fate of skin homografts in x-irradiated mice treated with homologous marrow. Journal of the National Cancer Institute, 19(6), 1053–1064.

    CAS  PubMed  Google Scholar 

  6. Thomas, E. D., Lochte, H. L., Jr., Cannon, J. H., Sahler, O. D., & Ferrebee, J. W. (1959). Supralethal whole body irradiation and isologous marrow transplantation in man. The Journal of Clinical Investigation, 38, 1709–1716.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Hatzistergos, K. E., Blum, A., Ince, T., Grichnik, J. M., & Hare, J. M. (2011). What is the oncologic risk of stem cell treatment for heart disease? Circulation Research, 108(11), 1300–1303.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Rocha, V., Wagner, J. E., Jr., Sobocinski, K. A., et al. (2000). Graft-versus-host disease in children who have received a cord-blood or bone marrow transplant from an HLA-identical sibling. Eurocord and International Bone Marrow Transplant Registry Working Committee on Alternative Donor and Stem Cell Sources. The New England Journal of Medicine, 342(25), 1846–1854.

    CAS  PubMed  Google Scholar 

  9. Nair, G., Tanahashi, Y., Low, H. P., Billings-Gagliardi, S., Schwartz, W. J., & Duong, T. Q. (2005). Myelination and long diffusion times alter diffusion-tensor-imaging contrast in myelin-deficient shiverer mice. NeuroImage, 28(1), 165–174.

    PubMed Central  PubMed  Google Scholar 

  10. Rickers, C., Gallegos, R., Seethamraju, R. T., et al. (2004). Applications of magnetic resonance imaging for cardiac stem cell therapy. Journal of Interventional Cardiology, 17(1), 37–46.

    PubMed  Google Scholar 

  11. Wu, C., Zhu, J., Baeslack, J., et al. (2013). Longitudinal PET imaging for monitoring myelin repair in the spinal cord. Annals of Neurology. doi:10.1002/ana.23965.

    Google Scholar 

  12. Voura, E. B., Jaiswal, J. K., Mattoussi, H., & Simon, S. M. (2004). Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nature Medicine, 10(9), 993–998.

    CAS  PubMed  Google Scholar 

  13. Lei, Y., Tang, H., Yao, L., Yu, R., Feng, M., & Zou, B. (2008). Applications of mesenchymal stem cells labeled with Tat peptide conjugated quantum dots to cell tracking in mouse body. Bioconjugate Chemistry, 19(2), 421–427.

    CAS  PubMed  Google Scholar 

  14. Ohyabu, Y., Kaul, Z., Yoshioka, T., et al. (2009). Stable and nondisruptive in vitro/in vivo labeling of mesenchymal stem cells by internalizing quantum dots. Human Gene Therapy, 20(3), 217–224.

    CAS  PubMed  Google Scholar 

  15. Sugiyama, T., Kuroda, S., Osanai, T., et al. (2011). Near-infrared fluorescence labeling allows noninvasive tracking of bone marrow stromal cells transplanted into rat infarct brain. Neurosurgery, 68(4), 1036–1047.

    PubMed  Google Scholar 

  16. Rak-Raszewska, A., Marcello, M., Kenny, S., Edgar, D., See, V., & Murray, P. (2012). Quantum dots do not affect the behaviour of mouse embryonic stem cells and kidney stem cells and are suitable for short-term tracking. PLoS One, 7(3), e32650.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Li, K., Qin, W., Ding, D., et al. (2013). Photostable fluorescent organic dots with aggregation-induced emission (AIE dots) for noninvasive long-term cell tracing. Scientific Reports, 3, 1150.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Eisenblatter, M., Ehrchen, J., Varga, G., et al. (2009). In vivo optical imaging of cellular inflammatory response in granuloma formation using fluorescence-labeled macrophages. Journal of Nuclear Medicine, 50(10), 1676–1682.

    PubMed  Google Scholar 

  19. Ruan, J., Song, H., Li, C., et al. (2012). DiR-labeled embryonic stem cells for targeted imaging of in vivo gastric cancer cells. Theranostics, 2(6), 618–628.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Shan, L. (2004). Near-infrared fluorescence 1,1-dioctadecyl-3,3,3,3-tetramethylindotricarbocyanine iodide (DiR)-labeled macrophages for cell imaging. Molecular Imaging and Contrast Agent Database (MICAD) (Internet). Bethsda (MD): National Centre For Biotechnology Information (US); 2004–2013.

  21. Frangioni, J. V. (2003). In vivo near-infrared fluorescence imaging. Current Opinion in Chemical Biology, 7(1), 626–634.

    CAS  PubMed  Google Scholar 

  22. Sykova, E., & Jendelova, P. (2007). Migration, fate and in vivo imaging of adult stem cells in the CNS. Cell Death and Differentiation, 14(7), 1336–1342.

    CAS  PubMed  Google Scholar 

  23. Bulte, J. W., Hoekstra, Y., Kamman, R. L., et al. (2003). Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology, 228(2), 480–487.

    PubMed  Google Scholar 

  24. Frank, J. A., Miller, B. R., Arbab, A. S., et al. (2003). Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology, 228(2), 480–487.

    PubMed  Google Scholar 

  25. Hedlund, A., Ahren, M., Gustafsson, H., et al. (2011). Gd(2)O(3) nanoparticles in hematopoietic cells for MRI contrast enhancement. International Journal of Nanomedicine, 6, 3233–3240.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Agudelo, C. A., Tachibana, Y., Hurtado, A. F., Ose, T., Iida, H., & Yamaoka, T. (2012). The use of magnetic resonance cell tracking to monitor endothelial progenitor cells in a rat hindlimb ischemic model. Biomaterials, 33(8), 2439–2448.

    CAS  PubMed  Google Scholar 

  27. Guenoun, J., Koning, G. A., Doeswijk, G., et al. (2012). Cationic Gd-DTPA liposomes for highly efficient labeling of mesenchymal stem cells and cell tracking with MRI. Cell Transplantation, 21(1), 191–205.

    PubMed  Google Scholar 

  28. Modo, M., Beech, J. S., Meade, T. J., Williams, S. C., & Price, J. (2009). A chronic 1 year assessment of MRI contrast agent-labelled neural stem cell transplants in stroke. NeuroImage, 47(Suppl 2), T133–T142.

    PubMed  Google Scholar 

  29. Rudelius, M., Daldrup-Link, H. E., Heinzmann, U., et al. (2003). Highly efficient paramagnetic labelling of embryonic and neuronal stem cells. European Journal of Nuclear Medicine and Molecular Imaging, 30(7), 1038–1044.

    CAS  PubMed  Google Scholar 

  30. Bhorade, R., Weissleder, R., Nakakoshi, T., Moore, A., & Tung, C. H. (2000). Macrocyclic chelators with paramagnetic cations are internalized into mammalian cells via a HIV-tat derived membrane translocation peptide. Bioconjugate Chemistry, 11(3), 301–305.

    CAS  PubMed  Google Scholar 

  31. Tseng, C. L., Shih, I. L., Stobinski, L., & Lin, F. H. (2010). Gadolinium hexanedione nanoparticles for stem cell labeling and tracking via magnetic resonance imaging. Biomaterials, 31(20), 5427–5435.

    CAS  PubMed  Google Scholar 

  32. Ghaghada, K. B., Ravoori, M., Sabapathy, D., Bankson, J., Kundra, V., & Annapragada, A. (2009). New dual mode gadolinium nanoparticle contrast agent for magnetic resonance imaging. PLoS One, 4(10), e7628.

    PubMed Central  PubMed  Google Scholar 

  33. Klasson, A., Ahren, M., Hellqvist, E., et al. (2008). Positive MRI contrast enhancement in THP-1 cells with Gd2O3 nanoparticles. Contrast Media & Molecular Imaging, 3(3), 106–111.

    CAS  Google Scholar 

  34. Faucher, L., Tremblay, M., Lagueux, J., Gossuin, Y., & Fortin, M. A. (2012). Rapid synthesis of PEGylated ultrasmall gadolinium oxide nanoparticles for cell labeling and tracking with MRI. ACS Applied Materials & Interfaces, 4(9), 4506–4515.

    CAS  Google Scholar 

  35. Ward, K. M., Aletras, A. H., & Balaban, R. S. (2000). A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). Journal of Magnetic Resonance, 143(1), 79–87.

    CAS  PubMed  Google Scholar 

  36. Aime, S., Carrera, C., Delli Castelli, D., Geninatti Crich, S., Terreno, E. (2005). Tunable imaging of cells labeled with MRI-PARACEST agents. Angewandte Chemie International Edition England, 44(12): 1813–1815.

  37. Ferrauto, G., Castelli, D. D., Terreno, E., & Aime, S. (2013). In vivo MRI visualization of different cell populations labeled with PARACEST agents. Magnetic Resonance in Medicine, 69(6), 1703–1711.

    CAS  PubMed  Google Scholar 

  38. Silva, A. C., & Bock, N. A. (2008). Manganese-enhanced MRI: an exceptional tool in translational neuroimaging. Schizophrenia Bulletin, 34(4), 595–604.

    PubMed  Google Scholar 

  39. Gilad, A. A., Walczak, P., McMahon, M. T., et al. (2008). MR tracking of transplanted cells with "positive contrast" using manganese oxide nanoparticles. Magnetic Resonance in Medicine, 60(1), 1–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Kim, T., Momin, E., Choi, J., et al. (2011). Mesoporous silica-coated hollow manganese oxide nanoparticles as positive T1 contrast agents for labeling and MRI tracking of adipose-derived mesenchymal stem cells. Journal of the American Chemical Society, 133(9), 2955–2961.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Josephson, L., Lewis, J., Jacobs, P., Hahn, P. F., & Stark, D. D. (1988). The effects of iron oxides on proton relaxivity. Magnetic Resonance Imaging, 6(6), 647–6453.

    CAS  PubMed  Google Scholar 

  42. Shen, T., Weissleder, R., Papisov, M., Bogdanov, A., Jr., & Brady, T. J. (1993). Monocrystalline iron oxide nanocompounds (MION): physicochemical properties. Magnetic Resonance in Medicine, 29(5), 599–604.

    CAS  PubMed  Google Scholar 

  43. Jung, C. W. (1995). Surface properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magnetic Resonance Imaging, 13(5), 675–691.

    CAS  PubMed  Google Scholar 

  44. Wagner, S., Schnorr, J., Pilgrimm, H., Hamm, B., & Taupitz, M. (2002). Monomer-coated very small superparamagnetic iron oxide particles as contrast medium for magnetic resonance imaging: preclinical in vivo characterization. Investigative Radiology, 37(4), 167–177.

    CAS  PubMed  Google Scholar 

  45. Shapiro, E. M., Skrtic, S., Sharer, K., Hill, J. M., Dunbar, C. E., & Koretsky, A. P. (2004). MRI detection of single particles for cellular imaging. Proceedings of the National Academy of Sciences of the United States of America, 101(30), 10901–10906.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Hao, R., Xing, R., Xu, Z., Hou, Y., Gao, S., & Sun, S. (2010). Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Advanced Materials, 22(25), 2729–2742.

    CAS  PubMed  Google Scholar 

  47. Rogers, W. J., Meyer, C. H., & Kramer, C. M. (2006). Technology insight: in vivo cell tracking by use of MRI. Nature clinical practice. Cardiovascular Medicine, 3(10), 554–562.

    CAS  PubMed  Google Scholar 

  48. Norman, A. B., Thomas, S. R., Pratt, R. G., Lu, S. Y., & Norgren, R. B. (1992). Magnetic resonance imaging of neural transplants in rat brain using a superparamagnetic contrast agent. Brain Research, 594(2), 279–283.

    CAS  PubMed  Google Scholar 

  49. Bulte, J. W., Brooks, R. A., Moskowitz, B. M., Bryant, L. H., Jr., & Frank, J. A. (1998). T1 and T2 relaxometry of monocrystalline iron oxide nanoparticles (MION-46L): theory and experiment. Academic Radiology, 5(Suppl 1), S137–S140.

    PubMed  Google Scholar 

  50. Bulte, J. W., Zhang, S., van Gelderen, P., et al. (1999). Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proceedings of the National Academy of Sciences of the United States of America, 96(26), 15256–15261.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Bulte, J. W., Douglas, T., Witwer, B., et al. (2001). Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nature Biotechnology, 19(12), 1141–1147.

    CAS  PubMed  Google Scholar 

  52. Karussis, D., Karageorgiou, C., Vaknin-Dembinsky, A. et al. (2010) Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Archives of Neurology, 67(10): 1187–1194.

    Google Scholar 

  53. Wang, Y., Wang, L., Che, Y., Li, Z., & Kong, D. (2011). Preparation and evaluation of magnetic nanoparticles for cell labeling. Journal of Nanoscience and Nanotechnology, 11(5), 3749–3756.

    CAS  PubMed  Google Scholar 

  54. Nejadnik, H., Henning, T. D., Castaneda, R. T., et al. (2012). Somatic differentiation and MR imaging of magnetically labeled human embryonic stem cells. Cell Transplantation, 21(12), 2555–2567.

    PubMed  Google Scholar 

  55. Richards, J. M., Shaw, C. A., Lang, N. N., et al. (2012). In vivo mononuclear cell tracking using superparamagnetic particles of iron oxide: feasibility and safety in humans. Circulation. Cardiovascular Imaging, 5(4), 509–517.

    PubMed  Google Scholar 

  56. de Chickera, S. N., Snir, J., Willert, C., et al. (2011). Labelling dendritic cells with SPIO has implications for their subsequent in vivo migration as assessed with cellular MRI. Contrast Media & Molecular Imaging, 6(4), 314–327.

    Google Scholar 

  57. Dunning, M. D., Lakatos, A., Loizou, L., et al. (2004). Superparamagnetic iron oxide-labeled Schwann cells and olfactory ensheathing cells can be traced in vivo by magnetic resonance imaging and retain functional properties after transplantation into the CNS. Journal of Neuroscience, 24(44), 9799–9810.

    CAS  PubMed  Google Scholar 

  58. Huang, D. M., Hsiao, J. K., Chen, Y. C., et al. (2009). The promotion of human mesenchymal stem cell proliferation by superparamagnetic iron oxide nanoparticles. Biomaterials, 30(22), 3645–3651.

    CAS  PubMed  Google Scholar 

  59. Bulte, J. W. (2009). In vivo MRI cell tracking: clinical studies. American Journal of Roentgenology, 193(2), 314–325.

    PubMed Central  PubMed  Google Scholar 

  60. Ahrens, E. T., Feili-Hariri, M., Xu, H., Genove, G., & Morel, P. A. (2003). Receptor-mediated endocytosis of iron-oxide particles provides efficient labeling of dendritic cells for in vivo MR imaging. Magnetic Resonance in Medicine, 49(6), 1006–1013.

    CAS  PubMed  Google Scholar 

  61. Modo, M., Hoehn, M., & Bulte, J. W. (2005). Cellular MR imaging. Molecular Imaging, 4(3), 143–164.

    PubMed  Google Scholar 

  62. Walczak, P., Kedziorek, D. A., Gilad, A. A., Lin, S., & Bulte, J. W. (2005). Instant MR labeling of stem cells using magnetoelectroporation. Magnetic Resonance in Medicine, 54(4), 769–774.

    CAS  PubMed  Google Scholar 

  63. Frank, J. A., Zywicke, H., Jordan, E. K., et al. (2002). Magnetic intracellular labeling of mammalian cells by combining (FDA-approved) superparamagnetic iron oxide MR contrast agents and commonly used transfection agents. Academic Radiology, 9(Suppl 2), S484–S487.

    PubMed  Google Scholar 

  64. Kraitchman, D. L., & Bulte, J. W. (2008). Imaging of stem cells using MRI. Basic Research in Cardiology, 103(2), 105–113.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Bulte, J. W., Kraitchman, D. L., Mackay, A. M., & Pittenger, M. F. (2004). Chondrogenic differentiation of mesenchymal stem cells is inhibited after magnetic labeling with ferumoxides. Blood, 104(10), 3410–3412.

    CAS  PubMed  Google Scholar 

  66. Walczak, P., Ruiz-Cabello, J., Kedziorek, D. A., et al. (2006). Magnetoelectroporation: improved labeling of neural stem cells and leukocytes for cellular magnetic resonance imaging using a single FDA-approved agent. Nanomedicine : Nanotechnology, Biology, and Medicine, 2(2), 89–94.

    CAS  Google Scholar 

  67. Terrovitis, J., Stuber, M., Youssef, A., et al. (2008). Magnetic resonance imaging overestimates ferumoxide-labeled stem cell survival after transplantation in the heart. Circulation, 117(12), 1555–1562.

    PubMed  Google Scholar 

  68. Cromer Berman, S. M., Kshitiz, Wang, C. J., et al. (2013). Cell motility of neural stem cells is reduced after SPIO-labeling, which is mitigated after exocytosis. Magnetic Resonance in Medicine, 69(1), 255–262.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Barnett, B. P., Arepally, A., Karmarkar, P. V., et al. (2007). Magnetic resonance-guided, real-time targeted delivery and imaging of magnetocapsules immunoprotecting pancreatic islet cells. Nature Medicine, 13(8), 986–991.

    CAS  PubMed  Google Scholar 

  70. Shapiro, E. M., Sharer, K., Skrtic, S., & Koretsky, A. P. (2006). In vivo detection of single cells by MRI. Magnetic Resonance in Medicine, 55(2), 242–249.

    PubMed  Google Scholar 

  71. Shapiro, E. M., Skrtic, S., & Koretsky, A. P. (2005). Sizing it up: cellular MRI using micron-sized iron oxide particles. Magnetic Resonance in Medicine, 53(2), 329–338.

    PubMed  Google Scholar 

  72. Hinds, K. A., Hill, J. M., Shapiro, E. M., et al. (2003). Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood, 102(3), 867–872.

    CAS  PubMed  Google Scholar 

  73. Shapiro, E. M., Medford-Davis, L. N., Fahmy, T. M., Dunbar, C. E., & Koretsky, A. P. (2007). Antibody-mediated cell labeling of peripheral T cells with micron-sized iron oxide particles (MPIOs) allows single cell detection by MRI. Contrast Media & Molecular Imaging, 2(3), 147–153.

    CAS  Google Scholar 

  74. Bernas, L. M., Foster, P. J., & Rutt, B. K. (2007). Magnetic resonance imaging of in vitro glioma cell invasion. Journal of Neurosurgery, 106(2), 306–313.

    CAS  PubMed  Google Scholar 

  75. Foley, L. M., Hitchens, T. K., Ho, C., et al. (2009). Magnetic resonance imaging assessment of macrophage accumulation in mouse brain after experimental traumatic brain injury. Journal of Neurotrauma, 26(9), 1509–1519.

    PubMed  Google Scholar 

  76. Sumner, J. P., Shapiro, E. M., Maric, D., Conroy, R., & Koretsky, A. P. (2009). In vivo labeling of adult neural progenitors for MRI with micron sized particles of iron oxide: quantification of labeled cell phenotype. NeuroImage, 44(3), 671–678.

    PubMed Central  PubMed  Google Scholar 

  77. Rohani, R., de Chickera, S. N., Willert, C., Chen, Y., Dekaban, G. A., & Foster, P. J. (2011). In vivo cellular MRI of dendritic cell migration using micrometer-sized iron oxide (MPIO) particles. Molecular Imaging and Biology, 13(4), 679–694.

    PubMed  Google Scholar 

  78. Nkansah, M. K., Thakral, D., & Shapiro, E. M. (2011). Magnetic poly(lactide-co-glycolide) and cellulose particles for MRI-based cell tracking. Magnetic Resonance in Medicine, 65(6), 1776–1785.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Tang, K. S., & Shapiro, E. M. (2011). Enhanced magnetic cell labeling efficiency using -NH2 coated MPIOs. Magnetic Resonance in Medicine, 65(6), 1564–1569.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Ahrens, E. T., Flores, R., Xu, H., & Morel, P. A. (2005). In vivo imaging platform for tracking immunotherapeutic cells. Nature Biotechnology, 23(8), 983–987.

    CAS  PubMed  Google Scholar 

  81. Partlow, K. C., Chen, J., Brant, J. A., et al. (2007). 19F magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons. FASEB Journal, 21(8), 1647–1654.

    CAS  PubMed  Google Scholar 

  82. Ruiz-Cabello, J., Walczak, P., Kedziorek, D. A., et al. (2008). In vivo “hot spot” MR imaging of neural stem cells using fluorinated nanoparticles. Magnetic Resonance in Medicine, 60(6), 1506–1511.

    PubMed Central  PubMed  Google Scholar 

  83. Waiczies, H., Guenther, M., Skodowski, J., et al. (2013). Monitoring dendritic cell migration using 19F/1H Magnetic Resonance Imaging. Journal of Visulaized Experiments, 73, e50251.

    Google Scholar 

  84. Boehm-Sturm, P., Mengler, L., Wecker, S., Hoehn, M., & Kallur, T. (2011). In vivo tracking of human neural stem cells with 19F magnetic resonance imaging. PLoS One, 6(12), e29040.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Hitchens, T. K., Ye, Q., Eytan, D. F., Janjic, J. M., Ahrens, E. T., & Ho, C. (2011). 19F MRI detection of acute allograft rejection with in vivo perfluorocarbon labeling of immune cells. Magnetic Resonance in Medicine, 65(4), 1144–1153.

    PubMed Central  PubMed  Google Scholar 

  86. Bible, E., Dell'Acqua, F., Solanky, B., et al. (2012). Non-invasive imaging of transplanted human neural stem cells and ECM scaffold remodeling in the stroke-damaged rat brain by (19)F- and diffusion-MRI. Biomaterials, 33(10), 2858–2871.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Waiczies, H., Lepore, S., Janitzek, N., et al. (2011). Perfluorocarbon particle size influences magnetic resonance signal and immunological properties of dendritic cells. PLoS One, 6(7), e21981.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Srinivas, M., Morel, P. A., Ernst, L. A., Laidlaw, D. H., & Ahrens, E. T. (2007). Fluorine-19 MRI for visualization and quantification of cell migration in a diabetes model. Magnetic Resonance in Medicine, 58(4), 725–734.

    CAS  PubMed  Google Scholar 

  89. Kadayakkara, D. K., Ranganathan, S., Young, W. B., & Ahrens, E. T. (2012). Assaying macrophage activity in a murine model of inflammatory bowel disease using fluorine-19 MRI. Laboratory Investigation, 92(4), 636–645.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Janjic, J. M., Srinivas, M., Kadayakkara, D. K., & Ahrens, E. T. (2008). Self-delivering nanoemulsions for dual fluorine-19 MRI and fluorescence detection. Journal of the American Chemical Society, 130(9), 2832–2841.

    CAS  PubMed  Google Scholar 

  91. Verdijk, P., Scheenen, T. W., Lesterhuis, W. J., et al. (2007). Sensitivity of magnetic resonance imaging of dendritic cells for in vivo tracking of cellular cancer vaccines. International Journal of Cancer, 120(5), 978–984.

    CAS  Google Scholar 

  92. Srinivas, M., Heerschap, A., Ahrens, E. T., Figdor, C. G., & de Vries, I. J. (2010). (19)F MRI for quantitative in vivo cell tracking. Trends in Biotechnology, 28(7), 363–370.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Chan, K. W., Liu, G., Song, X., et al. (2013). MRI-detectable pH nanosensors incorporated into hydrogels for in vivo sensing of transplanted-cell viability. Nature Materials, 12(3), 268–275.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Massoud, T. F., & Gambhir, S. S. (2003). Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes & Development, 17(5), 545–580.

    CAS  Google Scholar 

  95. Adonai, N., Nguyen, K. N., Walsh, J., et al. (2002). Ex vivo cell labeling with 64Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) for imaging cell trafficking in mice with positron-emission tomography. Proceedings of the National Academy of Sciences of the United States of America, 99(5), 3030–3035.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Zanzonico, P., Koehne, G., Gallardo, H. F., et al. (2006). [131I]FIAU labeling of genetically transduced, tumor-reactive lymphocytes: cell-level dosimetry and dose-dependent toxicity. European Journal of Nuclear Medicine and Molecular Imaging, 33(9), 988–997.

    CAS  PubMed  Google Scholar 

  97. Bhargava, K. K., Gupta, R. K., Nichols, K. J., & Palestro, C. J. (2009). In vitro human leukocyte labeling with (64)Cu: an intraindividual comparison with (111)In-oxine and (18)F-FDG. Nuclear Medicine and Biology, 36(5), 545–549.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Brenner, W., Aicher, A., Eckey, T., et al. (2004). 111In-labeled CD34+ hematopoietic progenitor cells in a rat myocardial infarction model. Journal of Nuclear Medicine, 45(3), 512–518.

    CAS  PubMed  Google Scholar 

  99. Rennen, H. J., Boerman, O. C., Oyen, W. J., & Corstens, F. H. (2001). Imaging infection/inflammation in the new millennium. European Journal of Nuclear Medicine, 28(2), 241–252.

    CAS  PubMed  Google Scholar 

  100. Becker, W., & Meller, J. (2001). The role of nuclear medicine in infection and inflammation. The Lancet Infectious Diseases, 1(5), 326–333.

    CAS  PubMed  Google Scholar 

  101. Jin, Y., Kong, H., Stodilka, R. Z., et al. (2005). Determining the minimum number of detectable cardiac-transplanted 111In-tropolone-labelled bone-marrow-derived mesenchymal stem cells by SPECT. Physics in Medicine and Biology, 50(19), 4445–4455.

    PubMed  Google Scholar 

  102. Gholamrezanezhad, A., Mirpour, S., Bagheri, M., et al. (2011). In vivo tracking of 111In-oxine labeled mesenchymal stem cells following infusion in patients with advanced cirrhosis. Nuclear Medicine and Biology, 38(7), 961–967.

    CAS  PubMed  Google Scholar 

  103. Gholamrezanezhad, A., Mirpour, S., Ardekani, J. M., et al. (2009). Cytotoxicity of 111In-oxine on mesenchymal stem cells: a time-dependent adverse effect. Nuclear Medicine Communications, 30(3), 210–216.

    CAS  PubMed  Google Scholar 

  104. Monteiro-Riviere, N. A., Inman, A. O., & Zhang, L. W. (2009). Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicology and Applied Pharmacology, 234(2), 222–235.

    CAS  PubMed  Google Scholar 

  105. Barbash, I. M., Chouraqui, P., Baron, J., et al. (2003). Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation, 108(7), 863–868.

    PubMed  Google Scholar 

  106. Kang, W. J., Kang, H. J., Kim, H. S., Chung, J. K., Lee, M. C., & Lee, D. S. (2006). Tissue distribution of 18F-FDG-labeled peripheral hematopoietic stem cells after intracoronary administration in patients with myocardial infarction. Journal of Nuclear Medicine, 47(8), 1295–1301.

    PubMed  Google Scholar 

  107. Zhou, R., Thomas, D. H., Qiao, H., et al. (2005). In vivo detection of stem cells grafted in infarcted rat myocardium. Journal of Nuclear Medicine, 46(5), 816–822.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Swirski, F. K., Pittet, M. J., Kircher, M. F., et al. (2006). Monocyte accumulation in mouse atherogenesis is progressive and proportional to extent of disease. Proceedings of the National Academy of Sciences of the United States of America, 103(27), 10340–10345.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Kim, J., Arifin, D. R., Muja, N., et al. (2011). Multifunctional capsule-in-capsules for immunoprotection and trimodal imaging. Angewandte Chemie International Edition England, 50(10), 2317–2321.

    CAS  Google Scholar 

  110. Arifin, D. R., Kedziorek, D. A., Fu, Y., et al. (2012). Microencapsulated cell tracking. NMR in Biomedicine. doi:10.1002/nbm.2894.

    PubMed Central  PubMed  Google Scholar 

  111. Link, T. W., Arifin, D. R., Long, C. M., et al. (2012). Use of magnetocapsules for in vivo visualization and enhanced survival of xenogeneic HepG2 cell transplants. Cell Medicine, 4(2), 77–784.

    PubMed Central  PubMed  Google Scholar 

  112. Arifin, D. R., Long, C. M., Gilad, A. A., et al. (2011). Trimodal gadolinium-gold microcapsules containing pancreatic islet cells restore normoglycemia in diabetic mice and can be tracked by using US, CT, and positive-contrast MR imaging. Radiology, 260(3), 790–798.

    PubMed  Google Scholar 

  113. Barnett, B. P., Kraitchman, D. L., Lauzon, C., et al. (2006). Radiopaque alginate microcapsules for X-ray visualization and immunoprotection of cellular therapeutics. Molecular Pharmaceutics, 3(5), 531–538.

    CAS  PubMed  Google Scholar 

  114. Barnett, B. P., Ruiz-Cabello, J., Hota, P., et al. (2011). Fluorocapsules for improved function, immunoprotection, and visualization of cellular therapeutics with MR, US, and CT imaging. Radiology, 258(1), 182–191.

    PubMed  Google Scholar 

  115. Nam, S. Y., Ricles, L. M., Suggs, L. J., & Emelianov, S. Y. (2012). In vivo ultrasound and photoacoustic monitoring of mesenchymal stem cells labeled with gold nanotracers. PLoS One, 7(5), e37267.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Ricles, L. M., Nam, S. Y., Sokolov, K., Emelianov, S. Y., & Suggs, L. J. (2011). Function of mesenchymal stem cells following loading of gold nanotracers. International Journal of Nanomedicine, 6, 407–416.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Jokerst, J. V., Khademi, C., & Gambhir, S. S. (2013). Intracellular aggregation of multimodal silica nanoparticles for ultrasound-guided stem cell implantation. Science Translational Medicine, 5(177), 177ra35.

    CAS  PubMed  Google Scholar 

  118. Cui, W., Tavri, S., Benchimol, M. J., et al. (2013). Neural progenitor cells labeling with microbubble contrast agent for ultrasound imaging in vivo. Biomaterials, 34(21), 4926–4935.

    CAS  PubMed  Google Scholar 

  119. Forss-Petter, S., Danielson, P. E., Catsicas, S., et al. (1990). Transgenic mice expressing beta-galactosidase in mature neurons under neuron-specific enolase promoter control. Neuron, 5(2), 187–197.

    CAS  PubMed  Google Scholar 

  120. Himes, S. R., & Shannon, M. F. (2000). Assays for transcriptional activity based on the luciferase reporter gene. Methods in Molecular Biology, 130, 165–174.

    CAS  PubMed  Google Scholar 

  121. Contag, C. H., Jenkins, D., Contag, P. R., & Negrin, R. S. (2000). Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia, 2(1–2), 41–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Zhuo, L., Sun, B., Zhang, C. L., Fine, A., Chiu, S. Y., & Messing, A. (1997). Live astrocytes visualized by green fluorescent protein in transgenic mice. Developmental Biology, 187(1), 36–42.

    CAS  PubMed  Google Scholar 

  123. Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N., Palmer, A. E., & Tsien, R. Y. (2004). Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotechnology, 22(12), 1567–1572.

    CAS  PubMed  Google Scholar 

  124. Kremers, G. J., Gilbert, S. G., Cranfill, P. J., Davidson, M. W., & Piston, D. W. (2011). Fluorescent proteins at a glance. Journal of Cell Science, 124(2), 157–160.

    CAS  PubMed  Google Scholar 

  125. Priddle, H., Grabowska, A., Morris, T., et al. (2009). Bioluminescence imaging of human embryonic stem cells transplanted in vivo in murine and chick models. Cloning and Stem Cells, 11(2), 259–267.

    CAS  PubMed  Google Scholar 

  126. Love, Z., Wang, F., Dennis, J., et al. (2007). Imaging of mesenchymal stem cell transplant by bioluminescence and PET. Journal of Nuclear Medicine, 48(12), 2011–2020.

    PubMed  Google Scholar 

  127. Tang, Y., Shah, K., Messerli, S. M., Snyder, E., Breakefield, X., & Weissleder, R. (2003). In vivo tracking of neural progenitor cell migration to glioblastomas. Human Gene Therapy, 14(13), 1247–1254.

    CAS  PubMed  Google Scholar 

  128. Bai, X., Yan, Y., Coleman, M., et al. (2011). Tracking long-term survival of intramyocardially delivered human adipose tissue-derived stem cells using bioluminescence imaging. Molecular Imaging and Biology, 13(4), 633–645.

    PubMed  Google Scholar 

  129. Janowski, M., Engels, C., Gorelik, M., et al. (2013). Survival of neural progenitors allografted into the CNS of immunocompetent recipients is highly dependent on transplantation site. Cell Transplant, doi: http://dx.doi.org/10.3727/096368912X661328.

  130. Liang, Y., Agren, L., Lyczek, A., Walczak, P., & Bulte, J. W. (2013). Neural progenitor cell survival in mouse brain can be improved by co-transplantation of helper cells expressing bFGF under doxycycline control. Experimental Neurology, 247C, 73–79.

    Google Scholar 

  131. Maguire, K. K., Lim, L., Speedy, S., & Rando, T. A. (2013). Assessment of disease activity in muscular dystrophies by noninvasive imaging. The Journal of Clincal Investigation, 123(5), 2298–2305.

    CAS  Google Scholar 

  132. Liang, Y., Walczak, P., & Bulte, J. W. (2013). Comparison of red-shifted firefly luciferase Ppy RE9 and conventional Luc2 as bioluminescence imaging reporter genes for in vivo imaging of stem cells. Journal of Biomedical Optics, 17(1), 016004.

    Google Scholar 

  133. Ueda, I., Kamaya, H., & Eyring, H. (1976). Molecular mechanism of inhibition of firefly luminescence by local anesthetics. Proceedings of the National Academy of Sciences of the United States of America, 73(2), 481–485.

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Inoue, Y., Kiryu, S., Izawa, K., Watanabe, M., Tojo, A., & Ohtomo, K. (2009). Comparison of subcutaneous and intraperitoneal injection of D-luciferin for in vivo bioluminescence imaging. European Journal of Nuclear Medicine and Molecular Imaging, 36(5), 771–779.

    CAS  PubMed  Google Scholar 

  135. Keyaerts, M., Remory, I., Caveliers, V., et al. (2012). Inhibition of firefly luciferase by general anesthetics: effect on in vitro and in vivo bioluminescence imaging. PLoS One, 7(1), e30061.

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Szarecka, A., Xu, Y., & Tang, P. (2007). Dynamics of firefly luciferase inhibition by general anesthetics: Gaussian and anisotropic network analyses. Biophysical Journal, 93(6), 1895–1905.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Keyaerts, M., Heneweer, C., Gainkam, L. O., et al. (2011). Plasma protein binding of luciferase substrates influences sensitivity and accuracy of bioluminescence imaging. Molecular Imaging and Biology, 13(1), 59–66.

    PubMed  Google Scholar 

  138. Gilad, A. A., McMahon, M. T., Walczak, P., et al. (2007). Artificial reporter gene providing MRI contrast based on proton exchange. Nature Biotechnology, 25(2), 217–219.

    CAS  PubMed  Google Scholar 

  139. Gilad, A. A., Ziv, K., McMahon, M. T., van Zijl, P. C., Neeman, M., & Bulte, J. W. (2008). MRI reporter genes. Journal of Nuclear Medicine, 49(12), 1905–1908.

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Berman, S. C., Galpoththawela, C., Gilad, A. A., Bulte, J. W., & Walczak, P. (2011). Long-term MR cell tracking of neural stem cells grafted in immunocompetent versus immunodeficient mice reveals distinct differences in contrast between live and dead cells. Magnetic Resonance in Medicine, 65(2), 564–574.

    PubMed Central  PubMed  Google Scholar 

  141. Liu, G., Bulte, J. W., & Gilad, A. A. (2011). CEST MRI reporter genes. Methods in Molecular Biology, 711, 271–280.

    PubMed  Google Scholar 

  142. Louie, A. Y., Huber, M. M., Ahrens, E. T., et al. (2000). In vivo visualization of gene expression using magnetic resonance imaging. Nature Biotechnology, 18(3), 321–325.

    CAS  PubMed  Google Scholar 

  143. Cui, W., Liu, L., Kodibagkar, V. D., & Mason, R. P. (2010). S-Gal, a novel 1H MRI reporter for beta-galactosidase. Magnetic Resonance in Medicine, 64(1), 65–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Alfke, H., Stoppler, H., Nocken, F., et al. (2003). In vitro MR imaging of regulated gene expression. Radiology, 228(2), 488–492.

    PubMed  Google Scholar 

  145. Gilad, A. A., Winnard, P. T., Jr., van Zijl, P. C., & Bulte, J. W. (2007). Developing MR reporter genes: promises and pitfalls. NMR in Biomedicine, 20(3), 275–290.

    CAS  PubMed  Google Scholar 

  146. Weissleder, R., Moore, A., Mahmood, U., et al. (2000). In vivo magnetic resonance imaging of transgene expression. Nature Medicine, 6(3), 351–355.

    CAS  PubMed  Google Scholar 

  147. Kotamraju, S., Chitambar, C. R., Kalivendi, S. V., Joseph, J., & Kalyanaraman, B. (2002). Transferrin receptor-dependent iron uptake is responsible for doxorubicin-mediated apoptosis in endothelial cells: role of oxidant-induced iron signaling in apoptosis. The Journal of Biological Chemistry, 277(19), 17179–17187.

    CAS  PubMed  Google Scholar 

  148. Cohen, B., Dafni, H., Meir, G., Harmelin, A., & Neeman, M. (2005). Ferritin as an endogenous MRI reporter for noninvasive imaging of gene expression in C6 glioma tumors. Neoplasia, 7(2), 109–117.

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Naumova, A. V., Reinecke, H., Yarnykh, V., Deem, J., Yuan, C., & Murry, C. E. (2010). Ferritin overexpression for noninvasive magnetic resonance imaging-based tracking of stem cells transplanted into the heart. Molecular Imaging, 9(4), 201–210.

    CAS  PubMed  Google Scholar 

  150. Campan, M., Lionetti, V., Aquaro, G. D., et al. (2011). Ferritin as a reporter gene for in vivo tracking of stem cells by 1.5-T cardiac MRI in a rat model of myocardial infarction. American Journal of Physiology. Heart and Circulatory Physiology, 300(6), H2238–H2250.

    CAS  PubMed  Google Scholar 

  151. Gossuin, Y., Muller, R. N., & Gillis, P. (2009). Magnetic resonance imaging of cells overexpressing MagA, an endogenous contrast agent for live cell imaging. Molecular Imaging, 8(3), 129–139.

    Google Scholar 

  152. Zurkiya, O., Chan, A. W., & Hu, X. (2008). MagA is sufficient for producing magnetic nanoparticles in mammalian cells, making it an MRI reporter. Magnetic Resonance in Medicine, 59(6), 1225–1231.

    CAS  PubMed  Google Scholar 

  153. Goldhawk, D. E., Lemaire, C., McCreary, C. R., et al. (2009). Magnetic resonance imaging of cells overexpressing MagA, an endogenous contrast agent for live cell imaging. Molecular Imaging, 8(3), 129–139.

    CAS  PubMed  Google Scholar 

  154. McMahon, M. T., Gilad, A. A., DeLiso, M. A., Berman, S. M., Bulte, J. W., & van Zijl, P. C. (2008). New “multicolor” polypeptide diamagnetic chemical exchange saturation transfer (DIACEST) contrast agents for MRI. Magnetic Resonance in Medicine, 60(4), 803–812.

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Alauddin, M. M., Shahinian, A., Gordon, E. M., & Conti, P. S. (2004). Direct comparison of radiolabeled probes FMAU, FHBG, and FHPG as PET imaging agents for HSV1-tk expression in a human breast cancer model. Molecular Imaging, 3(2), 76–84.

    CAS  PubMed  Google Scholar 

  156. Koehne, G., Doubrovin, M., Doubrovina, E., et al. (2003). Serial in vivo imaging of the targeted migration of human HSV-TK-transduced antigen-specific lymphocytes. Nature Biotechnology, 21(4), 405–413.

    CAS  PubMed  Google Scholar 

  157. Ponomarev, V., Doubrovin, M., Lyddane, C., et al. (2001). Imaging TCR-dependent NFAT-mediated T-cell activation with positron emission tomography in vivo. Neoplasia, 3(6), 480–488.

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Pei, Z., Lan, X., Cheng, Z., et al. (2012). A multimodality reporter gene for monitoring transplanted stem cells. Nuclear Medicine and Biology, 39(6), 813–820.

    CAS  PubMed  Google Scholar 

  159. Pomper, M. G., Hammond, H., Yu, X., et al. (2009). Serial imaging of human embryonic stem-cell engraftment and teratoma formation in live mouse models. Cell Research, 19(3), 370–379.

    CAS  PubMed  Google Scholar 

  160. Mercier-Letondal, P., Deschamps, M., Sauce, D., et al. (2008). Early immune response against retrovirally transduced herpes simplex virus thymidine kinase-expressing gene-modified T cells coinfused with a T cell-depleted marrow graft: an altered immune response? Human Gene Therapy, 19(9), 937–950.

    CAS  PubMed  Google Scholar 

  161. Serganova, I., Ponomarev, V., & Blasberg, R. (2007). Human reporter genes: potential use in clinical studies. Nuclear Medicine and Biology, 34(7), 791–807.

    CAS  PubMed  Google Scholar 

  162. Campbell, D. O., Yaghoubi, S. S., Su, Y., et al. (2012). Structure-guided engineering of human thymidine kinase 2 as a positron emission tomography reporter gene for enhanced phosphorylation of non-natural thymidine analog reporter probe. The Journal of Biological Chemistry, 287(1), 446–454.

    CAS  PubMed  Google Scholar 

  163. Ponomarev, V., Doubrovin, M., Shavrin, A., et al. (2007). A human-derived reporter gene for noninvasive imaging in humans: mitochondrial thymidine kinase type 2. Journal of Nuclear Medicine, 48(5), 819–826.

    CAS  PubMed  Google Scholar 

  164. Yaghoubi, S. S., Jensen, M. C., Satyamurthy, N., et al. (2009). Noninvasive detection of therapeutic cytolytic T cells with 18F-FHBG PET in a patient with glioma. Nature Clinical Practice Oncology, 6(1), 53–58.

    CAS  PubMed Central  PubMed  Google Scholar 

  165. McCracken, M. N., Gschweng, E. H., Nair-Gill, E., et al. (2013). Long-term in vivo monitoring of mouse and human hematopoietic stem cell engraftment with a human positron emission tomography reporter gene. Proceedings of the National Academy of Sciences of the United States of America, 110(5), 1857–1862.

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Huang, M., Batra, R. K., Kogai, T., et al. (2001). Ectopic expression of the thyroperoxidase gene augments radioiodide uptake and retention mediated by the sodium iodide symporter in non-small cell lung cancer. Cancer Gene Therapy, 8(8), 612–618.

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Auricchio, A., Acton, P. D., Hildinger, M., et al. (2003). In vivo quantitative noninvasive imaging of gene transfer by single-photon emission computerized tomography. Human Gene Therapy, 14(3), 255–261.

    CAS  PubMed  Google Scholar 

  168. Kim, Y. H., Lee, D. S., Kang, J. H., et al. (2005). Reversing the silencing of reporter sodium/iodide symporter transgene for stem cell tracking. Journal of Nuclear Medicine, 46(2), 305–311.

    CAS  PubMed  Google Scholar 

  169. Terrovitis, J., Kwok, K. F., Lautamaki, R., et al. (2008). Ectopic expression of the sodium-iodide symporter enables imaging of transplanted cardiac stem cells in vivo by single-photon emission computed tomography or positron emission tomography. Journal of the American College of Cardiology, 52(20), 1652–1660.

    PubMed  Google Scholar 

  170. Hwang do, W., Kang, J. H., Jeong, J. M., et al. (2008). Noninvasive in vivo monitoring of neuronal differentiation using reporter driven by a neuronal promoter. European Journal of Nuclear Medicine and Molecular Imaging, 35(1), 135–145.

    PubMed  Google Scholar 

  171. Bar-Shir, A., Liu, G., Liang, Y., et al. (2013). Transforming thymidine into a magnetic resonance imaging probe for monitoring gene expression. Journal of the American Chemical Society, 135(4), 1617–1624.

    CAS  PubMed  Google Scholar 

  172. de Vries, I. J., Lesterhuis, W. J., Barentsz, J. O., et al. (2005). Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nature Biotechnology, 23(11), 1407–1413.

    PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff W. M. Bulte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, A.K., Bulte, J.W.M. Seeing Stem Cells at Work In Vivo. Stem Cell Rev and Rep 10, 127–144 (2014). https://doi.org/10.1007/s12015-013-9468-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-013-9468-x

Keywords

Navigation