Skip to main content
Erschienen in: Wiener klinische Wochenschrift 1/2023

Open Access 01.01.2023 | leitlinien für die praxis

Diabetes mellitus – Definition, Klassifikation, Diagnose, Screening und Prävention (Update 2023)

verfasst von: Dr. Jürgen Harreiter, PhD, MSc., Univ.-Prof. Dr. DDr. h.c. Michael Roden

Erschienen in: Wiener klinische Wochenschrift | Sonderheft 1/2023

Zusammenfassung

Diabetes mellitus bezeichnet eine Gruppe von heterogenen Erkrankungen, deren gemeinsamer Befund die Erhöhung der Blutglukosekonzentration ist. Die gegenwärtige Klassifikation des Diabetes mellitus wird dargestellt und die wesentlichen Merkmale von Typ 1 und Typ 2 Diabetes werden beschrieben. Darüber hinaus werden die Kriterien für die korrekte biochemische Diagnose unter Nüchtern-Bedingungen und im oralen Glukosetoleranz-Test sowie die Anwendung des Hämoglobin A1c (HbA1c) zusammengefasst. Die zunehmende Prävalenz des Diabetes erfordert zudem gezieltes Screening zur Erkennung von Diabetes und Prädiabetes in Risikogruppen. Dies bildete die Grundlage für die frühzeitige Einleitung von Maßnahmen zur Prävention der Manifestation des Diabetes in diesen Risikogruppen und Verzögerung der Diabetesprogression.
Hinweise

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.
Im Jahr 2021 wurde die weltweite Prävalenz von Diabetes mellitus bei Erwachsenen zwischen dem 20. und 79. Lebensjahr auf 537 Mio., vor allem bedingt durch Typ‑2 Diabetes mellitus, geschätzt [1]. Bis zum Jahr 2045 soll diese Zahl um 46 % auf 783 Mio. zunehmen, wobei dies in besonderen Maß strukturärmere Regionen betreffen soll (Prävalenz: 13–134 %) [1]. Für Niedriglohnländer wird zudem eine hohe Prävalenz an nicht diagnostiziertem Diabetes angenommen (24–54 %) [1]. Die in Österreich aufgrund fehlender nationaler Register geschätzte Diabetesprävalenz beträgt gemäß des Österreichischen Diabetesberichts aus dem Jahr 2017 etwa 5–7 % [2]. Da bereits Vorstufen des Diabetes („Prädiabetes“) mit erhöhtem Risiko für vaskuläre Erkrankungen (koronare Herzkrankheit, Schlaganfall) und allgemeine Mortalität assoziiert sind, sind effiziente Strategien zu Früherkennung und Prävention von Prädiabetes und Typ 2 Diabetes erforderlich [3].

Definition

Diabetes mellitus bezeichnet eine Gruppe von Stoffwechselerkrankungen, deren gemeinsamer Befund die Erhöhung des Blutglukosespiegels, die Hyperglykämie, ist. Schwere Hyperglykämie führt von klassischen Symptomen wie Polyurie, Polydipsie, Müdigkeit und Leistungsabfall, unerklärbarer Gewichtsverlust über Sehstörungen und Infektanfälligkeit bis hin zu Ketoazidose oder nicht-ketoazidotischem, hyperosmolaren Syndrom mit Gefahr des Komas. Chronische Hyperglykämie bewirkt desweitern Störungen der Sekretion und/oder Wirkung von Insulin und ist mit Langzeitschäden und Funktionsstörungen verschiedener Gewebe und Organe (Augen, Nieren, Nerven, Herz und Blutgefäße) sowie Krebserkrankungen assoziiert.

Klassifikation

Die Klassifikation des Diabetes mellitus erfolgt in 4 Typen [4, 5].

Typ 1 Diabetes

Störung der Insulinsekretion durch überwiegend immunologisch vermittelte Zerstörung der pankreatischen Betazellen mit meist absolutem Insulinmangel. LADA (latenter autoimmuner Diabetes der Erwachsenen) bezeichnet einen autoimmun-bedingten Diabetes mellitus, der durch das Auftreten im Erwachsenenalter und den langsameren Verlust der Insulinsekretion gekennzeichnet ist, dem Typ 1 Diabetes zugeordnet wird und keinen eigenständigen Subtyp darstellt. Das Vorhandensein von Diabetes-assoziierten (auch: Inselzell‑) Autoantikörpern ist ein starker Prädiktor für die Entwicklung eines Typ 1 Diabetes. Dabei scheinen Alter bei Feststellung, Titerhöhe sowie Anzahl und Spezifität der Autoantikörper mit der Progression des Typ 1 Diabetes assoziiert zu sein [4].

Typ 2 Diabetes

Verminderung der Insulinwirkung (Insulinresistenz) mit fortschreitendem Verlust der Betazellfunktion, bei zunächst häufig relativem Insulinmangel und typischerweise Störung der glukoseabhängigen Insulinsekretion. Die Funktionsstörungen sind in unterschiedlicher Ausprägung schon lange vor der klinischen Manifestation des Diabetes allein oder im Rahmen eines metabolischen Syndroms mit erhöhtem Risiko für makrovaskuläre Folgen vorhanden. Tab. 1 listet Hinweise zur klinischen Differentialdiagnose zum Typ 1 Diabetes auf.
Tab. 1
Differentialdiagnostische Überlegungen zur Unterscheidung von Typ 1 und Typ 2 Diabetes (10 Kriterien, nach [5])
Kriteriuma
Typ 1 Diabetes
Typ 2 Diabetes
Häufigkeit
Selten, < 10 % der Diabetes-Fälle
Häufig, > 90 % der Diabetes-Fälle
Manifestationsalter
Meist in Kindheit oder Jugend (Ausnahme: LADA)
Meist im höheren Alter, zunehmend frühere Manifestation
Körpergewicht
Meist normalgewichtig
Meist übergewichtig, adipös
Symptome
Häufig
Seltener
Neigung zur diabetischen Ketoazidose (DKA)
Ausgeprägt
Fehlend oder nur gering
Familiäre Häufung
Gering
Typisch
Plasma C‑Peptid
Meist niedrig bis fehlend
Meist normal bis erhöht
Diabetes-assoziierte Antikörper
85–95 % + (GAD, ICA, IA‑2, IAA, ZnT8)
Keine
HLA-Assoziation
+ (HLA-DR/DQ)
Keine
Insulintherapie
Sofort erforderlich
Oft erst nach längerem Verlauf und nach erfolgloser Lebensstilmodifikation und oraler Diabetestherapie erforderlich
aSymptome, Klinik und Verlauf beider Diabetestypen weisen eine hohe Variabilität auf, die eine Differentialdiagnose im Einzelfall erschweren kann. Bei unklarem Diabetestyp oder untypischer Klinik sollte immer auch an andere seltene Diabetesformen (z. B. MODY) gedacht werden
Rezente Studien schlagen eine weitere Klassifizierung des Typ 2 Diabetes in 5 „Cluster“ (Subtypen, Endotypen) vor, die Unterschiede im Ausmaß der Insulinresistenz und Betazellfunktion sowie Risiken für Diabetes-bedingte Komplikationen aufweisen sollen [6, 7]. Eine solche Klassifikation könnte zukünftig als Basis einer neuen Typisierung des Diabetes dienen und eine stratifizierte bzw. präzisere Prävention und Therapie ermöglichen. Dies erfordert allerdings weitere Studien, sodass derzeit eine solche Klassifizierung für die klinische Praxis noch nicht empfohlen werden kann.

Andere spezifische Diabetes-Typen

Erkrankungen des exokrinen Pankreas (z. B. Pankreatitis, Traumen, Operationen, Tumoren, Hämochromatose, zystische Fibrose), endokriner Organe (z. B. Cushing-Syndrom, Akromegalie), medikamentös-chemisch (z. B. Glukokortikoide, α‑Interferon, Posttransplantations-Diabetes, HAART bei HIV/AIDS), genetische Defekte der Insulinsekretion (z. B. Formen des Maturity Onset Diabetes of the Young [MODY]) und der Insulinwirkung (z. B. Lipoatropher Diabetes), andere genetische Syndrome (z. B. Down‑, Klinefelter‑, Turner-Syndrome), Infektionen (z. B. kongenitale Röteln) und seltene Formen des autoimmun-vermittelten Diabetes (z. B. „Stiff-man“-Syndrom). Details finden sich in der Leitlinie „Andere spezifische Diabetesformen und exokrine Pankreasinsuffizienz“.

Gestationsdiabetes (GDM)

Erstmals im zweiten oder dritten Schwangerschaftstrimester aufgetretene bzw. diagnostizierte Glukosetoleranzstörung. Voraussetzung ist, dass außerhalb der Schwangerschaft kein Diabetes mellitus bestanden hat. (siehe: Leitlinie „Gestationsdiabetes“).
Aufgrund einer oft unklaren Vorgeschichte ist eine Unterscheidung zwischen den einzelnen Diabetestypen zum Zeitpunkt der Diagnosestellung vor der notwendigen ausführlichen Anamnese und dem Eintreffen aller erforderlichen Befunde nicht immer möglich. Insulinabhängigkeit stellt keine Klassifikation dar.

Diagnose

Die Diagnose des Diabetes erfolgt anhand von Nüchtern-Glukose, Gelegenheitsglukose, oralem Glukosetoleranz-Test (OGTT) oder Hämoglobin A1c (HbA1c). Die Hyperglykämie entwickelt sich kontinuierlich und die Störungen von Nüchtern- und postprandialer Glykämie weisen unterschiedliche Zeitverläufe auf. Die etablierten Diagnosegrenzwerte der jeweiligen Parameter sind daher nicht immer in kompletter Übereinstimmung bei der Identifizierung von Menschen mit Diabetes, desweitern unterliegen alle Tests einer Variabilität, so dass eine zeitnahe Testwiederholung oder Bestätigung eines Testresultates durch einen anderen Test – außer bei Vorliegen klassischer klinischer Symptome – immer erforderlich sind.

Nüchtern-Glukose, Gelegenheitsglukose und OGTT

Die Diagnose wird unabhängig von Alter und Geschlecht durch Messung mehrfach erhöhter Blut-Glukosewerte an mindestens zwei verschiedenen Tagen gestellt (Tab. 2). Bei klinischem Verdacht und widersprüchlichen Ergebnissen wird die Diagnose mittels OGTT gestellt. Als „normal“ gelten derzeit Nüchtern-Glukose-Werte im venösen Plasma von < 100 mg/dl (< 5,6 mmol/l) bzw. postprandiale Werte < 140 mg/dl (< 7,8 mmol/l). Niedrigere Werte schließen das Vorliegen von einer Glukosestoffwechselstörung oder Folgeschäden aber nicht aus. Die Grundlage für die Wahl der Grenzwerte liegt in der überwiegend kontinuierlichen Beziehung zwischen höheren Blutglukose-Werten (nüchtern und 2 h nach oraler Glukosebelastung) und der Zunahme des Risikos für Folgeschäden.
Tab. 2
Standard-Diagnostik des Diabetes mellitus und des erhöhten Diabetes-Risikos
 
Manifester Diabetes mellitus
Erhöhtes Diabetes-Risiko (Prädiabetes)a
Nicht-Nüchtern, Gelegenheitsglukose („Random-Glucose“, venös od. kapillär)
≥ 200 mg/dl (11,1 mmol/l) an 2 Tagenb ODER ≥ 200 mg/dl (11,1 mmol/l) + klassische Symptomec
Nüchtern-Glukose (venöses Plasma)
≥ 126 mg/dl (7,0 mmol/l) an 2 Tagenb
≥ 100 mg/dl (5,6 mmol/l), aber < 126 mg/dl (7,0 mmol/l) (Abnorme Nüchternglukose, „impaired fasting glucose“, IFG)
2‑h-Glukose nach 75 g OGTT (venöses Plasma)
≥ 200 mg/dl (11,1 mmol/l) an 2 Tagenb
Glukose ≥ 140 mg/dl (7,8 mmol/l), aber < 200 mg/dl (11,1 mmol/l) (Gestörte Glukosetoleranz, „impaired glucose tolerance“, IGT)
HbA1c
≥ 6,5 % (48 mmol/mol) an 2 Tagenb
≥ 5,7 % (39 mmol/mol), aber < 6,5 % (48 mmol/mol)d
aEin erhöhtes Diabetes-Risiko kann auch ohne Nachweis von Störungen der Glykämie bestehen und lässt sich mittels definierter Risiko-Tests erheben (siehe unter: Prävention)
bSind 2 unterschiedliche Tests positiv, ist die Diagnose Diabetes gegeben, so dass auf die Testwiederholung verzichtet werden kann. Ergeben unterschiedliche Tests unterschiedliche Ergebnisse, dann ist der Test mit erhöhtem Ergebnis zu wiederholen
cBei Vorliegen von Hyperglykämie und klassischen Symptomen ist die Diagnose ohne Testwiederholung gegeben, da z. B. bei Erstmanifestation des Typ 1 Diabetes das HbA1c normal sein kann
dWeiterführende Diagnostik mittels Nüchtern-Glukose oder OGTT ist erforderlich
Für die Diagnose des GDM gelten andere als in Tab. 2 gelistete Kriterien (siehe ÖDG-Leitlinien zu Gestationsdiabetes für detaillierte Informationen) [8]. Die Durchführung eines 75 g OGTT wird in der 24–28. Schwangerschaftswoche bei allen Frauen ohne bereits vorbestehenden Diabetes mellitus empfohlen. Die Grenzwerte lauten nüchtern < 92 mg/dl (5,1 mmol/l), nach 1 h < 180 mg/dl (10,0 mmol/l) und nach 2 h < 153 mg/dl (8,5 mmol/l) [8]. Bereits ab einem erhöhten Plasmaglukosewert wird die Diagnose Gestationsdiabetes gestellt.
Voraussetzungen zur Glukosebestimmung sind:
  • ausschließlicher Einsatz qualitätsgesicherter Maßnahmen oder Tests
  • vorzugsweise Bestimmung im venösen Plasma (Zusatz von Lithium-Heparin oder besser EDTA + Natrium-Fluorid). Serumproben sind nur zu verwenden, wenn ein Glykolysehemmstoff zugesetzt wurde
  • keine Bestimmung mit Blutglukosemessgeräten, die zur Selbstkontrolle verwendet werden
  • „Nüchtern“ bedeutet eine Zeit von ≥ 8 h ohne jegliche Kalorienaufnahme
  • Bei der Durchführung ist auf die mögliche Verfälschung der Diagnose durch interkurrente Erkrankungen (z. B. Infektionen, Dehydratation, gastrointestinale Krankheiten) oder Medikamenten-Einnahme (z. B. Glukokortikoide) zu achten
  • Bei Situationen/Erkrankungen mit erhöhtem Erythrozytenumsatz (z. B. Schwangerschaft, Hämodialyse, Bluttransfusion, großer Blutverlust, Sichelzellanämie, Thalassämie, hereditäre Sphärozytose) sollte nur die Plasmaglukose-Konzentration zur Diagnose des Diabetes mellitus herangezogen werden, da der HbA1c-Wert in diesen Fällen falsch niedrig sein kann.

HbA1c

Mit den ÖDG-Leitlinien 2012 wurden auch erhöhte HbA1c-Werte in die Standardkriterien zur Diagnose des Diabetes mellitus übernommen [9, 10]. Demgemäß kann ein Diabetes mellitus anhand der HbA1c-Grenzwerte ≥ 6,5 % (48 mmol/mol) diagnostiziert werden (Tab. 2). Grundlage dafür ist die Zunahme des Risikos für diabetische Retinopathie ab HbA1c-Werten von > 6,5 % (48 mmol/mol) [10, 11]. Für HbA1c-Werte von 5,7 % (39 mmol/mol) bis einschließlich 6,4 % ist ein erhöhtes Diabetes-Risiko anzunehmen, so dass in diesem Fall eine Abklärung mittels Nüchtern-Glukose und OGTT empfohlen wird. Vergleichbare HbA1c-Schwellenwerte für andere mikrovaskuläre oder makrovaskuläre Diabetesfolgen sind bisher nicht etabliert [11]. Diabetes mellitus kann bei erwachsenen Personen, Kindern und Jugendlichen auch auf Basis eines erhöhten HbA1c-Wertes diagnostiziert werden [4, 12]. Die Vorteile der Messung des HbA1c Wertes liegen in der höheren präanalytischen Stabilität und geringerer täglicher Varianz [4]. Nachteile sind die geringere Sensitivität, höhere Kosten (somit weltweit nicht überall verfügbar) und geringeren Korrelation zwischen HbA1c und durchschnittlichen Blutglukosewerten. Die Bestimmung des HbA1c ist eine indirekte Messung der durchschnittlichen Blutglukosewerte über mehrere Wochen hinweg und kann durch Einflussfaktoren wie Alter, Ethnizität und Anämie/Hämoglobinopathie von den tatsächlich gemessenen Glukosewerten abweichen [4]. Von besonderer Bedeutung ist die eingeschränkte Aussagekraft des HbA1c-Wertes unter den folgenden Umständen, die den Einsatz des HbA1c zur Diagnose des Diabetes mellitus ausschließen sollten:
  • Veränderungen des Hämoglobins (Hb): z. B. angeborene Hämoglobinopathien (HbS, HbE, HbF, HbC, HbD); Hb-Modifikationen bei Urämie (karbamyliertes Hb) oder Azetylsalizylsäure in hohen Dosen (azetyliertes Hb)
  • Veränderung der Erythrozyten-Lebensdauer (Umsatz, Turnover): z. B. verlangsamter Umsatz bei Eisenmangel- und Vitamin-B12-Mangel-Anämien oder Niereninsuffizienz erhöht das HbA1c; beschleunigter Umsatz bei hämolytischen Anämien oder chronischen Leber-Erkrankungen senkt das HbA1c
  • Hemmung der Glykierung: z. B. Dauertherapie mit Vitamin C oder Vitamin E
  • Schwangerschaft: 2. und 3. Trimester
  • Alter: bei identen Glukosewerten nimmt das HbA1c mit dem Alter zu
  • Ethnizität: z. B. höhere HbA1c-Werte bei Afroamerikanern und Südasiaten als bei nicht hispanischen Weißen
  • Labortechnischen Probleme: Unerklärliche Abweichungen zwischen HbA1c und Plasmaglukose sollten an labortechnische Probleme bei der HbA1c-Bestimmung denken lassen (z. B.: Assayinterferenz). Nähere Informationen zu Faktoren, die mit HbA1c-Ergebnissen interferieren können und Assay-Interferenzen sind im Internet unter www.​ngsp.​org (http://​www.​ngsp.​org/​factors.​asp, http://​www.​ngsp.​org/​interf.​asp) nachzulesen
Zur besseren Vergleichbarkeit der Methoden zur Bestimmung des HbA1c sollen ausschließlich Methoden verwendet werden, die nach dem neuen Standard der International Federation of Clinical Chemistry (IFCC) referenziert sind [9, 13]. Diese Werte sollen, um Verwechslungen zu vermeiden, nach dem IFCC-Standard in mmol/mol ausgegeben werden. Die Umrechnung in den HbA1c-Wert in Prozent nach dem National Glycohemoglobin Standardization Program (NGSP) bzw. dem Diabetes Control and Complications Trial (DCCT) ist wie folgt:
$$HbA1c\,\textit in\,\textit{Prozent}=(0{,}09148*HbA1c\,\textit in\,\textit mmol/mol)+2{,}152$$
(1)
Ein DCCT HbA1c-Wert von 6,5 % entspricht somit einem IFCC-HbA1c von 48 mmol/mol.

Oraler Glukosetoleranztests (OGTT) nach WHO-Richtlinien

  • Indikationen:
    Risikogruppen (siehe unten), ältere Menschen (aber nicht routinemäßig), gestörte Nüchternglukose, Schwangerschaft in der 24–28. Schwangerschaftswoche (siehe auch: Leitlinie Gestationsdiabetes)
  • Durchführung:
    ≥ 3 Tage kohlenhydratreiche (≥ 150 g/Tag) Ernährung 10–16 h Nahrungs- und Alkohol-Karenz vor dem Test
Testung am Morgen im Liegen/Sitzen (kein Rauchen vor/während des Tests, keine übermäßige körperliche Aktivität).

Glukosebestimmung (Zeitpunkt 0 min)

Trinken von 75 g Glukose (oder äquivalente Menge Stärke) in 250–350 ml Wasser (Kinder: 1,75 g/kg bis maximal 75 g Glukose) innerhalb 5 min.
Glukosebestimmung zum Zeitpunkt 60 min nach Glukoseaufnahme: nur bei Abklärung von GDM notwendig.

Glukosebestimmung (Zeitpunkt 120 min nach Glukoseaufnahme)

  • Kontraindikationen:
    interkurrente Erkrankungen, St. p. Magen-Darm-Resektion/bariatrische Operation, Resorptionsstörungen, nachgewiesener Diabetes mellitus
  • Einflussfaktoren:
    Längeres Fasten, Kohlenhydrat-Mangelernährung können auch bei Gesunden zur pathologischen Glukosetoleranz führen. Eine Reihe von Medikamenten, wie z. B. Glukokortikoide, Adrenalin (Epinephrin), Phenytoin und Furosemid können die Glukosetoleranz verschlechtern

Screening

Personen mit erhöhtem Diabetesrisiko sollten durch systematisches Screening auf Prädiabetes und Typ 2 Diabetes untersucht werden. Die Risikofaktoren vor allem für Typ 2 Diabetes umfassen unter anderem einen Mangel an körperlicher Aktivität und unausgewogene hyperkalorische Ernährung, die häufig die Basis für Übergewicht und Adipositas und in weiterer Folge Hyperlipidämie, arterielle Hypertonie, nicht-alkoholische Fettlebererkrankungen (nonalcoholic fatty liver disease, NAFLD) [14] bilden (Tab. 3). Weitere Risikofaktoren stellen eine genetische Prädisposition bzw. positive Familienanamnese, eine gewisse ethnische Herkunft, zunehmendes Lebensalter sowie Sexualhormonstörungen und Gestationsdiabetes dar [15]. Als Risikofaktor für Typ 1 Diabetes gelten Diabetes-assoziierte Antikörper, wobei das Vorliegen von 2 oder mehr dieser Autoantikörper auf ein > 80%iges Risiko für Typ 1 Diabetes innerhalb von 15 Jahren hinweist [4]. Zystische Fibrose und Zustand nach Transplantation von Organen sind ebenso Risikofaktoren für die Entstehung einer Hyperglykämie.
Tab. 3
Kriterien zur Durchführung des Diabetesscreenings bei asymptomatischen erwachsenen Personen. (Adaptiert und erweitert nach [4])
1. Ein Hyperglykämie-Screening sollte bei Vorliegen folgender Risikofaktoren erfolgen:
BMI ≥ 25 kg/m2 (bei asiatischer Herkunft 23 kg/m2)
Positive Familienanamnese bei erstgradigen Verwandten
Ethnizität mit erhöhtem Diabetesrisiko (asiatische, afrikanische, lateinamerikanische Herkunft)
Vaskuläre Erkrankungen
Arterielle Hypertonie (≥ 140/90 mm Hg oder antihypertensive Therapie)
HDL-Cholesterin < 35 mg/dl und/oder Triglyzeride > 250 mg/dl
Polyzystisches Ovarsyndrom (PCOS)
Hypogonadismus
Körperliche Inaktivität
Acanthosis nigricans
NAFLDa
Chronischer Tabakkonsumb
2. Bei bekanntem Prädiabetes sollte ein jährliches Screening erfolgen
3. Bei Zustand nach GDM sollte zumindest alle 3 Jahre ein Screening erfolgenc
4. HIV-positive Personen
5. Bei allen anderen Personen sollte ein Screening ab einem Alter von 35 Jahren erfolgen
6. Bei unauffälligen Screening-Resultaten sollte ein weiteres Screening alle 3 Jahre erfolgen. Engmaschigere Kontrollen sollten den Screening-Ergebnissen und Risikofaktoren entsprechend geplant werden
aUmfasst einfache Fettleber (Steatosis hepatis oder nicht-alkoholische Fettleber, NAFL), nicht-alkoholische Steatohepatitis (NASH), „kryptogene“ Formen der Leberfibrose, -zirrhose und des hepatozellulären Karzinoms [14]
bChronischer Tabakkonsum ist mit erhöhtem T2DM Risiko assoziiert [16]
cSpezielle Risikofaktoren und Screening für GDM (siehe Leitlinie: „Gestationsdiabetes“)
Vor Durchführung von Labortests empfehlen nationale Diabetesorganisationen wie die ADA oder die DDG die Durchführung von Diabetes-Screening-Tests zur besseren Risikobewertung (z. B. FINDRISK, ADA Diabetes Risk Test, Deutscher Diabetesrisikotest). Bei Vorliegen eines der oben genannten Risikofaktoren sollte eine Testwiederholung in einem minimalen Intervall von 3 Jahren, bei Prädiabetes jährlich stattfinden.
Generell sollte ein Screening auf Typ 1 Diabetes mittels Diabetes-assoziierter Autoantikörper in der Allgemeinbevölkerung nicht durchgeführt werden, sondern wird nur bei erstgradigen Verwandten mit Typ 1 Diabetes empfohlen.
Bei Verdacht auf das Vorliegen eines monogenetischen Diabetes mellitus ist eine unmittelbare molekulargenetische Testung zu empfehlen. Dies sollte vor allem bei Auftreten von Hyperglykämie in den ersten 6 Lebensmonaten oder bei in mehreren Generationen auftretendem Diabetes mellitus mit nicht zu Typ 1 oder Typ 2 Diabetes passenden Symptomen erfolgen. Ein darauf spezialisiertes Zentrum sollte in die Versorgung dieser Personen zur Abschätzung der Signifikanz der Mutation, zur fachgerechten genetischen Beratung und Therapieplanung einbezogen werden [4]. Die Aufklärung des Betroffenen und ein genetisches Beratungsgespräch müssen entsprechend den Richtlinien des Gentechnikgesetztes erfolgen (siehe auch Leitlinie „Andere spezifische Diabetesformen und exokrine Pankreasinsuffizienz“).
Bei Zustand nach Transplantation eines Organs und dementsprechend erforderlicher immunsuppressiver Therapie sowie bei Zystischer Fibrose ist das Screening der Wahl ein OGTT [4]. Bei Zystischer Fibrose sollte der OGTT jährlich, bei Zustand nach Transplantation nach Stabilisierung der immunsuppressiven Therapie durchgeführt werden.
Bei asymptomatischen Kindern und Jugendlichen sollte ebenfalls ein Typ 2 Diabetesscreening erfolgen, wenn eine Adipositas (BMI > 95. Perzentile, geschlechts- und altersadjustiert) oder ein Übergewicht (BMI > 85. Perzentile) und zusätzlich ein oder mehrere Risikofaktoren wie mütterlicher GDM in der Schwangerschaft des Kindes oder Typ 2 Diabetes bei Verwandten 1. bis 2. Grades, Hinweis auf Insulinresistenz oder mit ihr assoziierte Veränderungen oder Ethnizität mit erhöhtem Risiko vorliegen [4].

Prävention

Prävention des Typ 2 Diabetes

Zahlreiche prospektive Studien zur Prävention des Typ 2 Diabetes, unter anderem die Diabetes Prevention Study (DPS) und das Diabetes Prevention Program (DPP), zeigten, dass Veränderung des Lebensstils oder medikamentöse Maßnahmen eine Reduktion des Risikos der Manifestation von Typ 2 Diabetes mellitus ermöglichen (Tab. 4 und 5; [17, 18]). Mittels Lebensstilmodifikation konnte das Diabetesrisiko um 39 % und mit medikamentösen Interventionen um 36 % reduziert werden, jedoch konnte eine langfristige Risikoreduktion (28 %, durchschnittliche Beobachtungszeit 7,2 Jahre) nur mit Lebensstilveränderung beobachtet werden [17, 18]. Nach medikamentöser Intervention war keine nachhaltige Reduktion des Diabetesrisikos zu erkennen [17]. Auch die Kosten-Nutzen-Rechnung zeigt deutlich die längerfristigen positiven Effekte von Lebensstilintervention auf. In einer britischen Berechnung zur Kosteneffektivität waren sowohl Lebensstilmaßnahmen mit niedriger als auch hoher Intensität und medikamentöse Intervention mit Metformin im Vergleich zu keiner Intervention bei Anwendung an Personen mit IFG, IGT oder erhöhtem HbA1c (Prädiabetes) kosteneffektiv [19]. Bislang zeigte nur die chinesische DaQing Diabetes Prevention Study eine Reduktion der kardiovaskulären und allgemeinen Mortalität bei Frauen mit IGT [20]. In der Interventionsgruppe wurde nach einem 6‑jährigen Lebensstilinterventionsprogramm die kardiovaskuläre Mortalität um 41 % (n = 51/430;12 % vs. N = 27/138; 20 %; HR 0,59, 0,36–0,96) und die allgemeine Mortalität um 29 % (n = 121/430; 28 % vs. N = 53/138;38 %, HR 0,71, 0,51–0,99) im Follow-up nach > 20 Jahren gesenkt. Eine Follow up-Analyse der Da Qing Diabetes Prevention Study nach 30 Jahren zeigte eine Risikoreduktion für Typ 2 Diabetes um 39 % durch Lebensstil- und Gesundheitsverhaltensänderung [21]. Neuere Daten aus der Da Qing Diabetes Prevention Study weisen darauf hin, dass eine Regression von IGT zu normaler Glukosetoleranz oder eine Verhinderung einer Progression zu Typ 2 Diabetes nach 6 Jahren Intervention auch zu einem niedrigeren Risiko für kardiovaskuläre und mikrovaskuläre Ereignisse nach über 30 Jahren Follow up führt [22]. Auch in der Diabetes Prevention Study wurde gezeigt, dass das Erreichen von Normoglykämie während der Intervention mit einem niedrigeren Risiko für Diabetes und mikrovaskulären Komplikationen in Zusammenhang steht [23].
Tab. 4
Ausgewählte Studien zur Prävention des Typ 2 Diabetes mittels Lebensstilmodifikation. Die Auswahl erfolgte nach Teilnehmerzahl (zumindest 100), Interventionsdauer (zumindest 2 Jahre) und Ethnizität (Schwerpunkt europäisch/kaukasisch) auf Basis von zwei Metaanalysen. (Nach [17, 18])
Studie
Studienarme
Teilnehmer
Beobachtungsdauer
Diabetesrisikoreduktion
Referenz
DPP
Ernährung + Bewegung, Metformin, Plazebo
3234 mit IFG oder IGT
3 Jahre
58 %
[28]
DPS
Ernährung + Bewegung, Kontrolle
552 Männer und Frauen mit IGT
Mittelwert 3,2 Jahre
58 %
[29]
Da Qing
Ernährung, Bewegung, Ernährung + Bewegung
577 Männer und Frauen mit IGT
6 Jahre
Bewegung: 37 %
Ernährung: 33 %, Ernährung + Bewegung: 32 %
[30]
IDPP
Ernährung + Bewegung, Metformin, Ernährung, Bewegung + Metformin, Kontrolle
531 Männer und Frauen mit IGT
Median 30 Monate
Ernährung + Bewegung: 28,5 %
[31]
SLIM
Ernährung + Bewegung, Kontrolle
147 Männer und Frauen mit IGT
3 Jahre
58 %
[32]
EDIPS
Ernährung + Bewegung, Kontrolle
102 Männer und Frauen mit IGT
3,1 Jahre
55 %
[33]
Zensharen
Ernährung + Bewegung, Kontrolle
641 Männer und Frauen mit IFG
3 Jahre
44 %
[34]
JDPP
Ernährung + Bewegung, Kontrolle
304 Männer und Frauen mit IGT
3 Jahre
47 %
[35]
Tab. 5
Ausgewählte Medikamente in der Prävention von Typ 2 Diabetes. Die Auswahl erfolgte nach Teilnehmerzahl (zumindest 100), Interventionsdauer (zumindest 2 Jahre) und Ethnizität (Schwerpunkt europäisch/kaukasisch) auf Basis von zwei Metaanalysen. (Nach [17, 18])
Arzneistoff
Studie
Studienarme
Teilnehmer
Beobachtungsdauer
Diabetesrisikoreduktion
Referenz
Metformin
US DPP
Lebensstil, Metformin, Plazebo
3234 Männer und Frauen mit IFG oder IGT
3 Jahre
31 %
[28]
Metformin
Indian DPP
Lebensstil, Metformin, Plazebo, Metformin und Lebensstil
531 Männer und Frauen mit IGT
3 Jahre
Metformin: 26,4 %
Metformin und Lebensstil: 28,2 %
[31]
Metformin + Rosiglitazon
CANOE
Metformin und Rosiglitazon, Plazebo
207 Männer und Frauen mit IGT
Median 3,9 Jahre
66 %
[50]
Glimepirid
NANSY
Glimepirid, Plazebo
274 Männer und Frauen mit IGT
3,71 Jahre
Nicht signifikant
[51]
Pioglitazon
ACT NOW
Pioglitazon, Plazebo
602 Männer und Frauen mit IGT
Median 2,4 Jahre
72 %
[52]
Rosiglitazon
DREAM
Rosiglitazon, Ramipril, Plazebo, Rosiglitazon und Ramipril
5269 Männer und Frauen mit IFG/IGT
Median 3 Jahre
60 %
[53]
Ramipril
DREAM
Rosiglitazon, Ramipril, Plazebo, Rosiglitazon und Ramipril
5269 Männer und Frauen mit IFG/IGT
Median 3 Jahre
Nicht signifikant
[54]
Acarbose
STOP-NIDDM
Acarbose, Plazebo
714 Männer und Frauen mit IGT
3,3 Jahre
25 %
[55]
Voglibose
Kawamori et al
Voglibose, Plazebo
1780 Frauen und Männern mit IGT
4 Jahre
54 %
[56]
Nateglinid
NAVIGATOR
Nateglinid, Valsartan, Plazebo, Nateglinid und Valsartan
9306 Männer und Frauen mit IFG und mindestens 1 kardiovaskulärem Risikofaktor
Median 5 Jahre
Nicht signifikant
[57]
Valsartan
NAVIGATOR
Nateglinid, Valsartan, Plazebo, Nateglinid und Valsartan
9306 Männer und Frauen mit IFG und mindestens einem kardiovaskulären Risikofaktor
Median 5 Jahre
14 %
[58]
Insulin Glargin
ORIGIN
Insulin Glargin, Standardversorgung
12,537 Frauen und Männer mit kardiovaskulären Risikofaktoren und IFG, IGT oder T2DM (1452 ohne Diabetes mellitus)
Median 6,2 Jahre
28 %
[59]
Orlistat
XENDOS
Orlistat, Plazebo
3305 Männer und Frauen mit BMI ≥ 30 kg/m2
4 Jahre
37 %
[60]
Bezafibrat
BIP
Bezafibrat, Plazebo
339 adipöse Frauen und Männer
Median 6,3 Jahre
32 %
[61]
Liraglutid
SCALE
Liraglutid, Plazebo
2254 Frauen und Männer mit BMI ≥ 30 kg/m2 oder ≥ 27 kg/m2 mit Komorbiditäten
3 Jahre
79 %
[62]
Testosteron
T4DM
Testosteron undecanoate, Plazebo
1007 übergewichtigeMänner mit IGT oder neu diagnostiziertem T2DM
2 Jahre
41 %
[63]
Da sowohl Rauchen als auch Passivrauchen die Inzidenz für Diabetes erhöht, trägt eine rauchfreie Umgebung unmittelbar zur Diabetesprävention bei [24]. Ein Rauchstopp kann zwar über die mögliche Gewichtszunahme das Diabetesrisiko mittelfristig erhöhen, senkt aber gleichzeitig die erhöhte Mortalität um nahezu 50 %. Details siehe Leitlinie „Rauchen, erhitzte Tabakprodukte, Alkohol und Diabetes“ [24]. Schlafmangel und schlechte Schlafqualität können zu Insulinresistenz und Hyperglykämie führen [25].
Bezüglich der bariatrischen (metabolischen) Chirurgie, ergab eine Metaanalyse von Studien mit insgesamt fast 95.000 Betroffenen eine Diabetesremission von > 70 % [26]. Eine weitere Metaanalyse mit 39 prospektiven und retrospektiven Kohortenstudien zeigte nach bariatrischer Operation Risikoreduktionen bei kardiovaskulären Ereignissen und Mortalität (Reduktion: Myokardinfarkt 42 %, Schlaganfall 36 %, Herzinsuffizienz 50 %, kardiovaskuläre Mortalität 41 %, Gesamt-Mortalität 45 %) [27].
Aufgrund dieser Daten erscheint es sinnvoll, mit Personen mit erhöhtem Typ 2 Diabetes Risiko Maßnahmen (Änderung des Essverhaltens, regelmäßige körperliche Aktivität) zu vereinbaren, die bei Übergewicht und Adipositas zu langfristiger Reduktion des Körpergewichts um mindestens 5–10 % führen (siehe Leitlinie „Körperliche Aktivität und Training in der Prävention und Therapie des Typ 2 Diabetes mellitus“). Um mehr Personen an einem Präventionsprogramm teilhaben zu lassen, sollten zusätzliche Angebote mithilfe neuer Technologien, z. B. webbasierter, virtueller oder mobiltelefongestützter Programme, neben den traditionellen gecoachten Programmen geschaffen werden [36]. Eine rezente Metaanalyse ergab, dass durch technologiebasierte Präventionsprogramme signifikant Gewicht reduziert und auch die glykämische Kontrolle verbessert werden können [37].
Da bereits bei Prädiabetes häufig ein erhöhtes kardiovaskuläres Risiko und Komorbiditäten des Diabetes mellitus wie Dyslipidämie oder arterielle Hypertonie vorliegen, sollten alle modifizierbaren Risikofaktoren regelmäßig kontrolliert werden [36] (siehe Leitlinien „Lipide: Diagnostik und Therapie bei Diabetes“ sowie „Antihypertensive Therapie bei Diabetes mellitus“).

Ernährung

Die Ernährung sollte ausgewogen, ballaststoffreich und auf gesunder Mischkost basieren [36]. Eine Reduktion der Aufnahme von raffinierten Kohlenhydraten und Nahrungsmittel mit Zusatz von „Zucker“ (überwiegend Saccharose) wird empfohlen [36]. Kohlenhydrate sollten stattdessen vornehmlich aus Gemüse, Hülsenfrüchten, Obst, Milch und Vollkornprodukten bezogen werden. Vom Konsum von Getränken mit Zuckerzusatz („Softdrinks“) und prozessierten „low-fat“ Produkten mit hohem Anteil an raffiniertem Zucker wird abgeraten [36]. Die verringerte Aufnahme von gesättigten Fettsäuren und Transfettsäuren wird empfohlen. Diese sollten durch ein- oder mehrfach ungesättigte Fettsäuren ersetzt werden. Eine Kalorienreduktion sollte jedenfalls angestrebt werden und um dies zu erreichen sollte eine individualisierte Ernährungsberatung stattfinden. Um eine kontinuierliche Gewichtsreduktion zu erreichen sollte der Tagesenergiebedarf bei derzeitigem Gewicht errechnet werden und davon 500 bis 1000 Kalorien abgezogen werden. Metaanalysen zeigen, dass eher die Qualität der aufgenommenen Lipide wichtig ist und nicht die Gesamtmenge an Fett. Mediterrane Ernährung (reichlich einfach gesättigte Fettsäuren), vegetarische oder DASH (Dietary Approaches to Stop Hypertension) Diät sind mit einem niedrigeren Risiko für Entstehung eines Typ 2 Diabetes vergesellschaftet [36, 3842]. Spezifische Nahrungsmittel (Nüsse [43, 44], Beeren [45], Joghurt [44, 46], Zimt [47], Kaffee [44]; Tee; [44]) sind in Studien mit niedrigerem Diabetesrisiko assoziiert, wohingegen rotes Fleisch und mit Saccharose angereicherte Getränke [44] das Diabetesrisiko erhöhen (für weitere Informationen siehe Leitlinie Ernährungsempfehlungen bei Diabetes mellitus).

Körperliche Aktivität

Regelmäßige moderate körperliche Aktivität (mind. 30 min/Tag, 5 ×/Woche bei moderater Intensität, 2 × muskelkräftigendes Training/Woche) werden bei erhöhtem Diabetesrisiko und manifestem Typ 2 Diabetes empfohlen. Durch moderate körperliche Aktivität verbessert sich die Insulinsensitivität und verringert sich das abdominale Fett. Durch Aktivitätsphasen unterbrochenes längeres Sitzen führte in Studien zu geringeren postprandialen Glukosewerten [36] (für weitere Informationen siehe Leitlinie Körperliche Aktivität und Training in der Prävention und Therapie des Typ 2 Diabetes mellitus).

Medikamente

Bisher zeigten sich Metformin, Alpha-Glukosidasehemmer, Orlistat, Thiazolidindione (Glitazone), Insulin Glargin, Glucagon-like Peptide 1 (GLP1)-Rezeptoragonisten und Testosteron effektiv in der Diabetesprävention (Tab. 5), wenngleich eine Lebensstilintervention langfristig immer noch effektiver war [36]. In zwei Metaanalysen wurde eine Reduktion des Diabetesrisikos durch ACE Hemmer und Sartane um circa 25 % und eine Steigerung des Risikos durch Statine um etwa 10 % beschrieben [48, 49]. Metformin ist das am besten untersuchte Medikament hinsichtlich Effektivität, Langzeitsicherheit und Kosteneffizienz. Bei Prädiabetes oder früherem Gestationsdiabetes, Adipositas mit BMI > 35 kg/m2 und Alter < 60 Jahren sollte eine Verordnung von Metformin zur Senkung des Typ 2 Diabetes Progressionrisikos überlegt werden [36]. Aufgrund der Assoziation von längerer Einnahme von Metformin mit Vitamin B12 Mangel, sollte die Serumkonzentration von Vitamin B12 regelmäßig kontrolliert werden [36].

Ansätze zur Prävention des Typ 1 Diabetes

Die Prävention des Typ 1 Diabetes kann auf 3 verschiedenen Ebenen stattfinden: (i) primäre Prävention (in der frühen Kindheit) vor Immunaktivität gegen die Betazelle, (ii) sekundäre Prävention bei noch bestehender Normoglykämie aber humoralen oder metabolischen Parametern mit hohem Risiko für die Entwicklung eines Diabetes und (iii) tertiäre Prävention mit dem Versuch der Verlängerung der Betazellfunktion bei bereits manifestem Typ 1 Diabetes. Etablierte Methoden sind derzeit noch nicht entwickelt, jedoch ist eine primäre Prävention durch Impfungen (GAD65, CVB1 basiert) oder mikrobiotainduzierte Immunregulation denkbar [6466]. Einige internationale randomisierte multizentrische Studien zur primären Prävention von Typ 1 Diabetes waren nicht erfolgreich (DENIS, ENDIT, DIAMYD, DPT-1) [67]. Geringe orale Insulindosen konnten im einem RCT im Vergleich zu Plazebo die Entwicklung eines Typ 1 Diabetes nicht verhindern [68]. Eine laufende randomisiert kontrollierte Studie versucht dies nun bei Kleinkindern mit erhöhtem Risiko für Typ 1 Diabetes zu untersuchen [69]. Daten aus Finnland weisen darauf hin, dass Kinder mit erhöhtem Risiko für Typ 1 Diabetes, die in den ersten drei Lebensmonaten mit Kuhmilch ernährt werden, ein erhöhtes Diabetesrisiko aufweisen, wohingegen Stillen in den ersten vier Lebensmonaten einen protektiven Einfluss haben könnte [70, 71]. Desweitern zeigten zwei Studien (DAISY und BABYDIAB) einen Zusammenhang zwischen Diabetes-assoziierten Autoantikörpern und diätetischer Gluten-Aufnahme, sodass in den ersten drei Lebensmonaten Gluten-haltige Nahrungsmittel nicht gefüttert werden sollten [72, 73].
Eine sekundäre Prävention könnte aus Kombinationstherapien aus immunmodulatorischen, antiinflammatorischen und Glukosestoffwechsel-verbessernden Medikamenten bestehen [64]. Ein monoklonaler anti-CD3-Antikörper (Teplizumab) zeigte bei Angehörigen von Menschen mit Typ 1 Diabetes eine Progressionsverzögerung im Vergleich zu Plazebo [74]. Teplizumab ist jedoch derzeit nicht für die Prävention bei Menschen mit Typ 1 Diabetes zugelassen.
Zur tertiären Prävention, also zur Vermeidung der Progression eines bereits manifestierten Typ 1 Diabetes durch Erhalt der Betazellmasse oder durch Verlängerung der klinischen Remission (Honeymoon-Phase), ist ebenso keine Therapie zugelassen. Auch in dieser Indikation werden Immuntherapeutika untersucht [75]. Solange der Mechanismus der Entstehung von Typ 1 Diabetes nicht ausreichend verstanden ist und das kostspielige Screening mittels Diabetes-assoziierter Autoantikörper nicht durch günstigere Alternativen abgelöst wird, ist es schwierig gezielte und langfristig effektive Präventionsstrategien zu entwickeln und etablieren. Derzeit kann ein allgemeines Screening mittels Autoantikörpern nicht empfohlen werden, da keine zugelassenen Interventionsmöglichkeiten vorliegen [36]. Im Fall eines positiven Nachweises von Autoantikörpern wird allerdings empfohlen eine Beratung zu den Themen Diabetes, Symptome des Diabetes und Diabetische Ketoazidose durchzuführen [36].

Interessenkonflikt

J. Harreiter gibt an, dass kein Interessenkonflikt besteht. M. Roden hat von folgenden Unternehmen Forschungsunterstützungen und/oder Honorare erhalten: Allergan, Astra Zeneca, Boehringer-Ingelheim, Bristol-Myers Squibb, Eli Lilly, Fishawack Group, Gilead, Genentech, Intercept Pharma, Inventiva, Merck, Novartis, Novo Nordisk, Nutricia/Danone, Pfizer, Poxel, Prosciento, sanofi-aventis, Target RWE.
Open Access Dieser Artikel wird unter der Creative Commons Namensnennung 4.0 International Lizenz veröffentlicht, welche die Nutzung, Vervielfältigung, Bearbeitung, Verbreitung und Wiedergabe in jeglichem Medium und Format erlaubt, sofern Sie den/die ursprünglichen Autor(en) und die Quelle ordnungsgemäß nennen, einen Link zur Creative Commons Lizenz beifügen und angeben, ob Änderungen vorgenommen wurden.
Die in diesem Artikel enthaltenen Bilder und sonstiges Drittmaterial unterliegen ebenfalls der genannten Creative Commons Lizenz, sofern sich aus der Abbildungslegende nichts anderes ergibt. Sofern das betreffende Material nicht unter der genannten Creative Commons Lizenz steht und die betreffende Handlung nicht nach gesetzlichen Vorschriften erlaubt ist, ist für die oben aufgeführten Weiterverwendungen des Materials die Einwilligung des jeweiligen Rechteinhabers einzuholen.
Weitere Details zur Lizenz entnehmen Sie bitte der Lizenzinformation auf http://​creativecommons.​org/​licenses/​by/​4.​0/​deed.​de.

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

Unsere Produktempfehlungen

Abo für kostenpflichtige Inhalte

Literatur
2.
Zurück zum Zitat Schmutterer I, Delcour J, Griebler R, Hrsg. Österreichischer Diabetesbericht 2017. Wien: Bundesministerium für Gesundheit und Frauen; 2017. Schmutterer I, Delcour J, Griebler R, Hrsg. Österreichischer Diabetesbericht 2017. Wien: Bundesministerium für Gesundheit und Frauen; 2017.
3.
Zurück zum Zitat Huang Y, Cai X, Mai W, Li M, Hu Y. Association between prediabetes and risk of cardiovascular disease and all cause mortality: systematic review and meta-analysis. BMJ. 2016;i5953:355. Huang Y, Cai X, Mai W, Li M, Hu Y. Association between prediabetes and risk of cardiovascular disease and all cause mortality: systematic review and meta-analysis. BMJ. 2016;i5953:355.
4.
Zurück zum Zitat American Diabetes Association Professional Practice Committee. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2022. Diabetes Care. 2022;45(Suppl 1):S17–S38.CrossRef American Diabetes Association Professional Practice Committee. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2022. Diabetes Care. 2022;45(Suppl 1):S17–S38.CrossRef
5.
Zurück zum Zitat Nauck M, Gerdes C, Petersmann A, et al. Definition, Klassifikation und Diagnostik des Diabetes mellitus: Update 2020. Diabetologe. 2021;17(4):404–10.CrossRef Nauck M, Gerdes C, Petersmann A, et al. Definition, Klassifikation und Diagnostik des Diabetes mellitus: Update 2020. Diabetologe. 2021;17(4):404–10.CrossRef
6.
Zurück zum Zitat Ahlqvist E, Storm P, Karajamaki A, et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018;6(5):361–9.PubMedCrossRef Ahlqvist E, Storm P, Karajamaki A, et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018;6(5):361–9.PubMedCrossRef
7.
Zurück zum Zitat Zaharia OP, Strassburger K, Strom A, et al. Risk of diabetes-associated diseases in subgroups of patients with recent-onset diabetes: a 5-year follow-up study. Lancet Diabetes Endocrinol. 2019;7(9):684–94.PubMedCrossRef Zaharia OP, Strassburger K, Strom A, et al. Risk of diabetes-associated diseases in subgroups of patients with recent-onset diabetes: a 5-year follow-up study. Lancet Diabetes Endocrinol. 2019;7(9):684–94.PubMedCrossRef
8.
Zurück zum Zitat Kautzky-Willer A, Harreiter J, Winhofer-Stockl Y, et al. Gestational diabetes mellitus (update 2019). Wien Klin Wochenschr. 2019;131(Suppl 1):91–102.PubMedCrossRef Kautzky-Willer A, Harreiter J, Winhofer-Stockl Y, et al. Gestational diabetes mellitus (update 2019). Wien Klin Wochenschr. 2019;131(Suppl 1):91–102.PubMedCrossRef
9.
Zurück zum Zitat Colagiuri S. Glycated haemoglobin (HbA1c) for the diagnosis of diabetes mellitus—practical implications. Diabetes Res Clin Pract. 2011;93(3):312–3.PubMedCrossRef Colagiuri S. Glycated haemoglobin (HbA1c) for the diagnosis of diabetes mellitus—practical implications. Diabetes Res Clin Pract. 2011;93(3):312–3.PubMedCrossRef
10.
Zurück zum Zitat Roden M. Diabetes mellitus: definition, classification and diagnosis. Wien Klin Wochenschr. 2012;124(Suppl 2):1–3.PubMedCrossRef Roden M. Diabetes mellitus: definition, classification and diagnosis. Wien Klin Wochenschr. 2012;124(Suppl 2):1–3.PubMedCrossRef
11.
Zurück zum Zitat Kowall B, Rathmann W. HbA1c for diagnosis of type 2 diabetes. Is there an optimal cut point to assess high risk of diabetes complications, and how well does the 6.5 % cutoff perform? Diabetes Metab Syndr Obes. 2013;6:477–91.PubMedPubMedCentralCrossRef Kowall B, Rathmann W. HbA1c for diagnosis of type 2 diabetes. Is there an optimal cut point to assess high risk of diabetes complications, and how well does the 6.5 % cutoff perform? Diabetes Metab Syndr Obes. 2013;6:477–91.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Mayer-Davis EJ, Kahkoska AR, Jefferies C, et al. ISPAD clinical practice consensus guidelines 2018: definition, epidemiology, and classification of diabetes in children and adolescents. Pediatr Diabetes. 2018;19(Suppl 27):7–19.PubMedPubMedCentralCrossRef Mayer-Davis EJ, Kahkoska AR, Jefferies C, et al. ISPAD clinical practice consensus guidelines 2018: definition, epidemiology, and classification of diabetes in children and adolescents. Pediatr Diabetes. 2018;19(Suppl 27):7–19.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat European Association for the Study of the Liver, European Association for the Study of Diabetes, European Association for the Study of Obesity. EASL-EASD-EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease. Diabetologia. 2016;59(6):1121–40.CrossRef European Association for the Study of the Liver, European Association for the Study of Diabetes, European Association for the Study of Obesity. EASL-EASD-EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease. Diabetologia. 2016;59(6):1121–40.CrossRef
16.
Zurück zum Zitat Kowall B, Rathmann W, Strassburger K, et al. Association of passive and active smoking with incident type 2 diabetes in the elderly population: The KORA S4/F5 cohort study. Eur J Epidemiol. 2010;25(6):393–402.PubMedCrossRef Kowall B, Rathmann W, Strassburger K, et al. Association of passive and active smoking with incident type 2 diabetes in the elderly population: The KORA S4/F5 cohort study. Eur J Epidemiol. 2010;25(6):393–402.PubMedCrossRef
17.
Zurück zum Zitat Haw JS, Galaviz KI, Straus AN, et al. Long-term sustainability of diabetes prevention approaches: a systematic review and meta-analysis of randomized clinical trials. JAMA Intern Med. 2017;177(12):1808–17.PubMedPubMedCentralCrossRef Haw JS, Galaviz KI, Straus AN, et al. Long-term sustainability of diabetes prevention approaches: a systematic review and meta-analysis of randomized clinical trials. JAMA Intern Med. 2017;177(12):1808–17.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Glechner A, Harreiter J, Gartlehner G, et al. Sex-specific differences in diabetes prevention: a systematic review and meta-analysis. Diabetologia. 2015;58(2):242–54.PubMedCrossRef Glechner A, Harreiter J, Gartlehner G, et al. Sex-specific differences in diabetes prevention: a systematic review and meta-analysis. Diabetologia. 2015;58(2):242–54.PubMedCrossRef
20.
Zurück zum Zitat Li G, Zhang P, Wang J, et al. Cardiovascular mortality, all-cause mortality, and diabetes incidence after lifestyle intervention for people with impaired glucose tolerance in the Da Qing Diabetes Prevention Study: A 23-year follow-up study. Lancet Diabetes Endocrinol. 2014;2(6):474–80.PubMedCrossRef Li G, Zhang P, Wang J, et al. Cardiovascular mortality, all-cause mortality, and diabetes incidence after lifestyle intervention for people with impaired glucose tolerance in the Da Qing Diabetes Prevention Study: A 23-year follow-up study. Lancet Diabetes Endocrinol. 2014;2(6):474–80.PubMedCrossRef
21.
Zurück zum Zitat Gong Q, Zhang P, Wang J, et al. Morbidity and mortality after lifestyle intervention for people with impaired glucose tolerance: 30-year results of the Da Qing Diabetes Prevention Outcome Study. Lancet Diabetes Endocrinol. 2019;7(6):452–61.PubMedPubMedCentralCrossRef Gong Q, Zhang P, Wang J, et al. Morbidity and mortality after lifestyle intervention for people with impaired glucose tolerance: 30-year results of the Da Qing Diabetes Prevention Outcome Study. Lancet Diabetes Endocrinol. 2019;7(6):452–61.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Chen Y, Zhang P, Wang J, et al. Associations of progression to diabetes and regression to normal glucose tolerance with development of cardiovascular and microvascular disease among people with impaired glucose tolerance: a secondary analysis of the 30 year Da Qing Diabetes Prevention Outcome Study. Diabetologia. 2021;64(6):1279–87.PubMedCrossRef Chen Y, Zhang P, Wang J, et al. Associations of progression to diabetes and regression to normal glucose tolerance with development of cardiovascular and microvascular disease among people with impaired glucose tolerance: a secondary analysis of the 30 year Da Qing Diabetes Prevention Outcome Study. Diabetologia. 2021;64(6):1279–87.PubMedCrossRef
23.
Zurück zum Zitat Perreault L, Pan Q, Schroeder EB, et al. Regression from prediabetes to normal glucose regulation and prevalence of microvascular disease in the Diabetes Prevention Program Outcomes Study (DPPOS). Diabetes Care. 2019;42(9):1809–15.PubMedPubMedCentralCrossRef Perreault L, Pan Q, Schroeder EB, et al. Regression from prediabetes to normal glucose regulation and prevalence of microvascular disease in the Diabetes Prevention Program Outcomes Study (DPPOS). Diabetes Care. 2019;42(9):1809–15.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Brath H, Kaser S, Tatschl C, Fasching P. Smoking, alcohol and diabetes (update 2019). Wien Klin Wochenschr. 2019;131(Suppl 1):67–70.PubMedCrossRef Brath H, Kaser S, Tatschl C, Fasching P. Smoking, alcohol and diabetes (update 2019). Wien Klin Wochenschr. 2019;131(Suppl 1):67–70.PubMedCrossRef
25.
Zurück zum Zitat Schmid SM, Hallschmid M, Jauch-Chara K, et al. Disturbed glucoregulatory response to food intake after moderate sleep restriction. Sleep. 2011;34(3):371–7.PubMedPubMedCentralCrossRef Schmid SM, Hallschmid M, Jauch-Chara K, et al. Disturbed glucoregulatory response to food intake after moderate sleep restriction. Sleep. 2011;34(3):371–7.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Panunzi S, De Gaetano A, Carnicelli A, Mingrone G. Predictors of remission of diabetes mellitus in severely obese individuals undergoing bariatric surgery: Do BMI or procedure choice matter? A meta-analysis. Ann Surg. 2015;261(3):459–67.PubMedCrossRef Panunzi S, De Gaetano A, Carnicelli A, Mingrone G. Predictors of remission of diabetes mellitus in severely obese individuals undergoing bariatric surgery: Do BMI or procedure choice matter? A meta-analysis. Ann Surg. 2015;261(3):459–67.PubMedCrossRef
27.
Zurück zum Zitat van Veldhuisen SL, Gorter TM, van Woerden G, et al. Bariatric surgery and cardiovascular disease: a systematic review and meta-analysis. Eur Heart J. 2022;43(20):1955–69.PubMedPubMedCentralCrossRef van Veldhuisen SL, Gorter TM, van Woerden G, et al. Bariatric surgery and cardiovascular disease: a systematic review and meta-analysis. Eur Heart J. 2022;43(20):1955–69.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or Metformin. N Engl J Med. 2002;346(6):393–403.PubMedCrossRef Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or Metformin. N Engl J Med. 2002;346(6):393–403.PubMedCrossRef
29.
Zurück zum Zitat Tuomilehto J, Lindstrom J, Eriksson JG, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344(18):1343–50.PubMedCrossRef Tuomilehto J, Lindstrom J, Eriksson JG, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344(18):1343–50.PubMedCrossRef
30.
Zurück zum Zitat Li G, Zhang P, Wang J, et al. The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing diabetes prevention study: A 20-year follow-up study. Lancet. 2008;371(9626):1783–9.PubMedCrossRef Li G, Zhang P, Wang J, et al. The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing diabetes prevention study: A 20-year follow-up study. Lancet. 2008;371(9626):1783–9.PubMedCrossRef
31.
Zurück zum Zitat Ramachandran A, Snehalatha C, Mary S, et al. The Indian diabetes prevention programme shows that lifestyle modification and Metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia. 2006;49(2):289–97.PubMedCrossRef Ramachandran A, Snehalatha C, Mary S, et al. The Indian diabetes prevention programme shows that lifestyle modification and Metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia. 2006;49(2):289–97.PubMedCrossRef
32.
Zurück zum Zitat Roumen C, Corpeleijn E, Feskens EJ, et al. Impact of 3‑year lifestyle intervention on postprandial glucose metabolism: the SLIM study. Diabet Med. 2008;25(5):597–605.PubMedCrossRef Roumen C, Corpeleijn E, Feskens EJ, et al. Impact of 3‑year lifestyle intervention on postprandial glucose metabolism: the SLIM study. Diabet Med. 2008;25(5):597–605.PubMedCrossRef
33.
Zurück zum Zitat Penn L, White M, Oldroyd J, et al. Prevention of type 2 diabetes in adults with impaired glucose tolerance: the European diabetes prevention RCT in Newcastle upon Tyne, UK. BMC Public Health. 2009;9:342.PubMedPubMedCentralCrossRef Penn L, White M, Oldroyd J, et al. Prevention of type 2 diabetes in adults with impaired glucose tolerance: the European diabetes prevention RCT in Newcastle upon Tyne, UK. BMC Public Health. 2009;9:342.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Saito T, Watanabe M, Nishida J, et al. Lifestyle modification and prevention of type 2 diabetes in overweight Japanese with impaired fasting glucose levels: a randomized controlled trial. Arch Intern Med. 2011;171(15):1352–60.PubMedCrossRef Saito T, Watanabe M, Nishida J, et al. Lifestyle modification and prevention of type 2 diabetes in overweight Japanese with impaired fasting glucose levels: a randomized controlled trial. Arch Intern Med. 2011;171(15):1352–60.PubMedCrossRef
35.
Zurück zum Zitat Sakane N, Sato J, Tsushita K, et al. Prevention of type 2 diabetes in a primary healthcare setting: Three-year results of lifestyle intervention in Japanese subjects with impaired glucose tolerance. BMC Public Health. 2011;11(1):40.PubMedPubMedCentralCrossRef Sakane N, Sato J, Tsushita K, et al. Prevention of type 2 diabetes in a primary healthcare setting: Three-year results of lifestyle intervention in Japanese subjects with impaired glucose tolerance. BMC Public Health. 2011;11(1):40.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat American Diabetes Association Professional Practice Committee. 3. prevention or delay of type 2 diabetes and associated comorbidities: standards of medical care in diabetes-2022. Diabetes Care. 2022;45(Suppl 1):S39–S45.CrossRef American Diabetes Association Professional Practice Committee. 3. prevention or delay of type 2 diabetes and associated comorbidities: standards of medical care in diabetes-2022. Diabetes Care. 2022;45(Suppl 1):S39–S45.CrossRef
37.
Zurück zum Zitat Bian RR, Piatt GA, Sen A, et al. The effect of technology-mediated diabetes prevention interventions on weight: a meta-analysis. J Med Internet Res. 2017;19(3):e76.PubMedPubMedCentralCrossRef Bian RR, Piatt GA, Sen A, et al. The effect of technology-mediated diabetes prevention interventions on weight: a meta-analysis. J Med Internet Res. 2017;19(3):e76.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Uusitupa M, Khan TA, Viguiliouk E, et al. Prevention of type 2 diabetes by lifestyle changes: a systematic review and meta-analysis. Nutrients. 2019;11(11):2611.PubMedPubMedCentralCrossRef Uusitupa M, Khan TA, Viguiliouk E, et al. Prevention of type 2 diabetes by lifestyle changes: a systematic review and meta-analysis. Nutrients. 2019;11(11):2611.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Zeraattalab-Motlagh S, Jayedi A, Shab-Bidar S. Mediterranean dietary pattern and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis of prospective cohort studies. Eur J Nutr. 2022;61(4):1735–48.PubMedCrossRef Zeraattalab-Motlagh S, Jayedi A, Shab-Bidar S. Mediterranean dietary pattern and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis of prospective cohort studies. Eur J Nutr. 2022;61(4):1735–48.PubMedCrossRef
40.
Zurück zum Zitat Qian F, Liu G, Hu FB, Bhupathiraju SN, Sun Q. Association between plant-based dietary patterns and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA Intern Med. 2019;179(10):1335–44.PubMedPubMedCentralCrossRef Qian F, Liu G, Hu FB, Bhupathiraju SN, Sun Q. Association between plant-based dietary patterns and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA Intern Med. 2019;179(10):1335–44.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Jannasch F, Kroger J, Schulze MB. Dietary patterns and type 2 diabetes: a systematic literature review and meta-analysis of prospective studies. J Nutr. 2017;147(6):1174–82.PubMedCrossRef Jannasch F, Kroger J, Schulze MB. Dietary patterns and type 2 diabetes: a systematic literature review and meta-analysis of prospective studies. J Nutr. 2017;147(6):1174–82.PubMedCrossRef
42.
Zurück zum Zitat Toi PL, Anothaisintawee T, Chaikledkaew U, et al. Preventive role of diet interventions and dietary factors in type 2 diabetes mellitus: an umbrella review. Nutrients. 2020;12(9):2722.PubMedPubMedCentralCrossRef Toi PL, Anothaisintawee T, Chaikledkaew U, et al. Preventive role of diet interventions and dietary factors in type 2 diabetes mellitus: an umbrella review. Nutrients. 2020;12(9):2722.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Afshin A, Micha R, Khatibzadeh S, Mozaffarian D. Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke, and diabetes: a systematic review and meta-analysis. Am J Clin Nutr. 2014;100(1):278–88.PubMedPubMedCentralCrossRef Afshin A, Micha R, Khatibzadeh S, Mozaffarian D. Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke, and diabetes: a systematic review and meta-analysis. Am J Clin Nutr. 2014;100(1):278–88.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Mozaffarian D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: a comprehensive review. Circulation. 2016;133(2):187–225.PubMedPubMedCentralCrossRef Mozaffarian D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: a comprehensive review. Circulation. 2016;133(2):187–225.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Mursu J, Virtanen JK, Tuomainen TP, Nurmi T, Voutilainen S. Intake of fruit, berries, and vegetables and risk of type 2 diabetes in Finnish men: the Kuopio ischaemic heart disease risk factor study. Am J Clin Nutr. 2014;99(2):328–33.PubMedCrossRef Mursu J, Virtanen JK, Tuomainen TP, Nurmi T, Voutilainen S. Intake of fruit, berries, and vegetables and risk of type 2 diabetes in Finnish men: the Kuopio ischaemic heart disease risk factor study. Am J Clin Nutr. 2014;99(2):328–33.PubMedCrossRef
46.
Zurück zum Zitat Chen M, Sun Q, Giovannucci E, et al. Dairy consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. BMC Med. 2014;12:215.PubMedPubMedCentralCrossRef Chen M, Sun Q, Giovannucci E, et al. Dairy consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. BMC Med. 2014;12:215.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Khan A, Safdar M, Ali Khan MM, Khattak KN, Anderson RA. Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes Care. 2003;26(12):3215–8.PubMedCrossRef Khan A, Safdar M, Ali Khan MM, Khattak KN, Anderson RA. Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes Care. 2003;26(12):3215–8.PubMedCrossRef
48.
Zurück zum Zitat Sattar N, Preiss D, Murray HM, et al. Statins and risk of incident diabetes: A collaborative meta-analysis of randomised statin trials. Lancet. 2010;375(9716):735–42.PubMedCrossRef Sattar N, Preiss D, Murray HM, et al. Statins and risk of incident diabetes: A collaborative meta-analysis of randomised statin trials. Lancet. 2010;375(9716):735–42.PubMedCrossRef
49.
Zurück zum Zitat Abuissa H, Jones PG, Marso SP, O’Keefe JH Jr.. Angiotensin-converting enzyme inhibitors or angiotensin receptor blockers for prevention of type 2 diabetes: a meta-analysis of randomized clinical trials. J Am Coll Cardiol. 2005;46(5):821–6.PubMedCrossRef Abuissa H, Jones PG, Marso SP, O’Keefe JH Jr.. Angiotensin-converting enzyme inhibitors or angiotensin receptor blockers for prevention of type 2 diabetes: a meta-analysis of randomized clinical trials. J Am Coll Cardiol. 2005;46(5):821–6.PubMedCrossRef
50.
Zurück zum Zitat Zinman B, Harris SB, Neuman J, et al. Low-dose combination therapy with Rosiglitazone and Metformin to prevent type 2 diabetes mellitus (CANOE trial): a double-blind randomised controlled study. Lancet. 2010;376(9735):103–11.PubMedCrossRef Zinman B, Harris SB, Neuman J, et al. Low-dose combination therapy with Rosiglitazone and Metformin to prevent type 2 diabetes mellitus (CANOE trial): a double-blind randomised controlled study. Lancet. 2010;376(9735):103–11.PubMedCrossRef
51.
Zurück zum Zitat Lindblad U, Lindberg G, Mansson NO, et al. Can sulphonylurea addition to lifestyle changes help to delay diabetes development in subjects with impaired fasting glucose? The Nepi ANtidiabetes StudY (NANSY). Diabetes Obes Metab. 2011;13(2):185–8.PubMedCrossRef Lindblad U, Lindberg G, Mansson NO, et al. Can sulphonylurea addition to lifestyle changes help to delay diabetes development in subjects with impaired fasting glucose? The Nepi ANtidiabetes StudY (NANSY). Diabetes Obes Metab. 2011;13(2):185–8.PubMedCrossRef
52.
Zurück zum Zitat DeFronzo RA, Tripathy D, Schwenke DC, et al. Pioglitazone for diabetes prevention in impaired glucose tolerance. N Engl J Med. 2011;364(12):1104–15.PubMedCrossRef DeFronzo RA, Tripathy D, Schwenke DC, et al. Pioglitazone for diabetes prevention in impaired glucose tolerance. N Engl J Med. 2011;364(12):1104–15.PubMedCrossRef
53.
Zurück zum Zitat The DREAM (Diabetes REduction Assessment with ramipril and rosiglitazone Medication) Trial Investigators, Gerstein HC, Yusuf S, et al. Effect of Rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial. Lancet. 2006;368(9541):1096–105.CrossRef The DREAM (Diabetes REduction Assessment with ramipril and rosiglitazone Medication) Trial Investigators, Gerstein HC, Yusuf S, et al. Effect of Rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial. Lancet. 2006;368(9541):1096–105.CrossRef
54.
Zurück zum Zitat The DREAM (Diabetes REduction Assessment with ramipril and rosiglitazone Medication) Trial Investigators, Bosch J, Yusuf S, et al. Effect of Ramipril on the incidence of diabetes. N Engl J Med. 2006;355(15):1551–62.CrossRef The DREAM (Diabetes REduction Assessment with ramipril and rosiglitazone Medication) Trial Investigators, Bosch J, Yusuf S, et al. Effect of Ramipril on the incidence of diabetes. N Engl J Med. 2006;355(15):1551–62.CrossRef
55.
Zurück zum Zitat Chiasson JL, Josse RG, Gomis R, et al. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA. 2003;290(4):486–94.PubMedCrossRef Chiasson JL, Josse RG, Gomis R, et al. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA. 2003;290(4):486–94.PubMedCrossRef
56.
Zurück zum Zitat Kawamori R, Tajima N, Iwamoto Y, et al. Voglibose for prevention of type 2 diabetes mellitus: a randomised, double-blind trial in Japanese individuals with impaired glucose tolerance. Lancet. 2009;373(9675):1607–14.PubMedCrossRef Kawamori R, Tajima N, Iwamoto Y, et al. Voglibose for prevention of type 2 diabetes mellitus: a randomised, double-blind trial in Japanese individuals with impaired glucose tolerance. Lancet. 2009;373(9675):1607–14.PubMedCrossRef
57.
Zurück zum Zitat NAVIGATOR Study Group, Holman RR, Haffner SM, et al. Effect of Nateglinide on the incidence of diabetes and cardiovascular events. N Engl J Med. 2010;362(16):1463–76.CrossRef NAVIGATOR Study Group, Holman RR, Haffner SM, et al. Effect of Nateglinide on the incidence of diabetes and cardiovascular events. N Engl J Med. 2010;362(16):1463–76.CrossRef
58.
Zurück zum Zitat NAVIGATOR Study Group, McMurray JJ, Holman RR, et al. Effect of Valsartan on the incidence of diabetes and cardiovascular events. N Engl J Med. 2010;362(16):1477–90.CrossRef NAVIGATOR Study Group, McMurray JJ, Holman RR, et al. Effect of Valsartan on the incidence of diabetes and cardiovascular events. N Engl J Med. 2010;362(16):1477–90.CrossRef
59.
Zurück zum Zitat ORIGIN Trial Investigators, Gerstein HC, Bosch J, et al. Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med. 2012;367(4):319–28.CrossRef ORIGIN Trial Investigators, Gerstein HC, Bosch J, et al. Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med. 2012;367(4):319–28.CrossRef
60.
Zurück zum Zitat Torgerson JS, Hauptman J, Boldrin MN, Sjostrom L. XENical in the prevention of diabetes in obese subjects (XENDOS) study: a randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients. Diabetes Care. 2004;27(1):155–61.PubMedCrossRef Torgerson JS, Hauptman J, Boldrin MN, Sjostrom L. XENical in the prevention of diabetes in obese subjects (XENDOS) study: a randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients. Diabetes Care. 2004;27(1):155–61.PubMedCrossRef
61.
Zurück zum Zitat Tenenbaum A, Motro M, Fisman EZ, et al. Effect of bezafibrate on incidence of type 2 diabetes mellitus in obese patients. Eur Heart J. 2005;26(19):2032–8.PubMedCrossRef Tenenbaum A, Motro M, Fisman EZ, et al. Effect of bezafibrate on incidence of type 2 diabetes mellitus in obese patients. Eur Heart J. 2005;26(19):2032–8.PubMedCrossRef
62.
Zurück zum Zitat le Roux CW, Astrup A, Fujioka K, et al. 3 years of liraglutide versus placebo for type 2 diabetes risk reduction and weight management in individuals with prediabetes: a randomised, double-blind trial. Lancet. 2017;389(10077):1399–409.PubMedCrossRef le Roux CW, Astrup A, Fujioka K, et al. 3 years of liraglutide versus placebo for type 2 diabetes risk reduction and weight management in individuals with prediabetes: a randomised, double-blind trial. Lancet. 2017;389(10077):1399–409.PubMedCrossRef
63.
Zurück zum Zitat Wittert G, Bracken K, Robledo KP, et al. Testosterone treatment to prevent or revert type 2 diabetes in men enrolled in a lifestyle programme (T4DM): a randomised, double-blind, placebo-controlled, 2‑year, phase 3b trial. Lancet Diabetes Endocrinol. 2021;9(1):32–45.PubMedCrossRef Wittert G, Bracken K, Robledo KP, et al. Testosterone treatment to prevent or revert type 2 diabetes in men enrolled in a lifestyle programme (T4DM): a randomised, double-blind, placebo-controlled, 2‑year, phase 3b trial. Lancet Diabetes Endocrinol. 2021;9(1):32–45.PubMedCrossRef
64.
Zurück zum Zitat Insel R, Dunne JL. JDRF’s vision and strategy for prevention of type 1 diabetes. Pediatr Diabetes. 2016;17(Suppl 22):87–92.PubMedCrossRef Insel R, Dunne JL. JDRF’s vision and strategy for prevention of type 1 diabetes. Pediatr Diabetes. 2016;17(Suppl 22):87–92.PubMedCrossRef
65.
Zurück zum Zitat Hober D, Alidjinou EK. Diabetes: towards a coxsackievirus B‑based vaccine to combat T1DM. Nat Rev Endocrinol. 2018;14(3):131–2.PubMedCrossRef Hober D, Alidjinou EK. Diabetes: towards a coxsackievirus B‑based vaccine to combat T1DM. Nat Rev Endocrinol. 2018;14(3):131–2.PubMedCrossRef
66.
Zurück zum Zitat Vatanen T, Franzosa EA, Schwager R, et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature. 2018;562(7728):589–94.PubMedPubMedCentralCrossRef Vatanen T, Franzosa EA, Schwager R, et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature. 2018;562(7728):589–94.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Deutsche Diabetes Gesellschaft (DDG). Diagnostik, Therapie und Verlaufskontrolle des Diabetes mellitus im Kindes- und Jugendalter – S3-Leitlinie der DDG und AGPD 2015. Berlin: Deutsche Diabetes Gesellschaft (DDG); 2015. Deutsche Diabetes Gesellschaft (DDG). Diagnostik, Therapie und Verlaufskontrolle des Diabetes mellitus im Kindes- und Jugendalter – S3-Leitlinie der DDG und AGPD 2015. Berlin: Deutsche Diabetes Gesellschaft (DDG); 2015.
68.
Zurück zum Zitat Writing Committee for the Type 1 Diabetes TrialNet Oral Insulin Study Group, Krischer JP, Schatz DA, et al. Effect of oral insulin on prevention of diabetes in relatives of patients with type 1 diabetes: a randomized clinical trial. JAMA. 2017;318(19):1891–902.PubMedCentralCrossRef Writing Committee for the Type 1 Diabetes TrialNet Oral Insulin Study Group, Krischer JP, Schatz DA, et al. Effect of oral insulin on prevention of diabetes in relatives of patients with type 1 diabetes: a randomized clinical trial. JAMA. 2017;318(19):1891–902.PubMedCentralCrossRef
69.
Zurück zum Zitat Ziegler AG, Achenbach P, Berner R, et al. Oral insulin therapy for primary prevention of type 1 diabetes in infants with high genetic risk: the GPPAD-POInT (global platform for the prevention of autoimmune diabetes primary oral insulin trial) study protocol. Bmj Open. 2019;9(e028578):6. Ziegler AG, Achenbach P, Berner R, et al. Oral insulin therapy for primary prevention of type 1 diabetes in infants with high genetic risk: the GPPAD-POInT (global platform for the prevention of autoimmune diabetes primary oral insulin trial) study protocol. Bmj Open. 2019;9(e028578):6.
70.
Zurück zum Zitat Vaarala O, Klemetti P, Juhela S, et al. Effect of coincident enterovirus infection and cows’ milk exposure on immunisation to insulin in early infancy. Diabetologia. 2002;45(4):531–4.PubMedCrossRef Vaarala O, Klemetti P, Juhela S, et al. Effect of coincident enterovirus infection and cows’ milk exposure on immunisation to insulin in early infancy. Diabetologia. 2002;45(4):531–4.PubMedCrossRef
71.
Zurück zum Zitat Monetini L, Cavallo MG, Stefanini L, et al. Bovine beta-casein antibodies in breast- and bottle-fed infants: their relevance in type 1 diabetes. Diabetes Metab Res Rev. 2001;17(1):51–4.PubMedCrossRef Monetini L, Cavallo MG, Stefanini L, et al. Bovine beta-casein antibodies in breast- and bottle-fed infants: their relevance in type 1 diabetes. Diabetes Metab Res Rev. 2001;17(1):51–4.PubMedCrossRef
72.
Zurück zum Zitat Ziegler AG, Schmid S, Huber D, Hummel M, Bonifacio E. Early infant feeding and risk of developing type 1 diabetes-associated autoantibodies. JAMA. 2003;290(13):1721–8.PubMedCrossRef Ziegler AG, Schmid S, Huber D, Hummel M, Bonifacio E. Early infant feeding and risk of developing type 1 diabetes-associated autoantibodies. JAMA. 2003;290(13):1721–8.PubMedCrossRef
73.
Zurück zum Zitat Norris JM, Barriga K, Klingensmith G, et al. Timing of initial cereal exposure in infancy and risk of islet autoimmunity. JAMA. 2003;290(13):1713–20.PubMedCrossRef Norris JM, Barriga K, Klingensmith G, et al. Timing of initial cereal exposure in infancy and risk of islet autoimmunity. JAMA. 2003;290(13):1713–20.PubMedCrossRef
74.
Zurück zum Zitat Herold KC, Bundy BN, Long SA, et al. An anti-CD3 antibody, Teplizumab, in relatives at risk for type 1 diabetes. N Engl J Med. 2019;381(7):603–13.PubMedPubMedCentralCrossRef Herold KC, Bundy BN, Long SA, et al. An anti-CD3 antibody, Teplizumab, in relatives at risk for type 1 diabetes. N Engl J Med. 2019;381(7):603–13.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Primavera M, Giannini C, Chiarelli F. Prediction and prevention of type 1 diabetes. Front Endocrinol (lausanne). 2020;11:248.PubMedCrossRef Primavera M, Giannini C, Chiarelli F. Prediction and prevention of type 1 diabetes. Front Endocrinol (lausanne). 2020;11:248.PubMedCrossRef
Metadaten
Titel
Diabetes mellitus – Definition, Klassifikation, Diagnose, Screening und Prävention (Update 2023)
verfasst von
Dr. Jürgen Harreiter, PhD, MSc.
Univ.-Prof. Dr. DDr. h.c. Michael Roden
Publikationsdatum
01.01.2023
Verlag
Springer Vienna
Erschienen in
Wiener klinische Wochenschrift / Ausgabe Sonderheft 1/2023
Print ISSN: 0043-5325
Elektronische ISSN: 1613-7671
DOI
https://doi.org/10.1007/s00508-022-02122-y

Weitere Artikel der Sonderheft 1/2023

Wiener klinische Wochenschrift 1/2023 Zur Ausgabe

leitlinien für die praxis

Gestationsdiabetes (GDM) (Update 2023)

leitlinien für die praxis

Diabetes und Migration (Update 2023)