Skip to main content
Erschienen in:

26.08.2019 | original article

Anti-amoebic activity of a cecropin-melittin hybrid peptide (CM11) against trophozoites of Entamoeba histolytica

Erschienen in: Wiener klinische Wochenschrift | Ausgabe 17-18/2019

Einloggen, um Zugang zu erhalten

Summary

Entamoeba histolytica is an intestinal parasite that is located in the lumen of the human intestine and can attack the epithelium. Antimicrobial peptides (AMPs) are effective against the wide range of microorganisms, such as bacteria, fungi, viruses, yeasts, and protozoa. The CM11 is a chimeric peptide that is derived from bee venom and butterfly compounds. In this study, the cytotoxic effect of CM11 on Human colonic carcinoma (Caco‑2) cells and E. histolytica were assayed in various concentrations of peptide and metronidazole. The MTT results showed that the highest percentage of cytotoxicity on Caco‑2 cells was in 24 μg/ml of CM11 peptide at 24 h and 48 h, which was 49.8%, and 44.3%, respectively. In the metronidazole group, the highest cytotoxicity with 40 μg/ml concentration was observed after 24 h and 48 h, with 43.5%, and 42.1%, respectively. The highest rate of apoptosis induced by CM11 on Caco‑2 was 53.9% and 51.4% after 24 h and 48 h, respectively; however, these rates were 19.1% and 33.4% in the metronidazole group. The effect of peptide and metronidazole on E. histolytica at 24 h and 48 h showed that at the highest concentration of CM11 peptide (24 μg/ml) the cytotoxic effect was 93.7% and 94.9% and for metronidazole (40 μg/ml) was 65.5% and 74.3%, respectively. In coculture, 63.5% and 57.7% of parasites were killed in the highest concentration of CM11 and metronidazole, respectively. The results of this study revealed that CM11 peptide has a high toxicity on E. histolytica, and the use of antimicrobial peptides in the future can be considered as anti-amoebic compounds.
Literatur
1.
Zurück zum Zitat Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2095–128.CrossRef Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2095–128.CrossRef
2.
Zurück zum Zitat Espinosa-Cantellano M, Martínez-Palomo A. Pathogenesis of intestinal amebiasis: from molecules to disease. Clin Microbiol Rev. 2000;13:318–31.CrossRefPubMedPubMedCentral Espinosa-Cantellano M, Martínez-Palomo A. Pathogenesis of intestinal amebiasis: from molecules to disease. Clin Microbiol Rev. 2000;13:318–31.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Turkeltaub JA, McCarty TR, Hotez PJ. The intestinal protozoa: Emerging impact on global health and development. Curr Opin Gastroenterol. 2015;31:38–44.CrossRefPubMed Turkeltaub JA, McCarty TR, Hotez PJ. The intestinal protozoa: Emerging impact on global health and development. Curr Opin Gastroenterol. 2015;31:38–44.CrossRefPubMed
4.
Zurück zum Zitat Calzada F, Yépez-Mulia L, Aguilar A. In vitro susceptibility of Entamoeba histolytica and Giardia lamblia to plants used in Mexican traditional medicine for the treatment of gastrointestinal disorders. J Ethnopharmacol. 2006;108:367–70.CrossRefPubMed Calzada F, Yépez-Mulia L, Aguilar A. In vitro susceptibility of Entamoeba histolytica and Giardia lamblia to plants used in Mexican traditional medicine for the treatment of gastrointestinal disorders. J Ethnopharmacol. 2006;108:367–70.CrossRefPubMed
5.
Zurück zum Zitat Petri WA Jr, Haque R, Mondal D, Karim A, Molla IH, Rahim A, et al. Prospective case-control study of the association between common enteric protozoal parasites and diarrhea in Bangladesh. Clin Infect Dis. 2009;48:1191–7.CrossRefPubMedPubMedCentral Petri WA Jr, Haque R, Mondal D, Karim A, Molla IH, Rahim A, et al. Prospective case-control study of the association between common enteric protozoal parasites and diarrhea in Bangladesh. Clin Infect Dis. 2009;48:1191–7.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Townson SM, Boreham PFL, Upcroft P, Upcroft JA. Resistance to the nitroheterocyclic drugs. Acta Trop. 1994;56:173–94.CrossRefPubMed Townson SM, Boreham PFL, Upcroft P, Upcroft JA. Resistance to the nitroheterocyclic drugs. Acta Trop. 1994;56:173–94.CrossRefPubMed
7.
Zurück zum Zitat Elizondo G, Gonsebatt ME, Salazar AM, Lares I, Santiago P, Herrera J, et al. Genotoxic effects of metronidazole. Mutat Res Genet Toxicol. 1996;370:75–80.CrossRef Elizondo G, Gonsebatt ME, Salazar AM, Lares I, Santiago P, Herrera J, et al. Genotoxic effects of metronidazole. Mutat Res Genet Toxicol. 1996;370:75–80.CrossRef
8.
Zurück zum Zitat Bendesky A, Menéndez D, Ostrosky-Wegman P. Is metronidazole carcinogenic? Mutat Res Rev Mutat Res. 2002;511:133–44.CrossRef Bendesky A, Menéndez D, Ostrosky-Wegman P. Is metronidazole carcinogenic? Mutat Res Rev Mutat Res. 2002;511:133–44.CrossRef
9.
Zurück zum Zitat Li Y, Xiang Q, Zhang Q, Huang Y, Su Z. Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides. 2012;37:207–15.CrossRefPubMed Li Y, Xiang Q, Zhang Q, Huang Y, Su Z. Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides. 2012;37:207–15.CrossRefPubMed
10.
Zurück zum Zitat Altincicek B, Linder M, Linder D, Preissner KT, Vilcinskas A. Microbial metalloproteinases mediate sensing of invading pathogens and activate innate immune responses in the lepidopteran model host Galleria mellonella. Infect Immun. 2007;75:175–83.CrossRefPubMed Altincicek B, Linder M, Linder D, Preissner KT, Vilcinskas A. Microbial metalloproteinases mediate sensing of invading pathogens and activate innate immune responses in the lepidopteran model host Galleria mellonella. Infect Immun. 2007;75:175–83.CrossRefPubMed
12.
Zurück zum Zitat Chan DI, Prenner EJ, Vogel HJ. Tryptophan-and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim Biophys Acta. 2006;1758:1184–202.CrossRefPubMed Chan DI, Prenner EJ, Vogel HJ. Tryptophan-and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim Biophys Acta. 2006;1758:1184–202.CrossRefPubMed
13.
Zurück zum Zitat Otvos L Jr. Antibacterial peptides and proteins with multiple cellular targets. J Pept Sci. 2005;11:697–706.CrossRefPubMed Otvos L Jr. Antibacterial peptides and proteins with multiple cellular targets. J Pept Sci. 2005;11:697–706.CrossRefPubMed
14.
Zurück zum Zitat Maróti G, Kereszt A, Kondorosi E, Mergaert P. Natural roles of antimicrobial peptides in microbes, plants and animals. Res Microbiol. 2011;162:363–74.CrossRefPubMed Maróti G, Kereszt A, Kondorosi E, Mergaert P. Natural roles of antimicrobial peptides in microbes, plants and animals. Res Microbiol. 2011;162:363–74.CrossRefPubMed
15.
16.
Zurück zum Zitat Palm C, Netzereab S, Hällbrink M. Quantitatively determined uptake of cell-penetrating peptides in non-mammalian cells with an evaluation of degradation and antimicrobial effects. Peptides. 2006;27:1710–6.CrossRefPubMed Palm C, Netzereab S, Hällbrink M. Quantitatively determined uptake of cell-penetrating peptides in non-mammalian cells with an evaluation of degradation and antimicrobial effects. Peptides. 2006;27:1710–6.CrossRefPubMed
18.
Zurück zum Zitat Steiner H, Hultmark D, Engström Å, Bennich H, Boman HG. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature. 1981;292:246–8.CrossRefPubMed Steiner H, Hultmark D, Engström Å, Bennich H, Boman HG. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature. 1981;292:246–8.CrossRefPubMed
19.
Zurück zum Zitat Moore AJ, Beazley WD, Bibby MC, Devine DA. Antimicrobial activity of cecropins. J Antimicrob Chemother. 1996;37:1077–89.CrossRefPubMed Moore AJ, Beazley WD, Bibby MC, Devine DA. Antimicrobial activity of cecropins. J Antimicrob Chemother. 1996;37:1077–89.CrossRefPubMed
20.
Zurück zum Zitat Sengupta D, Leontiadou H, Mark AE, Marrink S‑J. Toroidal pores formed by antimicrobial peptides show significant disorder. Biochim Biophys Acta. 2008;1778:2308–17.CrossRefPubMed Sengupta D, Leontiadou H, Mark AE, Marrink S‑J. Toroidal pores formed by antimicrobial peptides show significant disorder. Biochim Biophys Acta. 2008;1778:2308–17.CrossRefPubMed
21.
Zurück zum Zitat Melo MN, Ferre R, Castanho MARB. Antimicrobial peptides: Linking partition, activity and high membrane-bound concentrations. Nat Rev Microbiol. 2009;7:245–50.CrossRefPubMed Melo MN, Ferre R, Castanho MARB. Antimicrobial peptides: Linking partition, activity and high membrane-bound concentrations. Nat Rev Microbiol. 2009;7:245–50.CrossRefPubMed
22.
Zurück zum Zitat Efimova SS, Schagina LV, Ostroumova OS. Channel-forming activity of cecropins in lipid bilayers: effect of agents modifying the membrane dipole potential. Langmuir. 2014;30:7884–92.CrossRefPubMed Efimova SS, Schagina LV, Ostroumova OS. Channel-forming activity of cecropins in lipid bilayers: effect of agents modifying the membrane dipole potential. Langmuir. 2014;30:7884–92.CrossRefPubMed
23.
Zurück zum Zitat Raghuraman H, Chattopadhyay A. Cholesterol inhibits the lytic activity of melittin in erythrocytes. Chem Phys Lipids. 2005;134:183–9.CrossRefPubMed Raghuraman H, Chattopadhyay A. Cholesterol inhibits the lytic activity of melittin in erythrocytes. Chem Phys Lipids. 2005;134:183–9.CrossRefPubMed
24.
Zurück zum Zitat Bland JM, De Lucca AJ. Identification of cecropin A proteolytic cleavage sites resulting from Aspergillus flavus extracellular protease(s). J Agric Food Chem. 1998;46:5324–7.CrossRef Bland JM, De Lucca AJ. Identification of cecropin A proteolytic cleavage sites resulting from Aspergillus flavus extracellular protease(s). J Agric Food Chem. 1998;46:5324–7.CrossRef
25.
Zurück zum Zitat Giacometti A, Cirioni O, Kamysz W, D’Amato G, Silvestri C, Del Prete MS, et al. Comparative activities of cecropin A, melittin, and cecropin A‑melittin peptide CA(1-7)M(2-9)NH2 against multidrug-resistant nosocomial isolates of Acinetobacter baumannii. Peptides. 2003;24:1315–8.CrossRefPubMed Giacometti A, Cirioni O, Kamysz W, D’Amato G, Silvestri C, Del Prete MS, et al. Comparative activities of cecropin A, melittin, and cecropin A‑melittin peptide CA(1-7)M(2-9)NH2 against multidrug-resistant nosocomial isolates of Acinetobacter baumannii. Peptides. 2003;24:1315–8.CrossRefPubMed
26.
Zurück zum Zitat Yevtushenko DP, Romero R, Forward BS, Hancock RE, Kay WW, Misra S. Pathogen-induced expression of a cecropin A‑melittin antimicrobial peptide gene confers antifungal resistance in transgenic tobacco. J Exp Bot. 2005;56:1685–95.CrossRefPubMed Yevtushenko DP, Romero R, Forward BS, Hancock RE, Kay WW, Misra S. Pathogen-induced expression of a cecropin A‑melittin antimicrobial peptide gene confers antifungal resistance in transgenic tobacco. J Exp Bot. 2005;56:1685–95.CrossRefPubMed
27.
Zurück zum Zitat Cavallarin L, Andreu D, San Segundo B. Cecropin A—derived peptides are potent inhibitors of fungal plant pathogens. Mol Plant Microbe Interact. 1998;11:218–27.CrossRefPubMed Cavallarin L, Andreu D, San Segundo B. Cecropin A—derived peptides are potent inhibitors of fungal plant pathogens. Mol Plant Microbe Interact. 1998;11:218–27.CrossRefPubMed
28.
Zurück zum Zitat Badosa E, Ferre R, Planas M, Feliu L, Besalú E, Cabrefiga J, et al. A library of linear undecapeptides with bactericidal activity against phytopathogenic bacteria. Peptides. 2007;28:2276–85.CrossRefPubMed Badosa E, Ferre R, Planas M, Feliu L, Besalú E, Cabrefiga J, et al. A library of linear undecapeptides with bactericidal activity against phytopathogenic bacteria. Peptides. 2007;28:2276–85.CrossRefPubMed
29.
Zurück zum Zitat Que X, Reed L. Nucleotide sequence of a small subnit ribosomal RNA (16S-like rRNA) gene from Entamoeba histolytica: Differntiation of pathogenic from nonpathogenic isolates. Nucleic Acids Res. 1991;19:5438.CrossRefPubMedPubMedCentral Que X, Reed L. Nucleotide sequence of a small subnit ribosomal RNA (16S-like rRNA) gene from Entamoeba histolytica: Differntiation of pathogenic from nonpathogenic isolates. Nucleic Acids Res. 1991;19:5438.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Robinson G. Laboratory cultivation of some human parasitic amoebae. Microbiology. 1968;53:69–79. Robinson G. Laboratory cultivation of some human parasitic amoebae. Microbiology. 1968;53:69–79.
31.
Zurück zum Zitat Diamond LS, Harlow DR, Cunnick CC. A new medium for the axenic cultivation of entamoeba histolytica and other entamoeba. Trans R Soc Trop Med Hyg. 1978;72:431–2.CrossRefPubMed Diamond LS, Harlow DR, Cunnick CC. A new medium for the axenic cultivation of entamoeba histolytica and other entamoeba. Trans R Soc Trop Med Hyg. 1978;72:431–2.CrossRefPubMed
32.
Zurück zum Zitat Strober W. Trypan blue exclusion test of cell viability. Curr Protoc Immunol. 2015;111:A3‑B. Strober W. Trypan blue exclusion test of cell viability. Curr Protoc Immunol. 2015;111:A3‑B.
33.
Zurück zum Zitat Dobiáš L, Černá M, Rössner P, Šrám R. Genotoxicity and carcinogenicity of metronidazole. Mutat Res Genet Toxicol. 1994;317:177–94.CrossRef Dobiáš L, Černá M, Rössner P, Šrám R. Genotoxicity and carcinogenicity of metronidazole. Mutat Res Genet Toxicol. 1994;317:177–94.CrossRef
34.
Zurück zum Zitat Roe FJC. Toxicologic evaluation of metronidazole with particular reference to carcinogenic, mutagenic, and teratogenic potential. Surgery. 1983;93:158–64.PubMed Roe FJC. Toxicologic evaluation of metronidazole with particular reference to carcinogenic, mutagenic, and teratogenic potential. Surgery. 1983;93:158–64.PubMed
35.
Zurück zum Zitat Bonin-Debs AL, Boche I, Gille H, Brinkmann U. Development of secreted proteins as biotherapeutic agents. Expert Opin Biol Ther. 2004;4:551–8.CrossRefPubMed Bonin-Debs AL, Boche I, Gille H, Brinkmann U. Development of secreted proteins as biotherapeutic agents. Expert Opin Biol Ther. 2004;4:551–8.CrossRefPubMed
37.
Zurück zum Zitat Leippe M, Andrä J, Nickel R, Tannich E, Muller-Eberhard HJ. Amoebapores, a family of membranolytic peptides from cytoplasmic granules of Entamoeba histolytica: isolation, primary structure, and pore bacterial cytoplasmic membranes. Mol Microbiol. 1994;14:895–904.CrossRefPubMed Leippe M, Andrä J, Nickel R, Tannich E, Muller-Eberhard HJ. Amoebapores, a family of membranolytic peptides from cytoplasmic granules of Entamoeba histolytica: isolation, primary structure, and pore bacterial cytoplasmic membranes. Mol Microbiol. 1994;14:895–904.CrossRefPubMed
38.
Zurück zum Zitat Leippe M, Andrä J, Müller-Eberhard HJ. Cytolytic and antibacterial activity of synthetic peptides derived from amoebapore, the pore-forming peptide of Entamoeba histolytica. Proc Natl Acad Sci Usa. 1994;29:2602–6.CrossRef Leippe M, Andrä J, Müller-Eberhard HJ. Cytolytic and antibacterial activity of synthetic peptides derived from amoebapore, the pore-forming peptide of Entamoeba histolytica. Proc Natl Acad Sci Usa. 1994;29:2602–6.CrossRef
39.
40.
Zurück zum Zitat Steckbeck JD, Deslouches B, Montelaro RC. Antimicrobial peptides: new drugs for bad bugs? Expert Opin Biol Ther. 2014;14:11–4.CrossRefPubMed Steckbeck JD, Deslouches B, Montelaro RC. Antimicrobial peptides: new drugs for bad bugs? Expert Opin Biol Ther. 2014;14:11–4.CrossRefPubMed
41.
Zurück zum Zitat Moghaddam MM, Barjini KA, Ramandi MF, Amani J. Investigation of the antibacterial activity of a short cationic peptide against multidrug-resistant Klebsiella pneumoniae and Salmonella typhimurium strains and its cytotoxicity on eukaryotic cells. World J Microbiol Biotechnol. 2014;30:1533–40.CrossRefPubMed Moghaddam MM, Barjini KA, Ramandi MF, Amani J. Investigation of the antibacterial activity of a short cationic peptide against multidrug-resistant Klebsiella pneumoniae and Salmonella typhimurium strains and its cytotoxicity on eukaryotic cells. World J Microbiol Biotechnol. 2014;30:1533–40.CrossRefPubMed
42.
43.
Zurück zum Zitat Sand SL, Nissen-Meyer J, Sand O, Haug TM. Plantaricin A, a cationic peptide produced by Lactobacillus plantarum, permeabilizes eukaryotic cell membranes by a mechanism dependent on negative surface charge linked to glycosylated membrane proteins. Biochim Biophys Acta. 2013;1828:249–59.CrossRefPubMed Sand SL, Nissen-Meyer J, Sand O, Haug TM. Plantaricin A, a cationic peptide produced by Lactobacillus plantarum, permeabilizes eukaryotic cell membranes by a mechanism dependent on negative surface charge linked to glycosylated membrane proteins. Biochim Biophys Acta. 2013;1828:249–59.CrossRefPubMed
44.
Zurück zum Zitat Brauchle E, Thude S, Brucker SY, Schenke-Layland K. Cell death stages in single apoptotic and necrotic cells monitored by Raman microspectroscopy. Sci Rep. 2014;15:4698. Brauchle E, Thude S, Brucker SY, Schenke-Layland K. Cell death stages in single apoptotic and necrotic cells monitored by Raman microspectroscopy. Sci Rep. 2014;15:4698.
45.
Zurück zum Zitat Matsuzaki K. Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta. 1999;1462:1–10.CrossRefPubMed Matsuzaki K. Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta. 1999;1462:1–10.CrossRefPubMed
46.
47.
Zurück zum Zitat Rico-Mata R, De Leon-Rodriguez LM, Avila EE. Effect of antimicrobial peptides derived from human cathelicidin LL-37 on Entamoeba histolytica trophozoites. Exp Parasitol. 2013;133:300–6.CrossRefPubMed Rico-Mata R, De Leon-Rodriguez LM, Avila EE. Effect of antimicrobial peptides derived from human cathelicidin LL-37 on Entamoeba histolytica trophozoites. Exp Parasitol. 2013;133:300–6.CrossRefPubMed
48.
Zurück zum Zitat Ji S, Li W, Baloch AR, Wang M, Li H, Cao B, et al. Efficient biosynthesis of a Cecropin A‑melittin mutant in Bacillus subtilis WB700. Sci Rep. 2017;7:40587.CrossRefPubMedPubMedCentral Ji S, Li W, Baloch AR, Wang M, Li H, Cao B, et al. Efficient biosynthesis of a Cecropin A‑melittin mutant in Bacillus subtilis WB700. Sci Rep. 2017;7:40587.CrossRefPubMedPubMedCentral
Metadaten
Titel
Anti-amoebic activity of a cecropin-melittin hybrid peptide (CM11) against trophozoites of Entamoeba histolytica
Publikationsdatum
26.08.2019
Erschienen in
Wiener klinische Wochenschrift / Ausgabe 17-18/2019
Print ISSN: 0043-5325
Elektronische ISSN: 1613-7671
DOI
https://doi.org/10.1007/s00508-019-01540-9

Weitere Artikel der Ausgabe 17-18/2019

Wiener klinische Wochenschrift 17-18/2019 Zur Ausgabe

images in clinical medicine

Acute sinusitis

MUW researcher of the month

MUW researcher of the month