Skip to main content
Erschienen in:

04.08.2020 | main topic

Update Biometrie und Kunstlinsenberechnung

verfasst von: PD Dr. Nino Hirnschall, PhD FEBO, Prim. Univ. Prof. Dr. Oliver Findl, MBA FEBO

Erschienen in: Spektrum der Augenheilkunde | Ausgabe 5-6/2020

Einloggen, um Zugang zu erhalten

Zusammenfassung

Die Auswahl der richtigen Kunstlinsenstärke hat einen wesentlichen Einfluss auf die PatientInnenzufriedenheit. Bei weitem die größte Fehlerquelle ist die Vorhersage der postoperativen Kunstlinsenposition. Im folgenden Text sollen Möglichkeiten einer besseren Vorhersage und neue Kunstlinsenformeln diskutiert werden. Auch andere Fehlerquellen wie die Augenlängenmessung und die Hornhautmessung bei Spezialfällen werden beschrieben.
Literatur
1.
Zurück zum Zitat Findl O, Drexler W, Menapace R, Heinzl H, Hitzenberger CK, Fercher AF. Improved prediction of intraocular lens power using partial coherence interferometry. J Cataract Refract Surg. 2001;27(6):861–7.CrossRefPubMed Findl O, Drexler W, Menapace R, Heinzl H, Hitzenberger CK, Fercher AF. Improved prediction of intraocular lens power using partial coherence interferometry. J Cataract Refract Surg. 2001;27(6):861–7.CrossRefPubMed
2.
Zurück zum Zitat Olsen T. Calculation of intraocular lens power: a review. Acta Ophthalmol Scand. 2007;85(5):472–85.CrossRefPubMed Olsen T. Calculation of intraocular lens power: a review. Acta Ophthalmol Scand. 2007;85(5):472–85.CrossRefPubMed
3.
Zurück zum Zitat Aristodemou P, Knox Cartwright NE, Sparrow JM, Johnston RL. Formula choice: Hoffer Q, Holladay 1, or SRK/T and refractive outcomes in 8108 eyes after cataract surgery with biometry by partial coherence interferometry. J Cataract Refract Surg. 2011;37(1):63–71.CrossRefPubMed Aristodemou P, Knox Cartwright NE, Sparrow JM, Johnston RL. Formula choice: Hoffer Q, Holladay 1, or SRK/T and refractive outcomes in 8108 eyes after cataract surgery with biometry by partial coherence interferometry. J Cataract Refract Surg. 2011;37(1):63–71.CrossRefPubMed
4.
Zurück zum Zitat Norrby S. Sources of error in intraocular lens power calculation. J Cataract Refract Surg. 2008;34(3):368–76.CrossRefPubMed Norrby S. Sources of error in intraocular lens power calculation. J Cataract Refract Surg. 2008;34(3):368–76.CrossRefPubMed
5.
Zurück zum Zitat Olsen T. Sources of error in intraocular lens power calculation. J Cataract Refract Surg. 1992;18(2):125–9.CrossRefPubMed Olsen T. Sources of error in intraocular lens power calculation. J Cataract Refract Surg. 1992;18(2):125–9.CrossRefPubMed
7.
Zurück zum Zitat Barrett GD. An improved universal theoretical formula for intraocular lens power prediction. J Cataract Refract Surg. 1993;19(6):713–20.CrossRefPubMed Barrett GD. An improved universal theoretical formula for intraocular lens power prediction. J Cataract Refract Surg. 1993;19(6):713–20.CrossRefPubMed
8.
Zurück zum Zitat Darcy K, Gunn D, Tavassoli S, Sparrow J, Kane JX. Assessment of the accuracy of new and updated intraocular lens power calculation formulas in 10 930 eyes from the UK National Health Service. J Cataract Refract Surg. 2020;46(1):2–7.PubMed Darcy K, Gunn D, Tavassoli S, Sparrow J, Kane JX. Assessment of the accuracy of new and updated intraocular lens power calculation formulas in 10 930 eyes from the UK National Health Service. J Cataract Refract Surg. 2020;46(1):2–7.PubMed
9.
Zurück zum Zitat Kane JX, Van Heerden A, Atik A, Petsoglou C. Accuracy of 3 new methods for intraocular lens power selection. J Cataract Refract Surg. 2017;43(3):333–9.CrossRefPubMed Kane JX, Van Heerden A, Atik A, Petsoglou C. Accuracy of 3 new methods for intraocular lens power selection. J Cataract Refract Surg. 2017;43(3):333–9.CrossRefPubMed
10.
Zurück zum Zitat Savini G, Hoffer KJ, Balducci N, Barboni P, Schiano-Lomoriello D. Comparison of formula accuracy for intraocular lens power calculation based on measurements by a swept-source optical coherence tomography optical biometer. J Cataract Refract Surg. 2020;46(1):27–33.PubMed Savini G, Hoffer KJ, Balducci N, Barboni P, Schiano-Lomoriello D. Comparison of formula accuracy for intraocular lens power calculation based on measurements by a swept-source optical coherence tomography optical biometer. J Cataract Refract Surg. 2020;46(1):27–33.PubMed
11.
Zurück zum Zitat Ladas JG, Siddiqui AA, Devgan U, Jun AS. A 3‑D “super surface” combining modern intraocular lens formulas to generate a “super formula” and maximize accuracy. JAMA Ophthalmol. 2015;133(12):1431–6.CrossRefPubMed Ladas JG, Siddiqui AA, Devgan U, Jun AS. A 3‑D “super surface” combining modern intraocular lens formulas to generate a “super formula” and maximize accuracy. JAMA Ophthalmol. 2015;133(12):1431–6.CrossRefPubMed
12.
Zurück zum Zitat Gokce SE, Montes De Oca I, Cooke DL, Wang L, Koch DD, Al-Mohtaseb Z. Accuracy of 8 intraocular lens calculation formulas in relation to anterior chamber depth in patients with normal axial lengths. J Cataract Refract Surg. 2018;44(3):362–8.CrossRefPubMed Gokce SE, Montes De Oca I, Cooke DL, Wang L, Koch DD, Al-Mohtaseb Z. Accuracy of 8 intraocular lens calculation formulas in relation to anterior chamber depth in patients with normal axial lengths. J Cataract Refract Surg. 2018;44(3):362–8.CrossRefPubMed
13.
Zurück zum Zitat Reitblat O, Levy A, Kleinmann G, Lerman TT, Assia EI. Intraocular lens power calculation for eyes with high and low average keratometry readings: Comparison between various formulas. J Cataract Refract Surg. 2017;43(9):1149–56.CrossRefPubMed Reitblat O, Levy A, Kleinmann G, Lerman TT, Assia EI. Intraocular lens power calculation for eyes with high and low average keratometry readings: Comparison between various formulas. J Cataract Refract Surg. 2017;43(9):1149–56.CrossRefPubMed
14.
Zurück zum Zitat Wan KH, Lam TCH, Yu MCY, Chan TCY. Accuracy and precision of Intraocular lens calculations using the new hill-RBF version 2.0 in eyes with high axial myopia. Am J Ophthalmol. 2019;205:66–73.CrossRefPubMed Wan KH, Lam TCH, Yu MCY, Chan TCY. Accuracy and precision of Intraocular lens calculations using the new hill-RBF version 2.0 in eyes with high axial myopia. Am J Ophthalmol. 2019;205:66–73.CrossRefPubMed
15.
Zurück zum Zitat Tang KS, Tran EM, Chen AJ, Rivera DR, Rivera JJ, Greenberg PB. Accuracy of biometric formulae for intraocular lens power calculation in a teaching hospital. Int J Ophthalmol. 2020;13(1):61–5.CrossRefPubMedPubMedCentral Tang KS, Tran EM, Chen AJ, Rivera DR, Rivera JJ, Greenberg PB. Accuracy of biometric formulae for intraocular lens power calculation in a teaching hospital. Int J Ophthalmol. 2020;13(1):61–5.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Drexler W, Findl O, Menapace R, et al. Partial coherence interferometry: a novel approach to biometry in cataract surgery. Am J Ophthalmol. 1998;126(4):524–34.CrossRefPubMed Drexler W, Findl O, Menapace R, et al. Partial coherence interferometry: a novel approach to biometry in cataract surgery. Am J Ophthalmol. 1998;126(4):524–34.CrossRefPubMed
19.
Zurück zum Zitat Findl O, Kriechbaum K, Sacu S, et al. Influence of operator experience on the performance of ultrasound biometry compared to optical biometry before cataract surgery. J Cataract Refract Surg. 2003;29(10):1950–5.CrossRefPubMed Findl O, Kriechbaum K, Sacu S, et al. Influence of operator experience on the performance of ultrasound biometry compared to optical biometry before cataract surgery. J Cataract Refract Surg. 2003;29(10):1950–5.CrossRefPubMed
20.
Zurück zum Zitat Hirnschall N, Leisser C, Radda S, Maedel S, Findl O. Macular disease detection with a swept-source optical coherence tomography-based biometry device in patients scheduled for cataract surgery. J Cataract Refract Surg. 2016;42(4):530–6.CrossRefPubMed Hirnschall N, Leisser C, Radda S, Maedel S, Findl O. Macular disease detection with a swept-source optical coherence tomography-based biometry device in patients scheduled for cataract surgery. J Cataract Refract Surg. 2016;42(4):530–6.CrossRefPubMed
21.
Zurück zum Zitat Hirnschall N, Buehren T, Bajramovic F, Trost M, Teuber T, Findl O. Prediction of postoperative intraocular lens tilt using swept-source optical coherence tomography. J Cataract Refract Surg. 2017;43(6):732–6.CrossRefPubMed Hirnschall N, Buehren T, Bajramovic F, Trost M, Teuber T, Findl O. Prediction of postoperative intraocular lens tilt using swept-source optical coherence tomography. J Cataract Refract Surg. 2017;43(6):732–6.CrossRefPubMed
22.
Zurück zum Zitat Hirnschall N, Murphy S, Pimenides D, Maurino V, Findl O. Assessment of a new averaging algorithm to increase the sensitivity of axial eye length measurement with optical biometry in eyes with dense cataract. J Cataract Refract Surg. 2011;37(1):45–9.CrossRefPubMed Hirnschall N, Murphy S, Pimenides D, Maurino V, Findl O. Assessment of a new averaging algorithm to increase the sensitivity of axial eye length measurement with optical biometry in eyes with dense cataract. J Cataract Refract Surg. 2011;37(1):45–9.CrossRefPubMed
23.
Zurück zum Zitat Hirnschall N, Varsits R, Doeller B, Findl O. Enhanced penetration for axial length measurement of eyes with dense cataracts using swept source optical coherence tomography: a consecutive observational study. Ophthalmol Ther. 2018;7(1):119–24.CrossRefPubMedPubMedCentral Hirnschall N, Varsits R, Doeller B, Findl O. Enhanced penetration for axial length measurement of eyes with dense cataracts using swept source optical coherence tomography: a consecutive observational study. Ophthalmol Ther. 2018;7(1):119–24.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Fabian E, Wehner W. Prediction accuracy of total keratometry compared to standard keratometry using different Intraocular lens power formulas. J Refract Surg. 2019;35(6):362–8.CrossRefPubMed Fabian E, Wehner W. Prediction accuracy of total keratometry compared to standard keratometry using different Intraocular lens power formulas. J Refract Surg. 2019;35(6):362–8.CrossRefPubMed
25.
Zurück zum Zitat Ferreira TB, Ribeiro P, Ribeiro FJ, O’Neill JG. Comparison of methodologies using estimated or measured values of total corneal astigmatism for toric intraocular lens power calculation. J Refract Surg. 2017;33(12):794–800.CrossRefPubMed Ferreira TB, Ribeiro P, Ribeiro FJ, O’Neill JG. Comparison of methodologies using estimated or measured values of total corneal astigmatism for toric intraocular lens power calculation. J Refract Surg. 2017;33(12):794–800.CrossRefPubMed
26.
Zurück zum Zitat Koch DD, Ali SF, Weikert MP, Shirayama M, Jenkins R, Wang L. Contribution of posterior corneal astigmatism to total corneal astigmatism. J Cataract Refract Surg. 2012;38(12):2080–7.CrossRefPubMed Koch DD, Ali SF, Weikert MP, Shirayama M, Jenkins R, Wang L. Contribution of posterior corneal astigmatism to total corneal astigmatism. J Cataract Refract Surg. 2012;38(12):2080–7.CrossRefPubMed
27.
Zurück zum Zitat Koch DD, Jenkins RB, Weikert MP, Yeu E, Wang L. Correcting astigmatism with toric intraocular lenses: effect of posterior corneal astigmatism. J Cataract Refract Surg. 2013;39(12):1803–9.CrossRefPubMed Koch DD, Jenkins RB, Weikert MP, Yeu E, Wang L. Correcting astigmatism with toric intraocular lenses: effect of posterior corneal astigmatism. J Cataract Refract Surg. 2013;39(12):1803–9.CrossRefPubMed
28.
Zurück zum Zitat Abulafia A, Koch DD, Wang L, et al. New regression formula for toric intraocular lens calculations. J Cataract Refract Surg. 2016;42(5):663–71.CrossRefPubMed Abulafia A, Koch DD, Wang L, et al. New regression formula for toric intraocular lens calculations. J Cataract Refract Surg. 2016;42(5):663–71.CrossRefPubMed
29.
Zurück zum Zitat Hirnschall N, Crnej A, Gangwani V, Findl O. Effect of fluorescein dye staining of the tear film on Scheimpflug measurements of central corneal thickness. Cornea. 2012;31(1):18–20.CrossRefPubMed Hirnschall N, Crnej A, Gangwani V, Findl O. Effect of fluorescein dye staining of the tear film on Scheimpflug measurements of central corneal thickness. Cornea. 2012;31(1):18–20.CrossRefPubMed
30.
Zurück zum Zitat Hoffmann PC, Abraham M, Hirnschall N, Findl O. Prediction of residual astigmatism after cataract surgery using swept source fourier domain optical coherence tomography. Curr Eye Res. 2014;39(12):1178–86.CrossRefPubMed Hoffmann PC, Abraham M, Hirnschall N, Findl O. Prediction of residual astigmatism after cataract surgery using swept source fourier domain optical coherence tomography. Curr Eye Res. 2014;39(12):1178–86.CrossRefPubMed
31.
Zurück zum Zitat Asam JS, Polzer M, Tafreshi A, Hirnschall N, Findl O. Anterior segment OCT. In: Bille JF, Hrsg. High resolution imaging in microscopy and ophthalmology: new frontiers in biomedical optics. Cham: Springer; 2019. S. 285–99.CrossRef Asam JS, Polzer M, Tafreshi A, Hirnschall N, Findl O. Anterior segment OCT. In: Bille JF, Hrsg. High resolution imaging in microscopy and ophthalmology: new frontiers in biomedical optics. Cham: Springer; 2019. S. 285–99.CrossRef
32.
Zurück zum Zitat Fukuda S, Ueno Y, Fujita A, et al. Comparison of anterior segment and lens biometric measurements in patients with cataract. Graefes Arch Clin Exp Ophthalmol. 2020;258(1):137–46.CrossRefPubMed Fukuda S, Ueno Y, Fujita A, et al. Comparison of anterior segment and lens biometric measurements in patients with cataract. Graefes Arch Clin Exp Ophthalmol. 2020;258(1):137–46.CrossRefPubMed
34.
Zurück zum Zitat Klijn S, Reus NJ, van der Sommen CM, Sicam VA. Accuracy of total corneal astigmatism measurements with a Scheimpflug Imager and a color light-emitting diode corneal topographer. Am J Ophthalmol. 2016;167:72–8.CrossRefPubMed Klijn S, Reus NJ, van der Sommen CM, Sicam VA. Accuracy of total corneal astigmatism measurements with a Scheimpflug Imager and a color light-emitting diode corneal topographer. Am J Ophthalmol. 2016;167:72–8.CrossRefPubMed
35.
Zurück zum Zitat Klijn S, Reus NJ, Sicam VA. Evaluation of keratometry with a novel Color-LED corneal topographer. J Refract Surg. 2015;31(4):249–56.CrossRefPubMed Klijn S, Reus NJ, Sicam VA. Evaluation of keratometry with a novel Color-LED corneal topographer. J Refract Surg. 2015;31(4):249–56.CrossRefPubMed
36.
Zurück zum Zitat Huelle JO, Druchkiv V, Habib NE, Richard G, Katz T, Linke SJ. Intraoperative aberrometry-based aphakia refraction in patients with cataract: status and options. Br J Ophthalmol. 2017;101(2):97–102.CrossRefPubMed Huelle JO, Druchkiv V, Habib NE, Richard G, Katz T, Linke SJ. Intraoperative aberrometry-based aphakia refraction in patients with cataract: status and options. Br J Ophthalmol. 2017;101(2):97–102.CrossRefPubMed
37.
Zurück zum Zitat Sudhakar S, Hill DC, King TS, et al. Intraoperative aberrometry versus preoperative biometry for intraocular lens power selection in short eyes. J Cataract Refract Surg. 2019;45(6):719–24.CrossRefPubMed Sudhakar S, Hill DC, King TS, et al. Intraoperative aberrometry versus preoperative biometry for intraocular lens power selection in short eyes. J Cataract Refract Surg. 2019;45(6):719–24.CrossRefPubMed
38.
Zurück zum Zitat Fram NR, Masket S, Wang L. Comparison of intraoperative aberrometry, OCT-based IOL formula, Haigis‑L, and Masket formulae for IOL power calculation after laser vision correction. Ophthalmology. 2015;122(6):1096–101.CrossRefPubMed Fram NR, Masket S, Wang L. Comparison of intraoperative aberrometry, OCT-based IOL formula, Haigis‑L, and Masket formulae for IOL power calculation after laser vision correction. Ophthalmology. 2015;122(6):1096–101.CrossRefPubMed
39.
Zurück zum Zitat Curado SX, Hida WT, Vilar CMC, Ordones VL, Chaves MAP, Tzelikis PF. Intraoperative aberrometry versus preoperative biometry for IOL power selection after radial keratotomy: a prospective study. J Refract Surg. 2019;35(10):656–61.CrossRefPubMed Curado SX, Hida WT, Vilar CMC, Ordones VL, Chaves MAP, Tzelikis PF. Intraoperative aberrometry versus preoperative biometry for IOL power selection after radial keratotomy: a prospective study. J Refract Surg. 2019;35(10):656–61.CrossRefPubMed
40.
Zurück zum Zitat Hirnschall N, Amir-Asgari S, Maedel S, Findl O. Predicting the postoperative intraocular lens position using continuous intraoperative optical coherence tomography measurements. Invest Ophthalmol Vis Sci. 2013;54(8):5196–203.CrossRefPubMed Hirnschall N, Amir-Asgari S, Maedel S, Findl O. Predicting the postoperative intraocular lens position using continuous intraoperative optical coherence tomography measurements. Invest Ophthalmol Vis Sci. 2013;54(8):5196–203.CrossRefPubMed
41.
Zurück zum Zitat Hirnschall N, Norrby S, Weber M, Maedel S, Amir-Asgari S, Findl O. Using continuous intraoperative optical coherence tomography measurements of the aphakic eye for intraocular lens power calculation. Br J Ophthalmol. 2015;99(1):7–10.CrossRefPubMed Hirnschall N, Norrby S, Weber M, Maedel S, Amir-Asgari S, Findl O. Using continuous intraoperative optical coherence tomography measurements of the aphakic eye for intraocular lens power calculation. Br J Ophthalmol. 2015;99(1):7–10.CrossRefPubMed
42.
Zurück zum Zitat Hirnschall N, Farrokhi S, Amir-Asgari S, Hienert J, Findl O. Intraoperative optical coherence tomography measurements of aphakic eyes to predict postoperative position of 2 intraocular lens designs. J Cataract Refract Surg. 2018;44(11):1310–6.CrossRefPubMed Hirnschall N, Farrokhi S, Amir-Asgari S, Hienert J, Findl O. Intraoperative optical coherence tomography measurements of aphakic eyes to predict postoperative position of 2 intraocular lens designs. J Cataract Refract Surg. 2018;44(11):1310–6.CrossRefPubMed
Metadaten
Titel
Update Biometrie und Kunstlinsenberechnung
verfasst von
PD Dr. Nino Hirnschall, PhD FEBO
Prim. Univ. Prof. Dr. Oliver Findl, MBA FEBO
Publikationsdatum
04.08.2020
Verlag
Springer Vienna
Erschienen in
Spektrum der Augenheilkunde / Ausgabe 5-6/2020
Print ISSN: 0930-4282
Elektronische ISSN: 1613-7523
DOI
https://doi.org/10.1007/s00717-020-00460-8