Skip to main content
Erschienen in: Wiener Medizinische Wochenschrift 1-2/2024

Open Access 06.12.2022 | main topic

Treatment of neuromyelitis optica spectrum disorder: revisiting the complement system and other aspects of pathogenesis

verfasst von: Dr. Markus Ponleitner, Assoc.-Prof. PD Mag. Dr. Paulus Stefan Rommer

Erschienen in: Wiener Medizinische Wochenschrift | Ausgabe 1-2/2024

Summary

Neuromyelitis optica spectrum disorder (NMOSD) represents a rare neuroimmunological disease causing recurrent attacks and accumulation of permanent disability in affected patients. The discovery of the pathogenic IgG‑1 antibody targeting a water channel expressed in astrocytes, aquaporin 4, constitutes a milestone achievement. Subsequently, multiple pathophysiological aspects of this distinct disease entity have been investigated. Demyelinating lesions and axonal damage ensue from autoantibodies targeting an astroglial epitope. This conundrum has been addressed in the current disease model, where activation of the complement system as well as B cells and interleukin 6 (IL-6) emerged as key contributors. It is the aim of this review to address these factors in light of novel treatment compounds which reflect these pathophysiological concepts in aiming for attack prevention, thus reducing disease burden in patients with NMOSD.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ADCC
Antibody-dependent cellular cytotoxicity
ADEM
Acute disseminated encephalomyelitis
AIR
Acute infusion reaction
AQP4
Aquaporin 4
ARR
Annualized relapse rate
AZA
Azathioprine
BBB
Blood–brain barrier
CD
Cluster of differentiation
CDC
Complement-dependent cytotoxicity
EAAT‑2
Excitatory amino acid transporter 2
EDSS
Expanded disability status scale
Fc
Crystallizable fragment
FcRn
Neonatal Fc receptor
GLT‑1
Glutamate transporter 1
HDMP
High-dose methylprednisolone
IAS
Immunadsorption
Ig
Immunoglobulin
IL
Interleukin
IPND
International Panel for NMO Diagnosis
LETM
Longitudinally extensive transverse myelitis
MAC
Membrane attack complex
MMF
Mycophenolate mofetil
MOG-AD
Myelin oligodendrocyte glycoprotein antibody associated autoimmune disorder
MRI
Magnetic resonance imaging
MS
Multiple sclerosis
MTN
Mitoxantrone
MTX
Methotrexate
NMO
Neuromyelitis optica
NMOSD
Neuromyelitis optica spectrum disorder
PLEX
Plasma exchange
PRES
Posterior reversible encephalopathy syndrome
RTX
Rituximab

Introduction

The first description of a disease primarily affecting the optical nerves and the spinal cord—then Devic’s disease—was published over 100 years ago [1]. The term neuromyelitis optica (NMO) was coined based on the hallmark symptoms still included in modern diagnostic criteria [2]. The distinction between the more common Multiple Sclerosis (MS), which shares some clinical and radiological disease characteristics [3], and NMO depended solely on clinical features until the antibody against the astroglial surface protein aquaporin 4 (AQP4-IgG), highly specific for NMO, was discovered in 2004 [4, 5]. With this diagnostic tool, the phenotype was expanded, resulting in the novel term neuromyelitis optica spectrum disorder (NMOSD) [6]. The prevalence of AQP4-IgG in patients diagnosed with NMOSD according to the international Panel for NMO Diagnosis (IPND) criteria has been shown to be 73–90% [7, 8]. Investigation of patients fulfilling diagnostic criteria for NMOSD but seronegative for AQP4-IgG eventually led to the discovery of antibodies targeting myelin oligodendrocyte glycoprotein (MOG-IgG).
One study found that 73% of 132 patients fulfilling the IPND criteria had AQP4-IgG antibodies; of the AQP4-IgG-seronegative patients, 42% had antibodies targeting MOG (11% of patients fulfilling IPND criteria) and the remaining patients were classified as double seronegative. None of the patients with AQP4-IgG were definitely positive for MOG-AB and vice versa [9], indicating that these antibodies are mutually exclusive. This was also reflected in pathological analyses [10]. Most evidence concerning pathophysiology, treatment strategies, and therapeutic agents is based on AQP4-IgG-seropositive patients. The detailed nature of double-seronegative (AQP4- and MOG-AB-negative) NMOSD requires additional research.
With the emergence of the pathogenic antibody, pathophysiological disease models were conceptualized, which are the basis of novel treatment options in NMOSD. It is the aim of this review to relate these models to their modes of action, paying special attention to the complement system.

Pathogenesis

The discovery of AQP4-IgG marked an important milestone in NMOSD research in that the origin of central nervous system (CNS) lesions appears to be an astrocytopathy [4]. AQP4 constitutes the most abundant water channel in the CNS. It is found on astrocytes, with the highest expression on their foot processes, which are an integral part of the blood–brain barrier [11, 12]. Additionally, AQP4 is expressed in the glia limitans and ependyma [13].
AQP4-IgGs in NMOSD are primarily of the IgG1 subclass. This indicates that a subclass switch through interaction with autoreactive CD4+ T cells must have occurred. Antibody production occurs predominantly in plasma cells outside of the CNS, which is reflected in 500-fold higher titers in serum compared to CNS [14, 15]. These cells can be further characterized as CD19int, CD27+, CD38+, and CD180, indicating a plasmablast phenotype [16]. Antibody production and plasmablast survival crucially depend on interleukin 6 (IL-6), which, in fact, is markedly increased in the serum and cerebrospinal fluid (CSF) of patients with NMOSD in comparison to healthy controls and, importantly, patients with MS [17, 18]. In vitro studies have shown that the IL‑6 receptor (IL-6R), is highly expressed on the plasmablast fraction in question. Additionally, antibody production and plasmablast survival were directly correlated with IL‑6 levels, while blockage of the IL-6R reduced both metrics [15].
Antigen recognition occurs through disruption of the blood–brain barrier (BBB) or at sites with high BBB-permeability (e.g., circumventricular organs, i.e., area postrema).
Binding of AQP4-IgGs induces complement activation and subsequent cell lysis of astrocytes via complement-dependent cytotoxicity (CDC). Cell death and complement activation releases pro-inflammatory mediators, resulting in recruitment of T and B cells as well as mono- and granulocytes and some eosinophils. This immune reaction induces antibody-dependent cellular cytotoxicity (ADCC), demyelination, and tissue damage including axonopathy [19, 20].
An alternative explanation for demyelination involves secondary damage to oligodendrocytes without astrocyte necrosis: it has been shown that expression of the astrocytic glutamate transporter 1 (GLT‑1; excitatory amino acid transporter 2 [EAAT-2]) requires co-expression of AQP4 [21]. Co-internalization of GLT‑1 upon AQP4 antibody binding likely results in glutamate-induced cytotoxicity, causing oligodendrocyte damage and subsequent demyelination in the nearby environment without astrocyte necrosis [22]. Thus, one can envision two distinct reactions following antigen recognition by AQP4-IgG: (i) degradation and complement activation causing astrocyte lysis and severe tissue damage with necrotic lesion formation and (ii) internalization of AQP4 causing primary oligodendropathy and solely demyelination lesions [23, 24]. These concepts are in line with different lesion types described in patients suffering from NMOSD [19, 20].

The complement system revisited

The complex complement system is part of the innate humoral immunity in humans and has emerged as a key player in the pathophysiology of several autoimmune diseases, including NMOSD.
Since a first description of particles complementing the immune system by Paul Ehrlich [11], a system of more than 30 proteins has been discovered and termed the complement system. Deficiencies of these complement factors, acquired or hereditary, have been associated with increased susceptibility to infections or manifestation of autoimmune disorders, underlining the importance of this integral part of our immune system [12].
Once activated by one of three known pathways (classical, lectin, alternate), the complement cascade undergoes positive feedback propagation, converging towards the activation of what is denoted the membrane attack complex (MAC). The MAC comprises oligomerized C9 subunits attached to preformed complement structures, which gives rise to a pore that is forced through the target cell membrane, resulting in lysis and cell death.
The broadly accepted role of the pathogenic AQP4-IgG1 antibody in NMOSD renders the classical pathway most relevant in this disease. Upon epitope recognition, a small conformational change in the IgG1, IgG‑2, and IgG‑3 subclasses (not IgG4) allows for binding of C1q. The following cascade results in assembly of C3 convertase, which cleaves C3 into C3a, an anaphylatoxin, and C3b. Incorporation of the latter into the pre-existing C3 convertases continues to form a C5 convertase [13].
C5 convertase activity yields C5a, another potent inflammatory chemokine, and C5b, the foundation of the MAC. C5b co-aggregates with C6, C7, and C8, forming an increasingly stable tetrameric complex anchored to the surface membrane, which finally allows for association of the MAC from 10–16 C9 molecules, piercing the membrane and causing lysis [14, 15].

Epidemiology

Several nationwide studies found the prevalence of NMOSD to range from 0.37–10/100,000 (highest prevalence among African, East Asian, and Latin American populations), predominantly manifesting as a relapsing disease (90–99%) with a documented predilection in females with a ratio of approximately 5:1 to 10:1 [1619]. Median disease onset typically occurs between age 30 and 40, while onset in children and older patients has been described [3].

Clinical manifestations

The term neuromyelitis optica, as the disease was previously known, reflects two of the most characteristic manifestations of relapses in patients afflicted by this condition: (i) bilateral or rapidly sequential severe optic neuritis (ON) and (ii) longitudinally extensive transverse myelitis (LETM; extending over at least three vertebrae) [6].
In contrast to MS, the relapses are often much more severe, so that significant disability may remain even after a first relapse [20].
In addition to these classical manifestations, patients have been reported with insatiable singultus, nausea, and vomiting (lesion site: area postrema). Upon involvement of the brainstem and cervical spinal cord, symptoms include respiratory insufficiency, cardiac arrhythmias, dysphagia, dizziness, and oculomotor disturbances [3, 21].
Lesions in the diencephalon have been associated with cases of narcolepsy, hypopituitarism with correspondingly impaired hormone secretion (including antidiuretic hormone), and temperature regulation disorders [22, 23]. Posterior reversible encephalopathy syndrome (PRES), aphasia, apraxia, seizures, and confusion have been reported with corresponding lesions in the cerebrum (cerebral syndrome) [24, 25].
The disease course of NMOSD manifests in attacks, while progressive courses have not been described [26]. MRI data, however, seem to show an accumulation of “silent” lesions, without corresponding clinical manifestations. Depending on the symptomatology, patients suffer from marked disabilities, sometimes even life-threatening situations (respiratory failure) [3]. During pregnancy, relapses (unlike MS) are not uncommon [27].
In NMOSD, other autoimmune diseases (e.g., systemic lupus erythematosus or myasthenia gravis) are also not uncommon [28].

Outcome prediction

A large multicenter dataset of 441 patients who collectively experienced 1976 attacks was investigated to extract relapse likelihood and disability. Among other things, according to this model, female rather than male patients have a higher risk for myelitis and overall attacks. The risk of acquiring permanent disability was higher for female patients. Younger age (≤ 35 years) at initial relapse was associated with a higher risk for optic neuritis attacks and permanent visual impairment [20].

Diagnosis and differential diagnosis

The latest revision of the diagnostic criteria (International Panel of NMO Diagnosis, IPND) features six core clinical symptoms including optic neuritis, acute myelitis, area postrema syndrome, acute brainstem syndrome, symptomatic narcolepsy, or acute diencephalic syndrome with typical MRI lesions and symptomatic cerebral syndrome with typical MRI lesions.
None of these symptoms are disease specific, however, which is why potential differential diagnoses, the patient’s aquaporin-4-antibody (AQP4-IgG) status, and MRI data must be considered to confirm the diagnosis of NMOSD [2].
While AQP4-IgGs are detectable in most patients, a seronegative phenotype (double negative for AQP4- and MOG-IgGs) has been described, which requires more stringent clinical and MRI criteria to establish a diagnosis of seronegative NMOSD [2].
NMOSD-associated relapses cause accumulation of permanent disabilities, oftentimes within a short disease duration and independent of the presence of AQP4 antibody status and titer [3, 29]. Additionally, cloud-like enhancement in MRI appears to be specific for NMOSD [30].

Diagnostic approach

While one core clinical criterion is required for cases with evidence of AQP4-IgG, two core criteria are required for cases without the specific antibodies (seronegative), one of which must be optic neuritis, myelitis, or area postrema syndrome. In seronegative cases, additional MRI criteria (noted in parentheses) must be followed. The core criteria are:
1.
Optic neuritis (MRI criterion: unremarkable or nonspecific MRI of the cranium, or T2 hyperintensity of the optic nerve, or contrast radiography of at least half the length of the optic nerve or chiasm).
 
2.
Myelitis (MRI criterion: intramedullary lesions or spinal atrophy with extension over three vertebral segments).
 
3.
Area postrema syndrome including singultus, nausea, or vomiting not otherwise explicable (MRI criterion: lesion in the dorsal medulla oblongata/area postrema).
 
4.
Acute brainstem syndrome (MRI: peri-ependymal brainstem lesion).
 
5.
Symptomatic narcolepsy or diencephalic syndrome with corresponding evidence of a diencephalic lesion.
 
6.
Symptomatic cerebral syndrome with corresponding lesions (e.g., thalamus, corticospinal tract).
 
Red flags (e.g., progressive course, paraparesis within less than 4 h or continuous clinical worsening over 4 weeks, persistent gadolinium uptake in the spine) should raise concerns about alternative diagnoses.
An important differential diagnosis to NMOSD is constituted by MOG encephalomyelitis (MOG-EM) or MOG antibody-associated autoimmune disorders (MOG-AD); this distinct disease was defined after the discovery of MOG-IgG [2, 3134]. The clinical and radiological phenotype of MOG-AD partly overlaps with NMOSD and acute disseminated encephalomyelitis (ADEM). Thus, MOG-AD constitutes an important differential diagnosis in suspected demyelinating disease [2, 32, 35]. In MOG-AD, lesions are predominantly found intracortically [10]. In contrast to the primarily astrocytopathic NMOSD, however, the pathophysiology of MOG-AD depends on antibody-mediated damage to tissue expressing MOG: the outer layers of the myelin sheath and oligodendroglia [3639]. Diagnostic criteria essentially depend on (i) the presence of IgG antibodies targeting MOG with (ii) characteristic neurological symptoms (including optic neuritis, myelitis, brainstem encephalitis, and encephalitis) resulting from (iii) demyelination. Also (iv), the presence of any red flags (e.g., sudden symptom onset, chronic disease progression, MRI lesion configuration or CSF results suggestive of MS or another inflammatory CNS disease, low or borderline MOG-IgG titers with possible other etiology) should prompt reevaluation of the diagnosis [33, 34, 40].
Tables 1 and 2 summarize the diagnostic approach and the diagnostic criteria.
Table 1
Diagnostic criteria depending on antibody status (AQP4-IgG)
Seropositive
Seronegative (“double negative”)
≥ 1 of 6 core clinical criteria
≥ 2 of 6 core clinical criteria attributable to ≥ 1 relapses
≥ 1 core criterion must be either of
– optic neuritis
– acute myelitis as defined by LETM
– area postrema syndrome (e.g., singultus not otherwise explained nausea)
Dissemination in space must be met (≥ 2 core clinical criteria)—additional MR criteria should be met, if applicable
Positive AQP4-IgG status
Negative test for AQP4-IgG with the best available test
Exclusion of alternative diagnoses
Exclusion of alternative diagnoses
LETM longitudinally extensive transverse myelitis, AQP4-IgG aquaporin-4 immunoglobulin G, MR magnetic resonance
Table 2
Diagnostic criteria in NMOSD
Core criteria
MRI additional criteria
Optic neuritis
Acute optic neuritis: requires a) unremarkable cranial MRI or nonspecific white matter changes or b) T2 hyperintense lesions or gadolinium-enhancing lesion of at least half of the optic nerve or chiasm
Acute myelitis
Acute myelitis: requires lesion intramedullary over three vertebral segments or atrophy extending over three vertebral segments in patients with history of acute myelitis
Area postrema syndrome: episode of otherwise unexplained singultus, nausea, or vomiting
Area postrema syndrome: requires a lesion located dorsally in the medulla oblongata or in the area postrema
Acute brainstem syndrome
Acute brainstem syndrome: requires a periependymal brainstem lesion
Symptomatic narcolepsy or acute diencephalic syndrome with NMOSD-typical diencephalic changes on MRI
Symptomatic cerebral symptoms in combination with MRI lesions typical for NMOSD
MRI magnetic resonance imaging, NMOSD neuromyelitis optica spectrum disorder

Therapy

Acute attack therapy

Therapeutic approaches to acute attacks include high-dose intravenous methylprednisolone (HDMP; 1000 mg methylprednisolone per day for 5 consecutive days) and apheresis (plasma exchange [PLEX] or immunadsorption [IAS], 5–7 cycles). The efficacy of timely initiation of HDMP, especially for optic neuritis in NMOSD [41], has been shown in several studies [29, 42, 43].
AQP4 antibody titers have been shown to correlate with the course of the disease in some patients and high antibody serum levels have been associated with attacks [44]. Thus, early therapeutic apheresis has been suggested as an effective add-on or even first-line therapy, especially in the case of a previous good response to apheresis, myelitis, severe attacks (EDSS ≥ 4 or visual acuity < 20/100), or insufficient response to HDMP [29, 4556]. So far, apheresis therapies (PLEX, IAS) have shown similar efficacy, while plasma exchange has been far more extensively studied [46].
In a retrospective study investigating 83 NMOSD attacks in 59 patients, the combination of PLEX and HDMP resulted in a higher remission rate (65%) than HDMP alone (35%) [45]. If both approaches (HDMP and PLEX) are used concomitantly, on days with PLEX, HDMP should be administered after rather than before plasma exchange [57, 58].

Attack prevention

Over the predominantly relapsing disease course of NMOSD, frequent severe attacks cause accumulation of permanent disability. Hence, intensive attack-prevention therapy remains paramount. This is also true for patients aged > 50 years, who appear more prone to retaining persistent deficits after attacks [29, 5961]. Importantly, attack-prevention therapy should be started following the onset attack, as this accounts for only 25% of permanent disability in patients with NMOSD, thus highlighting the potential for preventing further disability [20].
Oral continuation of steroids following HDMP after attacks to bridge the time to full treatment effect (up to several months) has been recommended, although high-quality evidence is still lacking. MS must be ruled out in patients with suspected NMOSD, as several of the therapies used in MS appear to be ineffective or even harmful in NMOSD. This has been indicated in different studies for β‑interferon, glatiramer acetate, natalizumab, fingolimod, dimethyl fumarate, and alemtuzumab [6268].

Conventional immunosuppressive therapies

Commonly used off-label treatments comprise azathioprine (AZA), an inhibitor of purine synthesis [69], which showed efficacy in reducing the annualized relapse rate (ARR) and stabilizing the EDSS (expanded disability status scale) in patients with NMOSD [7076]. A randomized-controlled, open-label single-center study comparing the efficacy of AZA with adjunctive oral glucocorticoid therapy to rituximab (RTX) showed that RTX was significantly more effective [77]. A similar efficacy to AZA in the treatment of NMOSD has been reported for mycophenolate mofetil (MMF; an inhibitor of guanidine synthesis), the folate antagonist methotrexate (MTX), as well as the intercalating agent and inhibitor of topoisomerase II mitoxantrone (MTN; MTX and MTN in combination with oral glucocorticoid therapy) [7882].
Limited evidence based on reports of individual cases suggests effectiveness of intermittent PLEX in long-term attack prevention [83].
Recently, three treatments targeting the IL‑6 receptor, CD19 on B and plasma cells, or inhibiting the complement system have been approved for the treatment of AQP4-IgG-positive NMOSD patients by the United States of America Food and Drug Administration (FDA) and the European Medicines Agency (EMA). Fig. 1 illustrates the different pathophysiological principles and mechanism of action in NMOSD.

B cell-depleting therapies

Rituximab (RTX), a B cell-depleting chimeric monoclonal antibody targeting CD20 commonly used off label in NMOSD, has shown good efficacy for reduction of ARR, disease progression, and disability. Depending on the reported dosing regimen, rituximab therapy was usually initiated by infusion of 1 g or 375 mg/m2 intravenously, repeated after 2 weeks with continuous biannual infusions (every 6 months) of 1 g or 375 mg/m2 for maintenance therapy; pre-treatment with antihistamines, antipyretics, and steroids, as well as close patient monitoring are required to minimize acute infusion reactions (AIRs) [77, 8489]. Although rituximab therapy in different patient cohorts was associated with adverse events (AEs) including AIRs, cardiac events, infections, hypogammaglobulinemia (associated with more frequent and more severe infections), and others [9093], observations in NMOSD patients revealed excellent efficacy and acceptable safety [94, 95].
Inebilizumab is another treatment option in NMOSD recently approved in the United States [96] and Europe [97]. This humanized monoclonal antibody binds to CD19-positive cells and causes depletion of the specific B cell subset plasmablast pool associated with peripheral AQP4-IgG production.
In contrast to mature plasma cells, NMOSD patients have shown expansion of plasmablasts still expressing CD19. Thus, targeting of this epitope directly interferes with the synthesis of pathogenic AQP4-IgG.
Accordingly, inebilizumab exhibited good efficacy and safety in the phase II/III N‑MOmentum trial (n = 230) versus placebo [98]; due to the recency of approval, however, long-term data are still missing. Treatment initiation features two intravenous doses of 300 mg in weeks 0 and 2. Subsequently, infusions of 300 mg of inebilizumab every 6 months constitute maintenance therapy. Similar to rituximab, the strategy for minimizing AIRs consists of pre-treatment with antihistamines, antipyretics, and steroids, as well as close patient monitoring. The most common adverse reactions reported in the N‑MOmentum trial were urinary tract infections, headache, arthralgia, nausea, and back pain. As with RTX, B cell depletion by inebilizumab may cause hypogammaglobulinemia, associated with an increased rate of opportunistic infections. Hence, regular laboratory studies are recommended [98].

IL-6-inhibiting therapies

The effect of satralizumab, a humanized monoclonal antibody against the interleukin‑6 (IL-6) receptor, in the treatment of AQP4-IgG-seropositive and seronegative NMOSD has been studied in two randomized-controlled, double-blind phase III trials (SAkuraSky, SakuraStar). Results showed a good efficacy in the study group compared with placebo as an add-on to baseline immunosuppressive therapy [99] and as monotherapy [100]. Subgroup analysis indicated a marked reduction of relapse risk in patients with AQP4-IgG-positive NMOSD compared with placebo, in keeping with the requirement of IL‑6 stimulation for antibody production and plasmablast survival [101].
In patients with AQP4-IgG-negative NMOSD, however, this effect could not be observed [99, 100].
Considering the lower number of seronegative patients—reflecting the reported distribution among the NMOSD patient population—neither study was powered nor intended to analyze effects in this subgroup, which is why further investigation is required before a final statement is possible.
Satralizumab was approved for treatment of AQP4-IgG-positive NMOSD by the FDA and the EMA [102, 103]. The therapy is administered as a subcutaneous injection of 120 mg of satralizumab at weeks 0, 2, and 4, with subsequent injection every 4 weeks. Satralizumab exhibited a favorable risk profile with similar rates of AEs, SAEs, infections, and serious infections per 100 patient years in treatment and placebo groups, respectively [99, 100].
Tocilizumab, another humanized monoclonal antibody targeting the IL‑6 receptor frequently used in rheumatic diseases, has shown a promising effect in clinical disability and reduction of relapse rate in highly relapsing, treatment-resistant NMOSD in some case reports and small case series as an off-label treatment option [104110]. In a phase II, randomized, open-label trial (TANGO, n = 118), intravenous tocilizumab showed a more pronounced reduction of relapse risk, especially in the subgroup of patients also suffering from other autoimmune disorders, than azathioprine; both treatment options exhibited a similar safety profile [111]. Among studies in NMOSD patients, intravenous application of 8 mg/kg every 4 weeks has been more common, while reports on subcutaneous administration also exist [104111].

Therapies interfering with the complement system

Based on the pathogenesis with activation of the complement system and subsequent CDC, therapies interfering with the complement system have been approved or studied in NMOSD:
Eculizumab, a humanized monoclonal antibody binding to the C5 complement element and thus inhibiting formation of the membrane attack complex (MAC), has shown excellent results in the therapy of AQP4-IgG-positive, highly active, relapsing NMOSD [112, 113]. A recent interim analysis of the open-label extension of the PREVENT study confirmed the outstanding efficacy in terms of ARR reduction (0.025 in the treatment group vs. 0.35 in the placebo group); the vast majority of treated patients at 192 weeks had remained entirely relapse free. Rates of AEs and serious adverse events (SAEs) in the study group were comparable to the PREVENT placebo group, while the rate of serious infections was lower in the treatment group compared to placebo [114]. A single patient treated with eculizumab and azathioprine died from pulmonary empyema [113]. Infections with Neisseria meningitidis, as described in previous studies evaluating eculizumab in the treatment of other diseases, were not reported; a vaccination against this pathogen is required for eculizumab treatment [113115]. The treatment regimen of eculizumab consists of four infusions of 900 mg once per week over 4 weeks (induction phase) and infusions of 1200 mg every 14 ± 2 days thereafter (maintenance phase); pre-treatment is not required. In the light of these data, eculizumab has been approved for treatment of adult patients with AQP4-IgG-positive NMOSD in Europe [116] and the United States [117], among other countries worldwide.

Treatments in development

Neonatal Fc receptor
It has been shown that the increased half-life of IgG compared to other immunoglobulin subclasses relies on interaction with the neonatal crystallizable fragment (Fc) receptor (FcRn). Binding of internalized IgG to FcRn results in recycling and release at the cell surface, rather than lysosomal degradation [118, 119].
These insights into the mechanism of antibody metabolism elucidated the crucial role of FcRn (neonatal Fc receptor), which may provide a novel approach for a biological long-term immune therapy. In fact, the monoclonal IgG2 antibody satralizumab employs this technique, enabling antibody recycling with increased half-life and dosing every 4 weeks [99, 100]. Additionally, ravulizumab, a novel anti-C5 monoclonal antibody, also utilizes this strategy, allowing dosing every 8 weeks compared to the dosing every 2 weeks known from eculizumab. It was shown to be non-inferior in the treatment of paroxysmal nocturnal hemoglobinuria [120].
Furthermore, a human monoclonal antibody (HBM9161) targeting the FcRn to reduce systemic IgG half-life, including that of the pathogenic AQP4-IgG, is currently under development [121].
Stem cell transplantation
A recent meta-analysis of the available literature showed excellent safety and efficacy in terms of progression-free survival of patients treated with autologous hematopoietic stem cell transplantation in NMOSD [122]. This warrants additional evaluation in future studies to research the auspicious goal of developing a treatment offering a potential cure for this rare, yet severe disease.

Therapy discontinuation

Discontinuation of long-term attack-prevention therapy after an extensive attack-free period, while not extensively investigated (17 patients treated with AZA, MMF, RTX, MTX followed by MMF), has resulted in resurgence of attacks within a few months in most cases [123]. The longest interval of relapse-free periods was observed after discontinuation of RTX therapy [124]. Hence, when or whether to terminate effective long-term treatment remains a challenging question.

Conclusion

Neuromyelitis optica spectrum disorders (NMOSD) constitute a rare neuroimmunological disease with a high burden of permanent disability following severe attacks that primarily occurs in adults. In the past decades, several milestones have been achieved in researching this distinct condition, which was initially thought to be a severe sub-form of multiple sclerosis. The discovery of highly specific, pathogenic AQP4-IgGs in 2004 has given rise to a pathophysiological model hinged on the astroglial epitope aquaporin 4 as the target epitope and origin of lesion formation after recognition by pathogenic antibodies.
Treatment strategies in NMOSD are in keeping with pathophysiological considerations:
1.
Targeting B and plasma cells
NMOSD pathogenesis depends on effects of the highly specific AQP4-IgG. Thus, elimination of antibody production has been shown to be an efficacious strategy for reducing relapses and preventing relapse-associated permanent disability. From a pathophysiological standpoint, targeting CD19 rather than CD20 seems superior, since antibody-producing plasmablasts in NMOSD have been shown to express this marker while being CD20 negative, thus broadening the effect on the source of the pathogenic AQP4-AB.
 
2.
Targeting pro-inflammatory mediators
Since plasmablast survival and antigen production are dependent on elevated IL‑6 with high IL-6R expression, the removal of this vital inflammatory stimulus has shown promising treatment success leading to the approval of satralizumab, which is now available as on-label treatment in seropositive patients with NMOSD.
 
3.
Targeting pathogenic antibodies
Direct removal of pathogenic antibodies via plasmapheresis or immunoadsorption has emerged as a viable treatment strategy of acute attacks, hinging on the pivotal role of AQP4-IgG in NMOSD, with some studies already reporting improved efficacy of combination therapy (HDMP + PLEX) compared to HDMP monotherapy.
Additionally, the increasing attention on the FcRn pathway as an essential aspect in IgG metabolism has provided novel modes of action in the treatment of NMOSD. Depletion of pathogenic antibodies by denying recycling and significant reduction in half-life on the one hand and increase of dosing intervals of therapeutic antibodies employing the FcRn pathway on the other was achieved through application of this mechanism.
 
4.
Targeting the complement system
Based on current pathophysiological models, complement activation mediates lesion formation by astrocyte-targeted CDC prior to leukocyte infiltration, demyelination, and axon damage. Thus, inhibition of C5 cleavage to C5a, a potent anaphylatoxin, and C5b, the first step of MAC formation, should have beneficial effects on the disease course. Although affecting only the final steps of the complement cascade, this has been reflected in the outstanding efficacy of eculizumab, with subsequent approval in AQP4-seropositive NMOSD.
Interference with the complement system, however, requires heightened vigilance for infections with gram-negative bacteria, e.g., meningococcal meningitis.
 

Conflict of interest

M. Ponleitner has participated in meetings sponsored by or received travel funding from Merck, Novartis, and Sanofi-Genzyme. P.S. Rommer received institutional grants from Roche, Biogen, and Merck. He received both personal and institutional payments or honoraria for lectures, presentations, speaker bureaus, manuscript writing, or educational events from Allmirall, Alexion, Roche, Merck, Biogen, and Novartis. He received personal and institutional payments for participation in Data Safety Monitoring Boards or Advisory Boards of Roche, Alexion, Sanofi Genzyme, Merck, and Biogen.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

Abo für kostenpflichtige Inhalte

Literatur
1.
Zurück zum Zitat Dević E. Myélite subaiguë compliquée de névrite optique-Autopsie. In: Congrés Francais de Médecine. 1894. pp. 434–9. Dević E. Myélite subaiguë compliquée de névrite optique-Autopsie. In: Congrés Francais de Médecine. 1894. pp. 434–9.
2.
Zurück zum Zitat Wingerchuk DM, Banwell B, Bennett JL, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology. 2015;85(2):177–89.PubMedPubMedCentralCrossRef Wingerchuk DM, Banwell B, Bennett JL, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology. 2015;85(2):177–89.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Jarius S, Ruprecht K, Wildemann B, et al. Contrasting disease patterns in seropositive and seronegative neuromyelitis optica: a multicentre study of 175 patients. J Neuroinflammation. 2012;9:14.PubMedPubMedCentralCrossRef Jarius S, Ruprecht K, Wildemann B, et al. Contrasting disease patterns in seropositive and seronegative neuromyelitis optica: a multicentre study of 175 patients. J Neuroinflammation. 2012;9:14.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Lennon VA, Wingerchuk DM, Kryzer TJ, et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet Lond Engl. 2004;364(9451):2106–12.CrossRef Lennon VA, Wingerchuk DM, Kryzer TJ, et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet Lond Engl. 2004;364(9451):2106–12.CrossRef
5.
Zurück zum Zitat Lennon VA, Kryzer TJ, Pittock SJ, et al. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin‑4 water channel. J Exp Med. 2005;202(4):473–7.PubMedPubMedCentralCrossRef Lennon VA, Kryzer TJ, Pittock SJ, et al. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin‑4 water channel. J Exp Med. 2005;202(4):473–7.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Wingerchuk DM, Lennon VA, Lucchinetti CF, et al. The spectrum of neuromyelitis optica. Lancet Neurol. 2007;6(9):805–15.PubMedCrossRef Wingerchuk DM, Lennon VA, Lucchinetti CF, et al. The spectrum of neuromyelitis optica. Lancet Neurol. 2007;6(9):805–15.PubMedCrossRef
7.
Zurück zum Zitat Hamid SH, Elsone L, Mutch K, et al. The impact of 2015 neuromyelitis optica spectrum disorders criteria on diagnostic rates. Mult Scler. 2017;23(2):228–33.PubMedCrossRef Hamid SH, Elsone L, Mutch K, et al. The impact of 2015 neuromyelitis optica spectrum disorders criteria on diagnostic rates. Mult Scler. 2017;23(2):228–33.PubMedCrossRef
8.
Zurück zum Zitat Hyun JW, Jeong IH, Joung A, et al. Evaluation of the 2015 diagnostic criteria for neuromyelitis optica spectrum disorder. Neurology. 2016;86(19):1772–9.PubMedCrossRef Hyun JW, Jeong IH, Joung A, et al. Evaluation of the 2015 diagnostic criteria for neuromyelitis optica spectrum disorder. Neurology. 2016;86(19):1772–9.PubMedCrossRef
9.
Zurück zum Zitat Hamid SHM, Whittam D, Mutch K, et al. What proportion of AQP4-IgG-negative NMO spectrum disorder patients are MOG-IgG positive? A cross sectional study of 132 patients. J Neurol. 2017;264(10):2088–94.PubMedPubMedCentralCrossRef Hamid SHM, Whittam D, Mutch K, et al. What proportion of AQP4-IgG-negative NMO spectrum disorder patients are MOG-IgG positive? A cross sectional study of 132 patients. J Neurol. 2017;264(10):2088–94.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Höftberger R, Guo Y, Flanagan EP, et al. The pathology of central nervous system inflammatory demyelinating disease accompanying myelin oligodendrocyte glycoprotein autoantibody. Acta Neuropathol. 2020;139(5):875–92.PubMedPubMedCentralCrossRef Höftberger R, Guo Y, Flanagan EP, et al. The pathology of central nervous system inflammatory demyelinating disease accompanying myelin oligodendrocyte glycoprotein autoantibody. Acta Neuropathol. 2020;139(5):875–92.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Ehrlich P, Morgenroth J. Zur theorie der Lysinwirkung [in German. Berl Klin Wochenschr. 1899;(1):6–9. Ehrlich P, Morgenroth J. Zur theorie der Lysinwirkung [in German. Berl Klin Wochenschr. 1899;(1):6–9.
12.
Zurück zum Zitat Botto M, Kirschfink M, Macor P, et al. Complement in human diseases: lessons from complement deficiencies. Mol Immunol. 2009;46(14):2774–83.PubMedCrossRef Botto M, Kirschfink M, Macor P, et al. Complement in human diseases: lessons from complement deficiencies. Mol Immunol. 2009;46(14):2774–83.PubMedCrossRef
13.
Zurück zum Zitat Merle NS, Church SE, Fremeaux-Bacchi V, et al. Complement system part I—molecular mechanisms of activation and regulation. Front Immunol. 2015;6:262.PubMedPubMedCentralCrossRef Merle NS, Church SE, Fremeaux-Bacchi V, et al. Complement system part I—molecular mechanisms of activation and regulation. Front Immunol. 2015;6:262.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Woodruff TM, Nandakumar KS, Tedesco F. Inhibiting the C5-C5a receptor axis. Mol Immunol. 2011;48(14):1631–42.PubMedCrossRef Woodruff TM, Nandakumar KS, Tedesco F. Inhibiting the C5-C5a receptor axis. Mol Immunol. 2011;48(14):1631–42.PubMedCrossRef
16.
Zurück zum Zitat Hor JY, Asgari N, Nakashima I, et al. Epidemiology of neuromyelitis optica spectrum disorder and its prevalence and incidence worldwide. Front Neurol. 2020;11:501.PubMedPubMedCentralCrossRef Hor JY, Asgari N, Nakashima I, et al. Epidemiology of neuromyelitis optica spectrum disorder and its prevalence and incidence worldwide. Front Neurol. 2020;11:501.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Aboul-Enein F, Seifert-Held T, Mader S, et al. Neuromyelitis optica in Austria in 2011: to bridge the gap between neuroepidemiological research and practice in a study population of 8.4 million people. Plos One. 2013;8(11):e79649.PubMedPubMedCentralCrossRef Aboul-Enein F, Seifert-Held T, Mader S, et al. Neuromyelitis optica in Austria in 2011: to bridge the gap between neuroepidemiological research and practice in a study population of 8.4 million people. Plos One. 2013;8(11):e79649.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Flanagan EP, Cabre P, Weinshenker BG, et al. Epidemiology of aquaporin‑4 autoimmunity and neuromyelitis optica spectrum. Ann Neurol. 2016;79(5):775–83.PubMedPubMedCentralCrossRef Flanagan EP, Cabre P, Weinshenker BG, et al. Epidemiology of aquaporin‑4 autoimmunity and neuromyelitis optica spectrum. Ann Neurol. 2016;79(5):775–83.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Wingerchuk DM. Neuromyelitis optica: effect of gender. J Neurol Sci. 2009;286(1–2):18–23.PubMedCrossRef Wingerchuk DM. Neuromyelitis optica: effect of gender. J Neurol Sci. 2009;286(1–2):18–23.PubMedCrossRef
20.
Zurück zum Zitat Palace J, Lin DY, Zeng D, et al. Outcome prediction models in AQP4-IgG positive neuromyelitis optica spectrum disorders. Brain. 2019;142(5):1310–23.PubMedPubMedCentralCrossRef Palace J, Lin DY, Zeng D, et al. Outcome prediction models in AQP4-IgG positive neuromyelitis optica spectrum disorders. Brain. 2019;142(5):1310–23.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Kremer L, Mealy M, Jacob A, et al. Brainstem manifestations in neuromyelitis optica: a multicenter study of 258 patients. Mult Scler. 2014;20(7):843–7.PubMedCrossRef Kremer L, Mealy M, Jacob A, et al. Brainstem manifestations in neuromyelitis optica: a multicenter study of 258 patients. Mult Scler. 2014;20(7):843–7.PubMedCrossRef
22.
Zurück zum Zitat Vernant JC, Cabre P, Smadja D, et al. Recurrent optic neuromyelitis with endocrinopathies: a new syndrome. Neurology. 1997;48(1):58–64.PubMedCrossRef Vernant JC, Cabre P, Smadja D, et al. Recurrent optic neuromyelitis with endocrinopathies: a new syndrome. Neurology. 1997;48(1):58–64.PubMedCrossRef
23.
Zurück zum Zitat Poppe AY, Lapierre Y, Melançon D, et al. Neuromyelitis optica with hypothalamic involvement. Mult Scler. 2005;11(5):617–21.PubMedCrossRef Poppe AY, Lapierre Y, Melançon D, et al. Neuromyelitis optica with hypothalamic involvement. Mult Scler. 2005;11(5):617–21.PubMedCrossRef
24.
Zurück zum Zitat Magaña SM, Matiello M, Pittock SJ, et al. Posterior reversible encephalopathy syndrome in neuromyelitis optica spectrum disorders. Neurology. 2009;72(8):712–7.PubMedCrossRef Magaña SM, Matiello M, Pittock SJ, et al. Posterior reversible encephalopathy syndrome in neuromyelitis optica spectrum disorders. Neurology. 2009;72(8):712–7.PubMedCrossRef
25.
Zurück zum Zitat Kim W, Kim SH, Lee SH, et al. Brain abnormalities as an initial manifestation of neuromyelitis optica spectrum disorder. Mult Scler. 2011;17(9):1107–12.PubMedCrossRef Kim W, Kim SH, Lee SH, et al. Brain abnormalities as an initial manifestation of neuromyelitis optica spectrum disorder. Mult Scler. 2011;17(9):1107–12.PubMedCrossRef
26.
Zurück zum Zitat Wingerchuk DM, Pittock SJ, Lucchinetti CF, et al. A secondary progressive clinical course is uncommon in neuromyelitis optica. Neurology. 2007;68(8):603–5.PubMedCrossRef Wingerchuk DM, Pittock SJ, Lucchinetti CF, et al. A secondary progressive clinical course is uncommon in neuromyelitis optica. Neurology. 2007;68(8):603–5.PubMedCrossRef
27.
Zurück zum Zitat Wang L, Su M, Zhou Z, et al. Analysis of pregnancy-related attacks in neuromyelitis optica spectrum disorder: a systematic review and meta-analysis. JAMA Netw Open. 2022;5(8):e2225438.PubMedPubMedCentralCrossRef Wang L, Su M, Zhou Z, et al. Analysis of pregnancy-related attacks in neuromyelitis optica spectrum disorder: a systematic review and meta-analysis. JAMA Netw Open. 2022;5(8):e2225438.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Shahmohammadi S, Doosti R, Shahmohammadi A, et al. Autoimmune diseases associated with Neuromyelitis Optica Spectrum Disorders: A literature review. Mult Scler Relat Disord. 2019;27:350–63.PubMedCrossRef Shahmohammadi S, Doosti R, Shahmohammadi A, et al. Autoimmune diseases associated with Neuromyelitis Optica Spectrum Disorders: A literature review. Mult Scler Relat Disord. 2019;27:350–63.PubMedCrossRef
29.
Zurück zum Zitat Kleiter I, Gahlen A, Borisow N, et al. Neuromyelitis optica: evaluation of 871 attacks and 1,153 treatment courses. Ann Neurol. 2016;79(2):206–16.PubMedCrossRef Kleiter I, Gahlen A, Borisow N, et al. Neuromyelitis optica: evaluation of 871 attacks and 1,153 treatment courses. Ann Neurol. 2016;79(2):206–16.PubMedCrossRef
30.
Zurück zum Zitat Ito S, Mori M, Makino T, et al. “Cloud-like enhancement” is a magnetic resonance imaging abnormality specific to neuromyelitis optica. Ann Neurol. 2009;66(3):425–8.PubMedCrossRef Ito S, Mori M, Makino T, et al. “Cloud-like enhancement” is a magnetic resonance imaging abnormality specific to neuromyelitis optica. Ann Neurol. 2009;66(3):425–8.PubMedCrossRef
31.
Zurück zum Zitat Waters P, Woodhall M, O’Connor KC, et al. MOG cell-based assay detects non-MS patients with inflammatory neurologic disease. Neurol Neuroimmunol Neuroinflamm. 2015;2(3):e89.PubMedPubMedCentralCrossRef Waters P, Woodhall M, O’Connor KC, et al. MOG cell-based assay detects non-MS patients with inflammatory neurologic disease. Neurol Neuroimmunol Neuroinflamm. 2015;2(3):e89.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Thompson AJ, Banwell BL, Barkhof F, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162–73.PubMedCrossRef Thompson AJ, Banwell BL, Barkhof F, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162–73.PubMedCrossRef
33.
Zurück zum Zitat Jarius S, Paul F, Aktas O, et al. MOG encephalomyelitis: international recommendations on diagnosis and antibody testing. J Neuroinflammation. 2018;15(1):134.PubMedPubMedCentralCrossRef Jarius S, Paul F, Aktas O, et al. MOG encephalomyelitis: international recommendations on diagnosis and antibody testing. J Neuroinflammation. 2018;15(1):134.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Jarius S, Paul F, Aktas O, et al. MOG encephalomyelitis: international recommendations on diagnosis and antibody testing. Nervenarzt. 2018;89(12):1388–99.PubMedCrossRef Jarius S, Paul F, Aktas O, et al. MOG encephalomyelitis: international recommendations on diagnosis and antibody testing. Nervenarzt. 2018;89(12):1388–99.PubMedCrossRef
35.
Zurück zum Zitat Wynford-Thomas R, Jacob A, Tomassini V. Neurological update: MOG antibody disease. J Neurol. 2019;266(5):1280–6.PubMedCrossRef Wynford-Thomas R, Jacob A, Tomassini V. Neurological update: MOG antibody disease. J Neurol. 2019;266(5):1280–6.PubMedCrossRef
36.
Zurück zum Zitat Delarasse C, Della Gaspera B, Lu CW, et al. Complex alternative splicing of the myelin oligodendrocyte glycoprotein gene is unique to human and non-human primates. J Neurochem. 2006;98(6):1707–17.PubMedCrossRef Delarasse C, Della Gaspera B, Lu CW, et al. Complex alternative splicing of the myelin oligodendrocyte glycoprotein gene is unique to human and non-human primates. J Neurochem. 2006;98(6):1707–17.PubMedCrossRef
37.
Zurück zum Zitat Pham-Dinh D, Mattei MG, Nussbaum JL, et al. Myelin/oligodendrocyte glycoprotein is a member of a subset of the immunoglobulin superfamily encoded within the major histocompatibility complex. Proc Natl Acad Sci U S A. 1993;90(17):7990–4.PubMedPubMedCentralCrossRef Pham-Dinh D, Mattei MG, Nussbaum JL, et al. Myelin/oligodendrocyte glycoprotein is a member of a subset of the immunoglobulin superfamily encoded within the major histocompatibility complex. Proc Natl Acad Sci U S A. 1993;90(17):7990–4.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Brunner C, Lassmann H, Waehneldt TV, et al. Differential ultrastructural localization of myelin basic protein, myelin/oligodendroglial glycoprotein, and 2’,3’-cyclic nucleotide 3’-phosphodiesterase in the CNS of adult rats. J Neurochem. 1989;52(1):296–304.PubMedCrossRef Brunner C, Lassmann H, Waehneldt TV, et al. Differential ultrastructural localization of myelin basic protein, myelin/oligodendroglial glycoprotein, and 2’,3’-cyclic nucleotide 3’-phosphodiesterase in the CNS of adult rats. J Neurochem. 1989;52(1):296–304.PubMedCrossRef
39.
Zurück zum Zitat Peschl P, Bradl M, Höftberger R, et al. Myelin oligodendrocyte glycoprotein: deciphering a target in inflammatory demyelinating diseases. Front Immunol. 2017;8:529.PubMedPubMedCentralCrossRef Peschl P, Bradl M, Höftberger R, et al. Myelin oligodendrocyte glycoprotein: deciphering a target in inflammatory demyelinating diseases. Front Immunol. 2017;8:529.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat López-Chiriboga AS, Majed M, Fryer J, et al. Association of MOG-IgG serostatus with relapse after acute disseminated encephalomyelitis and proposed diagnostic criteria for MOG-IgG-associated disorders. JAMA Neurol. 2018;75(11):1355–63.PubMedPubMedCentralCrossRef López-Chiriboga AS, Majed M, Fryer J, et al. Association of MOG-IgG serostatus with relapse after acute disseminated encephalomyelitis and proposed diagnostic criteria for MOG-IgG-associated disorders. JAMA Neurol. 2018;75(11):1355–63.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Stiebel-Kalish H, Hellmann MA, Mimouni M, et al. Does time equal vision in the acute treatment of a cohort of AQP4 and MOG optic neuritis? Neurol Neuroimmunol Neuroinflammation. 2019;6(4):e572.CrossRef Stiebel-Kalish H, Hellmann MA, Mimouni M, et al. Does time equal vision in the acute treatment of a cohort of AQP4 and MOG optic neuritis? Neurol Neuroimmunol Neuroinflammation. 2019;6(4):e572.CrossRef
42.
Zurück zum Zitat Nakamura M, Nakazawa T, Doi H, et al. Early high-dose intravenous methylprednisolone is effective in preserving retinal nerve fiber layer thickness in patients with neuromyelitis optica. Graefes Arch Clin Exp Ophthalmol. 2010;248(12):1777–85.PubMedCrossRef Nakamura M, Nakazawa T, Doi H, et al. Early high-dose intravenous methylprednisolone is effective in preserving retinal nerve fiber layer thickness in patients with neuromyelitis optica. Graefes Arch Clin Exp Ophthalmol. 2010;248(12):1777–85.PubMedCrossRef
43.
Zurück zum Zitat Yamasaki R, Matsushita T, Fukazawa T, et al. Efficacy of intravenous methylprednisolone pulse therapy in patients with multiple sclerosis and neuromyelitis optica. Mult Scler. 2016;22(10):1337–48.PubMedCrossRef Yamasaki R, Matsushita T, Fukazawa T, et al. Efficacy of intravenous methylprednisolone pulse therapy in patients with multiple sclerosis and neuromyelitis optica. Mult Scler. 2016;22(10):1337–48.PubMedCrossRef
44.
Zurück zum Zitat Jarius S, Aboul-Enein F, Waters P, et al. Antibody to aquaporin‑4 in the long-term course of neuromyelitis optica. Brain. 2008;131(11):3072–80.PubMedPubMedCentralCrossRef Jarius S, Aboul-Enein F, Waters P, et al. Antibody to aquaporin‑4 in the long-term course of neuromyelitis optica. Brain. 2008;131(11):3072–80.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Abboud H, Petrak A, Mealy M, et al. Treatment of acute relapses in neuromyelitis optica: Steroids alone versus steroids plus plasma exchange. Mult Scler. 2016;22(2):185–92.PubMedCrossRef Abboud H, Petrak A, Mealy M, et al. Treatment of acute relapses in neuromyelitis optica: Steroids alone versus steroids plus plasma exchange. Mult Scler. 2016;22(2):185–92.PubMedCrossRef
46.
Zurück zum Zitat Kleiter I, Gahlen A, Borisow N, et al. Apheresis therapies for NMOSD attacks: a retrospective study of 207 therapeutic interventions. Neurol Neuroimmunol Neuroinflamm. 2018;5(6):e504.PubMedPubMedCentralCrossRef Kleiter I, Gahlen A, Borisow N, et al. Apheresis therapies for NMOSD attacks: a retrospective study of 207 therapeutic interventions. Neurol Neuroimmunol Neuroinflamm. 2018;5(6):e504.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Bonnan M, Valentino R, Olindo S, et al. Plasma exchange in severe spinal attacks associated with neuromyelitis optica spectrum disorder. Mult Scler. 2009;15(4):487–92.PubMedCrossRef Bonnan M, Valentino R, Olindo S, et al. Plasma exchange in severe spinal attacks associated with neuromyelitis optica spectrum disorder. Mult Scler. 2009;15(4):487–92.PubMedCrossRef
48.
Zurück zum Zitat Bonnan M, Valentino R, Debeugny S, et al. Short delay to initiate plasma exchange is the strongest predictor of outcome in severe attacks of NMO spectrum disorders. J Neurol Neurosurg Psychiatry. 2018;89(4):346–51.PubMedCrossRef Bonnan M, Valentino R, Debeugny S, et al. Short delay to initiate plasma exchange is the strongest predictor of outcome in severe attacks of NMO spectrum disorders. J Neurol Neurosurg Psychiatry. 2018;89(4):346–51.PubMedCrossRef
49.
Zurück zum Zitat Bonnan M, Cabre P. Improvement to baseline after plasma exchange in spinal attacks associated with neuromyelitis optica. Mult Scler J Exp Transl Clin. 2015;1:2055217315622794.PubMedPubMedCentral Bonnan M, Cabre P. Improvement to baseline after plasma exchange in spinal attacks associated with neuromyelitis optica. Mult Scler J Exp Transl Clin. 2015;1:2055217315622794.PubMedPubMedCentral
50.
Zurück zum Zitat Merle H, Olindo S, Jeannin S, et al. Treatment of optic neuritis by plasma exchange (add-on) in neuromyelitis optica. Arch Ophthalmol. 2012;130(7):858–62.PubMedCrossRef Merle H, Olindo S, Jeannin S, et al. Treatment of optic neuritis by plasma exchange (add-on) in neuromyelitis optica. Arch Ophthalmol. 2012;130(7):858–62.PubMedCrossRef
51.
Zurück zum Zitat Kim SH, Kim W, Huh SY, et al. Clinical efficacy of plasmapheresis in patients with neuromyelitis optica spectrum disorder and effects on circulating anti-aquaporin‑4 antibody levels. J Clin Neurol. 2013;9(1):36–42. Jan.PubMedPubMedCentralCrossRef Kim SH, Kim W, Huh SY, et al. Clinical efficacy of plasmapheresis in patients with neuromyelitis optica spectrum disorder and effects on circulating anti-aquaporin‑4 antibody levels. J Clin Neurol. 2013;9(1):36–42. Jan.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Lim YM, Pyun SY, Kang BH, et al. Factors associated with the effectiveness of plasma exchange for the treatment of NMO-IgG-positive neuromyelitis optica spectrum disorders. Mult Scler. 2013;19(9):1216–8.PubMedCrossRef Lim YM, Pyun SY, Kang BH, et al. Factors associated with the effectiveness of plasma exchange for the treatment of NMO-IgG-positive neuromyelitis optica spectrum disorders. Mult Scler. 2013;19(9):1216–8.PubMedCrossRef
53.
Zurück zum Zitat Faissner S, Nikolayczik J, Chan A, et al. Immunoadsorption in patients with neuromyelitis optica spectrum disorder. Ther Adv Neurol Disord. 2016;9(4):281–6.PubMedPubMedCentralCrossRef Faissner S, Nikolayczik J, Chan A, et al. Immunoadsorption in patients with neuromyelitis optica spectrum disorder. Ther Adv Neurol Disord. 2016;9(4):281–6.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Batra A, Periyavan S. Role of low plasma volume treatment on clinical efficacy of plasmapheresis in neuromyelitis optica. Asian J Transfus Sci. 2017;11(2):102–7.PubMedPubMedCentralCrossRef Batra A, Periyavan S. Role of low plasma volume treatment on clinical efficacy of plasmapheresis in neuromyelitis optica. Asian J Transfus Sci. 2017;11(2):102–7.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Srisupa-Olan T, Siritho S, Kittisares K, et al. Beneficial effect of plasma exchange in acute attack of neuromyelitis optica spectrum disorders. Mult Scler Relat Disord. 2018;20:115–21.PubMedCrossRef Srisupa-Olan T, Siritho S, Kittisares K, et al. Beneficial effect of plasma exchange in acute attack of neuromyelitis optica spectrum disorders. Mult Scler Relat Disord. 2018;20:115–21.PubMedCrossRef
56.
Zurück zum Zitat Magaña SM, Keegan BM, Weinshenker BG, et al. Beneficial plasma exchange response in central nervous system inflammatory demyelination. Arch Neurol. 2011;68(7):870–8.PubMedPubMedCentralCrossRef Magaña SM, Keegan BM, Weinshenker BG, et al. Beneficial plasma exchange response in central nervous system inflammatory demyelination. Arch Neurol. 2011;68(7):870–8.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Assogba U, Baumelou A, Pecquinot MA, et al. Removal of prednisone and prednisolone during plasma exchange. Ann Med Interne. 1988;139(Suppl 1):38–9. Assogba U, Baumelou A, Pecquinot MA, et al. Removal of prednisone and prednisolone during plasma exchange. Ann Med Interne. 1988;139(Suppl 1):38–9.
58.
Zurück zum Zitat Stigelman WH, Henry DH, Talbert RL, et al. Removal of prednisone and prednisolone by plasma exchange. Clin Pharm. 1984;3(4):402–7.PubMed Stigelman WH, Henry DH, Talbert RL, et al. Removal of prednisone and prednisolone by plasma exchange. Clin Pharm. 1984;3(4):402–7.PubMed
59.
Zurück zum Zitat Collongues N, Marignier R, Jacob A, et al. Characterization of neuromyelitis optica and neuromyelitis optica spectrum disorder patients with a late onset. Mult Scler. 2014;20(8):1086–94.PubMedCrossRef Collongues N, Marignier R, Jacob A, et al. Characterization of neuromyelitis optica and neuromyelitis optica spectrum disorder patients with a late onset. Mult Scler. 2014;20(8):1086–94.PubMedCrossRef
60.
Zurück zum Zitat Seok JM, Cho HJ, Ahn SW, et al. Clinical characteristics of late-onset neuromyelitis optica spectrum disorder: a multicenter retrospective study in korea. Mult Scler. 2017;23(13):1748–56.PubMedCrossRef Seok JM, Cho HJ, Ahn SW, et al. Clinical characteristics of late-onset neuromyelitis optica spectrum disorder: a multicenter retrospective study in korea. Mult Scler. 2017;23(13):1748–56.PubMedCrossRef
61.
Zurück zum Zitat Carnero Contentti E, Daccach Marques V, Soto de Castillo I, et al. Clinical features and prognosis of late-onset neuromyelitis optica spectrum disorders in a Latin American cohort. J Neurol. 2020;267(5):1260–8.PubMedCrossRef Carnero Contentti E, Daccach Marques V, Soto de Castillo I, et al. Clinical features and prognosis of late-onset neuromyelitis optica spectrum disorders in a Latin American cohort. J Neurol. 2020;267(5):1260–8.PubMedCrossRef
62.
Zurück zum Zitat Palace J, Leite MI, Nairne A, et al. Interferon Beta treatment in neuromyelitis optica: increase in relapses and aquaporin 4 antibody titers. Arch Neurol. 2010;67(8):1016–7.PubMedCrossRef Palace J, Leite MI, Nairne A, et al. Interferon Beta treatment in neuromyelitis optica: increase in relapses and aquaporin 4 antibody titers. Arch Neurol. 2010;67(8):1016–7.PubMedCrossRef
63.
Zurück zum Zitat Kleiter I, Hellwig K, Berthele A, et al. Failure of natalizumab to prevent relapses in neuromyelitis optica. Arch Neurol. 2012;69(2):239–45.PubMedCrossRef Kleiter I, Hellwig K, Berthele A, et al. Failure of natalizumab to prevent relapses in neuromyelitis optica. Arch Neurol. 2012;69(2):239–45.PubMedCrossRef
64.
Zurück zum Zitat Min JH, Kim BJ, Lee KH. Development of extensive brain lesions following fingolimod (FTY720) treatment in a patient with neuromyelitis optica spectrum disorder. Mult Scler. 2012;18(1):113–5.PubMedCrossRef Min JH, Kim BJ, Lee KH. Development of extensive brain lesions following fingolimod (FTY720) treatment in a patient with neuromyelitis optica spectrum disorder. Mult Scler. 2012;18(1):113–5.PubMedCrossRef
65.
Zurück zum Zitat Ayzenberg I, Schöllhammer J, Hoepner R, et al. Efficacy of glatiramer acetate in neuromyelitis optica spectrum disorder: a multicenter retrospective study. J Neurol. 2016;263(3):575–82.PubMedCrossRef Ayzenberg I, Schöllhammer J, Hoepner R, et al. Efficacy of glatiramer acetate in neuromyelitis optica spectrum disorder: a multicenter retrospective study. J Neurol. 2016;263(3):575–82.PubMedCrossRef
66.
Zurück zum Zitat Azzopardi L, Cox AL, McCarthy CL, et al. Alemtuzumab use in neuromyelitis optica spectrum disorders: a brief case series. J Neurol. 2016;263(1):25–9.PubMedCrossRef Azzopardi L, Cox AL, McCarthy CL, et al. Alemtuzumab use in neuromyelitis optica spectrum disorders: a brief case series. J Neurol. 2016;263(1):25–9.PubMedCrossRef
67.
Zurück zum Zitat Kowarik MC, Hoshi M, Hemmer B, et al. Failure of alemtuzumab as a rescue in a NMOSD patient treated with rituximab. Neurol Neuroimmunol Neuroinflamm. 2016;3(2):e208.PubMedPubMedCentralCrossRef Kowarik MC, Hoshi M, Hemmer B, et al. Failure of alemtuzumab as a rescue in a NMOSD patient treated with rituximab. Neurol Neuroimmunol Neuroinflamm. 2016;3(2):e208.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Yamout BI, Beaini S, Zeineddine MM, et al. Catastrophic relapses following initiation of dimethyl fumarate in two patients with neuromyelitis optica spectrum disorder. Mult Scler. 2017;23(9):1297–300.PubMedCrossRef Yamout BI, Beaini S, Zeineddine MM, et al. Catastrophic relapses following initiation of dimethyl fumarate in two patients with neuromyelitis optica spectrum disorder. Mult Scler. 2017;23(9):1297–300.PubMedCrossRef
69.
Zurück zum Zitat Taylor AL, Watson CJE, Bradley JA. Immunosuppressive agents in solid organ transplantation: mechanisms of action and therapeutic efficacy. Crit Rev Oncol Hematol. 2005;56(1):23–46.PubMedCrossRef Taylor AL, Watson CJE, Bradley JA. Immunosuppressive agents in solid organ transplantation: mechanisms of action and therapeutic efficacy. Crit Rev Oncol Hematol. 2005;56(1):23–46.PubMedCrossRef
70.
Zurück zum Zitat Mandler RN, Ahmed W, Dencoff JE. Devic’s neuromyelitis optica: a prospective study of seven patients treated with prednisone and azathioprine. Neurology. 1998;51(4):1219–20.PubMedCrossRef Mandler RN, Ahmed W, Dencoff JE. Devic’s neuromyelitis optica: a prospective study of seven patients treated with prednisone and azathioprine. Neurology. 1998;51(4):1219–20.PubMedCrossRef
71.
Zurück zum Zitat Bichuetti DB, Lobato de Oliveira EM, Oliveira DM, et al. Neuromyelitis optica treatment: analysis of 36 patients. Arch Neurol. 2010;67(9):1131–6.PubMedCrossRef Bichuetti DB, Lobato de Oliveira EM, Oliveira DM, et al. Neuromyelitis optica treatment: analysis of 36 patients. Arch Neurol. 2010;67(9):1131–6.PubMedCrossRef
72.
Zurück zum Zitat Costanzi C, Matiello M, Lucchinetti CF, et al. Azathioprine: tolerability, efficacy, and predictors of benefit in neuromyelitis optica. Neurology. 2011;77(7):659–66.PubMedCrossRef Costanzi C, Matiello M, Lucchinetti CF, et al. Azathioprine: tolerability, efficacy, and predictors of benefit in neuromyelitis optica. Neurology. 2011;77(7):659–66.PubMedCrossRef
73.
Zurück zum Zitat Elsone L, Kitley J, Luppe S, et al. Long-term efficacy, tolerability and retention rate of azathioprine in 103 aquaporin‑4 antibody-positive neuromyelitis optica spectrum disorder patients: a multicentre retrospective observational study from the UK. Mult Scler. 2014;20(11):1533–40.PubMedCrossRef Elsone L, Kitley J, Luppe S, et al. Long-term efficacy, tolerability and retention rate of azathioprine in 103 aquaporin‑4 antibody-positive neuromyelitis optica spectrum disorder patients: a multicentre retrospective observational study from the UK. Mult Scler. 2014;20(11):1533–40.PubMedCrossRef
74.
Zurück zum Zitat Bichuetti DB, Perin MMM, de Souza NA, et al. Treating neuromyelitis optica with azathioprine: 20-year clinical practice. Mult Scler Houndmills Basingstoke Engl. 2019;25(8):1150–61.CrossRef Bichuetti DB, Perin MMM, de Souza NA, et al. Treating neuromyelitis optica with azathioprine: 20-year clinical practice. Mult Scler Houndmills Basingstoke Engl. 2019;25(8):1150–61.CrossRef
75.
Zurück zum Zitat Espiritu AI, Pasco PMD. Efficacy and tolerability of azathioprine for neuromyelitis optica spectrum disorder: a systematic review and meta-analysis. Mult Scler Relat Disord. 2019;33:22–32.PubMedCrossRef Espiritu AI, Pasco PMD. Efficacy and tolerability of azathioprine for neuromyelitis optica spectrum disorder: a systematic review and meta-analysis. Mult Scler Relat Disord. 2019;33:22–32.PubMedCrossRef
76.
Zurück zum Zitat Luo D, Wei R, Tian X, et al. Efficacy and safety of azathioprine for neuromyelitis optica spectrum disorders: a meta-analysis of real-world studies. Mult Scler Relat Disord. 2020;46:102484.PubMedCrossRef Luo D, Wei R, Tian X, et al. Efficacy and safety of azathioprine for neuromyelitis optica spectrum disorders: a meta-analysis of real-world studies. Mult Scler Relat Disord. 2020;46:102484.PubMedCrossRef
77.
Zurück zum Zitat Nikoo Z, Badihian S, Shaygannejad V, et al. Comparison of the efficacy of azathioprine and rituximab in neuromyelitis optica spectrum disorder: a randomized clinical trial. J Neurol. 2017;264(9):2003–9.PubMedCrossRef Nikoo Z, Badihian S, Shaygannejad V, et al. Comparison of the efficacy of azathioprine and rituximab in neuromyelitis optica spectrum disorder: a randomized clinical trial. J Neurol. 2017;264(9):2003–9.PubMedCrossRef
78.
Zurück zum Zitat Jacob A, Matiello M, Weinshenker BG, et al. Treatment of neuromyelitis optica with mycophenolate mofetil: retrospective analysis of 24 patients. Arch Neurol. 2009;66(9):1128–33.PubMedCrossRef Jacob A, Matiello M, Weinshenker BG, et al. Treatment of neuromyelitis optica with mycophenolate mofetil: retrospective analysis of 24 patients. Arch Neurol. 2009;66(9):1128–33.PubMedCrossRef
79.
Zurück zum Zitat Huh SY, Kim SH, Hyun JW, et al. Mycophenolate mofetil in the treatment of neuromyelitis optica spectrum disorder. JAMA Neurol. 2014;71(11):1372–8.PubMedCrossRef Huh SY, Kim SH, Hyun JW, et al. Mycophenolate mofetil in the treatment of neuromyelitis optica spectrum disorder. JAMA Neurol. 2014;71(11):1372–8.PubMedCrossRef
80.
Zurück zum Zitat Kitley J, Elsone L, George J, et al. Methotrexate is an alternative to azathioprine in neuromyelitis optica spectrum disorders with aquaporin‑4 antibodies. J Neurol Neurosurg Psychiatry. 2013;84(8):918–21.PubMedCrossRef Kitley J, Elsone L, George J, et al. Methotrexate is an alternative to azathioprine in neuromyelitis optica spectrum disorders with aquaporin‑4 antibodies. J Neurol Neurosurg Psychiatry. 2013;84(8):918–21.PubMedCrossRef
81.
Zurück zum Zitat Ramanathan RS, Malhotra K, Scott T. Treatment of neuromyelitis optica/neuromyelitis optica spectrum disorders with methotrexate. BMC Neurol. 2014;14:51.PubMedPubMedCentralCrossRef Ramanathan RS, Malhotra K, Scott T. Treatment of neuromyelitis optica/neuromyelitis optica spectrum disorders with methotrexate. BMC Neurol. 2014;14:51.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Cabre P, Olindo S, Marignier R, et al. Efficacy of mitoxantrone in neuromyelitis optica spectrum: clinical and neuroradiological study. J Neurol Neurosurg Psychiatry. 2013;84(5):511–6.PubMedCrossRef Cabre P, Olindo S, Marignier R, et al. Efficacy of mitoxantrone in neuromyelitis optica spectrum: clinical and neuroradiological study. J Neurol Neurosurg Psychiatry. 2013;84(5):511–6.PubMedCrossRef
83.
Zurück zum Zitat Miyamoto K, Kusunoki S. Intermittent plasmapheresis prevents recurrence in neuromyelitis optica. Ther Apher Dial. 2009;13(6):505–8.PubMedCrossRef Miyamoto K, Kusunoki S. Intermittent plasmapheresis prevents recurrence in neuromyelitis optica. Ther Apher Dial. 2009;13(6):505–8.PubMedCrossRef
84.
Zurück zum Zitat Mealy MA, Wingerchuk DM, Palace J, et al. Comparison of relapse and treatment failure rates among patients with neuromyelitis optica: multicenter study of treatment efficacy. JAMA Neurol. 2014;71(3):324–30.PubMedCrossRef Mealy MA, Wingerchuk DM, Palace J, et al. Comparison of relapse and treatment failure rates among patients with neuromyelitis optica: multicenter study of treatment efficacy. JAMA Neurol. 2014;71(3):324–30.PubMedCrossRef
85.
Zurück zum Zitat Damato V, Evoli A, Iorio R. Efficacy and safety of Rituximab therapy in neuromyelitis optica spectrum disorders: a systematic review and meta-analysis. JAMA Neurol. 2016;73(11):1342–8.PubMedCrossRef Damato V, Evoli A, Iorio R. Efficacy and safety of Rituximab therapy in neuromyelitis optica spectrum disorders: a systematic review and meta-analysis. JAMA Neurol. 2016;73(11):1342–8.PubMedCrossRef
86.
Zurück zum Zitat Stellmann JP, Krumbholz M, Friede T, et al. Immunotherapies in neuromyelitis optica spectrum disorder: efficacy and predictors of response. J Neurol Neurosurg Psychiatry. 2017;88(8):639–47.PubMedCrossRef Stellmann JP, Krumbholz M, Friede T, et al. Immunotherapies in neuromyelitis optica spectrum disorder: efficacy and predictors of response. J Neurol Neurosurg Psychiatry. 2017;88(8):639–47.PubMedCrossRef
87.
Zurück zum Zitat Cabre P, Mejdoubi M, Jeannin S, et al. Treatment of neuromyelitis optica with rituximab: a 2-year prospective multicenter study. J Neurol. 2018;265(4):917–25.PubMedCrossRef Cabre P, Mejdoubi M, Jeannin S, et al. Treatment of neuromyelitis optica with rituximab: a 2-year prospective multicenter study. J Neurol. 2018;265(4):917–25.PubMedCrossRef
88.
Zurück zum Zitat Tahara M, Oeda T, Okada K, et al. Safety and efficacy of rituximab in neuromyelitis optica spectrum disorders (RIN-1 study): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2020;19(4):298–306.PubMedCrossRef Tahara M, Oeda T, Okada K, et al. Safety and efficacy of rituximab in neuromyelitis optica spectrum disorders (RIN-1 study): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2020;19(4):298–306.PubMedCrossRef
89.
Zurück zum Zitat Jeong IH, Park B, Kim SH, et al. Comparative analysis of treatment outcomes in patients with neuromyelitis optica spectrum disorder using multifaceted endpoints. Mult Scler. 2016;22(3):329–39.PubMedCrossRef Jeong IH, Park B, Kim SH, et al. Comparative analysis of treatment outcomes in patients with neuromyelitis optica spectrum disorder using multifaceted endpoints. Mult Scler. 2016;22(3):329–39.PubMedCrossRef
90.
Zurück zum Zitat Besada E, Koldingsnes W, Nossent JC. Serum immunoglobulin levels and risk factors for hypogammaglobulinaemia during long-term maintenance therapy with rituximab in patients with granulomatosis with polyangiitis. Rheumatology. 2014;53(10):1818–24.PubMedCrossRef Besada E, Koldingsnes W, Nossent JC. Serum immunoglobulin levels and risk factors for hypogammaglobulinaemia during long-term maintenance therapy with rituximab in patients with granulomatosis with polyangiitis. Rheumatology. 2014;53(10):1818–24.PubMedCrossRef
91.
Zurück zum Zitat van Vollenhoven RF, Fleischmann RM, Furst DE, et al. Longterm safety of Rituximab: final report of the rheumatoid arthritis global clinical trial program over 11 years. J Rheumatol. 2015;42(10):1761–6.PubMedCrossRef van Vollenhoven RF, Fleischmann RM, Furst DE, et al. Longterm safety of Rituximab: final report of the rheumatoid arthritis global clinical trial program over 11 years. J Rheumatol. 2015;42(10):1761–6.PubMedCrossRef
92.
Zurück zum Zitat Marcinnò A, Marnetto F, Valentino P, et al. Rituximab-induced hypogammaglobulinemia in patients with neuromyelitis optica spectrum disorders. Neurol Neuroimmunol Neuroinflamm. 2018;5(6):e498.PubMedPubMedCentralCrossRef Marcinnò A, Marnetto F, Valentino P, et al. Rituximab-induced hypogammaglobulinemia in patients with neuromyelitis optica spectrum disorders. Neurol Neuroimmunol Neuroinflamm. 2018;5(6):e498.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Barmettler S, Ong MS, Farmer JR, et al. Association of immunoglobulin levels, infectious risk, and mortality with Rituximab and hypogammaglobulinemia. JAMA Netw Open. 2018;1(7):e184169.PubMedPubMedCentralCrossRef Barmettler S, Ong MS, Farmer JR, et al. Association of immunoglobulin levels, infectious risk, and mortality with Rituximab and hypogammaglobulinemia. JAMA Netw Open. 2018;1(7):e184169.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Pellkofer HL, Krumbholz M, Berthele A, et al. Long-term follow-up of patients with neuromyelitis optica after repeated therapy with rituximab. Neurology. 2011;76(15):1310–5.PubMedCrossRef Pellkofer HL, Krumbholz M, Berthele A, et al. Long-term follow-up of patients with neuromyelitis optica after repeated therapy with rituximab. Neurology. 2011;76(15):1310–5.PubMedCrossRef
95.
Zurück zum Zitat Kim SH, Huh SY, Lee SJ, et al. A 5‑year follow-up of rituximab treatment in patients with neuromyelitis optica spectrum disorder. JAMA Neurol. 2013;70(9):1110–7.PubMedCrossRef Kim SH, Huh SY, Lee SJ, et al. A 5‑year follow-up of rituximab treatment in patients with neuromyelitis optica spectrum disorder. JAMA Neurol. 2013;70(9):1110–7.PubMedCrossRef
98.
Zurück zum Zitat Cree BAC, Bennett JL, Kim HJ, et al. Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet. 2019;394(10206):1352–63.PubMedCrossRef Cree BAC, Bennett JL, Kim HJ, et al. Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet. 2019;394(10206):1352–63.PubMedCrossRef
99.
Zurück zum Zitat Yamamura T, Kleiter I, Fujihara K, et al. Trial of satralizumab in neuromyelitis optica spectrum disorder. N Engl J Med. 2019;381(22):2114–24.PubMedCrossRef Yamamura T, Kleiter I, Fujihara K, et al. Trial of satralizumab in neuromyelitis optica spectrum disorder. N Engl J Med. 2019;381(22):2114–24.PubMedCrossRef
100.
Zurück zum Zitat Traboulsee A, Greenberg BM, Bennett JL, et al. Safety and efficacy of satralizumab monotherapy in neuromyelitis optica spectrum disorder: a randomised, double-blind, multicentre, placebo-controlled phase 3 trial. Lancet Neurol. 2020;19(5):402–12.PubMedPubMedCentralCrossRef Traboulsee A, Greenberg BM, Bennett JL, et al. Safety and efficacy of satralizumab monotherapy in neuromyelitis optica spectrum disorder: a randomised, double-blind, multicentre, placebo-controlled phase 3 trial. Lancet Neurol. 2020;19(5):402–12.PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Chihara N, Aranami T, Sato W, et al. Interleukin 6 signaling promotes anti-aquaporin 4 autoantibody production from plasmablasts in neuromyelitis optica. Proc Natl Acad Sci U S A. 2011;108(9):3701–6.PubMedPubMedCentralCrossRef Chihara N, Aranami T, Sato W, et al. Interleukin 6 signaling promotes anti-aquaporin 4 autoantibody production from plasmablasts in neuromyelitis optica. Proc Natl Acad Sci U S A. 2011;108(9):3701–6.PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Kieseier BC, Stüve O, Dehmel T, et al. Disease amelioration with tocilizumab in a treatment-resistant patient with neuromyelitis optica: implication for cellular immune responses. JAMA Neurol. 2013;70(3):390–3.PubMedCrossRef Kieseier BC, Stüve O, Dehmel T, et al. Disease amelioration with tocilizumab in a treatment-resistant patient with neuromyelitis optica: implication for cellular immune responses. JAMA Neurol. 2013;70(3):390–3.PubMedCrossRef
105.
Zurück zum Zitat Lauenstein AS, Stettner M, Kieseier BC, et al. Treating neuromyelitis optica with the interleukin‑6 receptor antagonist tocilizumab. BMJ Case Rep. 2014;2014:bcr2013202939.PubMedPubMedCentralCrossRef Lauenstein AS, Stettner M, Kieseier BC, et al. Treating neuromyelitis optica with the interleukin‑6 receptor antagonist tocilizumab. BMJ Case Rep. 2014;2014:bcr2013202939.PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Araki M, Matsuoka T, Miyamoto K, et al. Efficacy of the anti-IL‑6 receptor antibody tocilizumab in neuromyelitis optica: a pilot study. Neurology. 2014;82(15):1302–6.PubMedPubMedCentralCrossRef Araki M, Matsuoka T, Miyamoto K, et al. Efficacy of the anti-IL‑6 receptor antibody tocilizumab in neuromyelitis optica: a pilot study. Neurology. 2014;82(15):1302–6.PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Ayzenberg I, Kleiter I, Schröder A, et al. Interleukin 6 receptor blockade in patients with neuromyelitis optica nonresponsive to anti-CD20 therapy. JAMA Neurol. 2013;70(3):394–7.PubMedCrossRef Ayzenberg I, Kleiter I, Schröder A, et al. Interleukin 6 receptor blockade in patients with neuromyelitis optica nonresponsive to anti-CD20 therapy. JAMA Neurol. 2013;70(3):394–7.PubMedCrossRef
108.
Zurück zum Zitat Ringelstein M, Ayzenberg I, Harmel J, et al. Long-term therapy with Interleukin 6 receptor blockade in highly active neuromyelitis optica spectrum disorder. JAMA Neurol. 2015;72(7):756–63.PubMedCrossRef Ringelstein M, Ayzenberg I, Harmel J, et al. Long-term therapy with Interleukin 6 receptor blockade in highly active neuromyelitis optica spectrum disorder. JAMA Neurol. 2015;72(7):756–63.PubMedCrossRef
109.
Zurück zum Zitat Lotan I, Charlson RW, Ryerson LZ, et al. Effectiveness of subcutaneous tocilizumab in neuromyelitis optica spectrum disorders. Mult Scler Relat Disord. 2019;39:101920.PubMedCrossRef Lotan I, Charlson RW, Ryerson LZ, et al. Effectiveness of subcutaneous tocilizumab in neuromyelitis optica spectrum disorders. Mult Scler Relat Disord. 2019;39:101920.PubMedCrossRef
110.
Zurück zum Zitat Rigal J, Pugnet G, Ciron J, et al. Off-label use of tocilizumab in neuromyelitis optica spectrum disorders and MOG-antibody-associated diseases: a case-series. Mult Scler Relat Disord. 2020;46:102483.PubMedCrossRef Rigal J, Pugnet G, Ciron J, et al. Off-label use of tocilizumab in neuromyelitis optica spectrum disorders and MOG-antibody-associated diseases: a case-series. Mult Scler Relat Disord. 2020;46:102483.PubMedCrossRef
111.
Zurück zum Zitat Zhang C, Zhang M, Qiu W, et al. Safety and efficacy of tocilizumab versus azathioprine in highly relapsing neuromyelitis optica spectrum disorder (TANGO): an open-label, multicentre, randomised, phase 2 trial. Lancet Neurol. 2020;19(5):391–401.PubMedPubMedCentralCrossRef Zhang C, Zhang M, Qiu W, et al. Safety and efficacy of tocilizumab versus azathioprine in highly relapsing neuromyelitis optica spectrum disorder (TANGO): an open-label, multicentre, randomised, phase 2 trial. Lancet Neurol. 2020;19(5):391–401.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Pittock SJ, Lennon VA, McKeon A, et al. Eculizumab in AQP4-IgG-positive relapsing neuromyelitis optica spectrum disorders: an open-label pilot study. Lancet Neurol. 2013;12(6):554–62.PubMedCrossRef Pittock SJ, Lennon VA, McKeon A, et al. Eculizumab in AQP4-IgG-positive relapsing neuromyelitis optica spectrum disorders: an open-label pilot study. Lancet Neurol. 2013;12(6):554–62.PubMedCrossRef
113.
Zurück zum Zitat Pittock SJ, Berthele A, Fujihara K, et al. Eculizumab in Aquaporin-4-positive neuromyelitis optica spectrum disorder. N Engl J Med. 2019;381(7):614–25.PubMedCrossRef Pittock SJ, Berthele A, Fujihara K, et al. Eculizumab in Aquaporin-4-positive neuromyelitis optica spectrum disorder. N Engl J Med. 2019;381(7):614–25.PubMedCrossRef
114.
Zurück zum Zitat Palace J, Wingerchuk DM, Fujihara K, et al. Benefits of eculizumab in AQP4+ neuromyelitis optica spectrum disorder: subgroup analyses of the randomized controlled phase 3 PREVENT trial. Mult Scler Relat Disord. 2021;47:102641.PubMedCrossRef Palace J, Wingerchuk DM, Fujihara K, et al. Benefits of eculizumab in AQP4+ neuromyelitis optica spectrum disorder: subgroup analyses of the randomized controlled phase 3 PREVENT trial. Mult Scler Relat Disord. 2021;47:102641.PubMedCrossRef
115.
Zurück zum Zitat Wingerchuk DM, Fujihara K, Palace J, et al. Long-term safety and efficacy of eculizumab in Aquaporin‑4 IgG-positive NMOSD. Ann Neurol. 2021;89(6):1088–98.PubMedPubMedCentralCrossRef Wingerchuk DM, Fujihara K, Palace J, et al. Long-term safety and efficacy of eculizumab in Aquaporin‑4 IgG-positive NMOSD. Ann Neurol. 2021;89(6):1088–98.PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Peter HH, Ochs HD, Cunningham-Rundles C, et al. Targeting Fcrn for immunomodulation: benefits, risks, and practical considerations. J Allergy Clin Immunol. 2020;146(3):479–491.e5.PubMedPubMedCentralCrossRef Peter HH, Ochs HD, Cunningham-Rundles C, et al. Targeting Fcrn for immunomodulation: benefits, risks, and practical considerations. J Allergy Clin Immunol. 2020;146(3):479–491.e5.PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Peffault de Latour R, Brodsky RA, Ortiz S, et al. Pharmacokinetic and pharmacodynamic effects of ravulizumab and eculizumab on complement component 5 in adults with paroxysmal nocturnal haemoglobinuria: results of two phase 3 randomised, multicentre studies. Br J Haematol. 2020;191(3):476–85.PubMedPubMedCentralCrossRef Peffault de Latour R, Brodsky RA, Ortiz S, et al. Pharmacokinetic and pharmacodynamic effects of ravulizumab and eculizumab on complement component 5 in adults with paroxysmal nocturnal haemoglobinuria: results of two phase 3 randomised, multicentre studies. Br J Haematol. 2020;191(3):476–85.PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Harbour BioMed (Guangzhou) Co. Ltd. Safety, Tolerability, Pharmacodynamics and Efficacy of HBM9161 Weekly Subcutaneous Administration in Patients With Neuromyelitis Optica Spectrum Disorders (NMOSD) in China [Internet]. clinicaltrials.gov; 2022 Jan [cited 2022 Jun 15]. Report No.: study/NCT04227470. Available from: https://clinicaltrials.gov/ct2/show/study/NCT04227470. Harbour BioMed (Guangzhou) Co. Ltd. Safety, Tolerability, Pharmacodynamics and Efficacy of HBM9161 Weekly Subcutaneous Administration in Patients With Neuromyelitis Optica Spectrum Disorders (NMOSD) in China [Internet]. clinicaltrials.gov; 2022 Jan [cited 2022 Jun 15]. Report No.: study/NCT04227470. Available from: https://​clinicaltrials.​gov/​ct2/​show/​study/​NCT04227470.
122.
Zurück zum Zitat Zhang P, Liu B. Effect of autologous hematopoietic stem cell transplantation on multiple sclerosis and neuromyelitis optica spectrum disorder: a PRISMA-compliant meta-analysis. Bone Marrow Transplant. 2020;55(10):1928–34.PubMedCrossRef Zhang P, Liu B. Effect of autologous hematopoietic stem cell transplantation on multiple sclerosis and neuromyelitis optica spectrum disorder: a PRISMA-compliant meta-analysis. Bone Marrow Transplant. 2020;55(10):1928–34.PubMedCrossRef
123.
Zurück zum Zitat Kim SH, Jang H, Park NY, et al. Discontinuation of immunosuppressive therapy in patients with neuromyelitis optica spectrum disorder with aquaporin‑4 antibodies. Neurol Neuroimmunol Neuroinflamm. 2021;8(2):e947.PubMedPubMedCentralCrossRef Kim SH, Jang H, Park NY, et al. Discontinuation of immunosuppressive therapy in patients with neuromyelitis optica spectrum disorder with aquaporin‑4 antibodies. Neurol Neuroimmunol Neuroinflamm. 2021;8(2):e947.PubMedPubMedCentralCrossRef
124.
Zurück zum Zitat Weinfurtner K, Graves J, Ness J, et al. Prolonged remission in neuromyelitis optica following cessation of Rituximab treatment. J Child Neurol. 2015;30(10):1366–70.PubMedCrossRef Weinfurtner K, Graves J, Ness J, et al. Prolonged remission in neuromyelitis optica following cessation of Rituximab treatment. J Child Neurol. 2015;30(10):1366–70.PubMedCrossRef
Metadaten
Titel
Treatment of neuromyelitis optica spectrum disorder: revisiting the complement system and other aspects of pathogenesis
verfasst von
Dr. Markus Ponleitner
Assoc.-Prof. PD Mag. Dr. Paulus Stefan Rommer
Publikationsdatum
06.12.2022
Verlag
Springer Vienna
Erschienen in
Wiener Medizinische Wochenschrift / Ausgabe 1-2/2024
Print ISSN: 0043-5341
Elektronische ISSN: 1563-258X
DOI
https://doi.org/10.1007/s10354-022-00987-2

Weitere Artikel der Ausgabe 1-2/2024

Wiener Medizinische Wochenschrift 1-2/2024 Zur Ausgabe