Skip to main content
Erschienen in:

08.02.2022 | original article

Chest CT severity score: assessment of COVID‑19 severity and short-term prognosis in hospitalized Iranian patients

verfasst von: Alireza Aziz-Ahari, Mahsa Keyhanian, Setareh Mamishi, Shima Mahmoudi, Ebrahim Ebrahimi Bastani, Fatemeh Asadi, Mohammadreza Khaleghi

Erschienen in: Wiener Medizinische Wochenschrift | Ausgabe 3-4/2022

Einloggen, um Zugang zu erhalten

Summary

Background

The aim of this study was to evaluate the value of chest computed tomography (CT) severity score in the assessment of coronavirus disease 2019 (COVID‑19) severity and short-term prognosis.

Methods

In this cross-sectional study, we evaluated all patients who were referred to our university hospital, from 21 May 2020 to 22 June 2020 with positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reverse transcription-polymerase chain reaction (RT-PCR) test. The patients suspected of having other respiratory diseases including influenza, according to an infectious disease specialist, and those without chest CT scan were excluded. A chest CT was obtained for all patients between days 4 and 7 days after symptom onset. Chest CT severity score was also calculated based on the degree of involvement of the lung lobes as 0%, (0 points), 1–25% (1 point), 26–50% (2 points), 51–75% (3 points), and 76–100% (4 points). The CT severity score was quantified by summing the 5 lobe indices (range 0–20). The ROC curve analysis was performed for the clinical value of CT scores in distinguishing the patients based on the severity of disease (mild/moderate group versus severe group), ICU admission, intubation requirement, and mortality.

Results

Of the 148 patients included, 93 patients recovered, while 55 patients died (mortality rate 37%). The area under the curve of CT score for discriminating of recovered patients from deceased individuals was 0.726, and the optimal CT score threshold was 15.5 with 61.8% sensitivity and 76.3% specificity. The best CT score cut-off for discriminating of patients based on the severity of disease was 12.5 with 68.3% sensitivity and 72.7% specificity. In addition, with CT score cut-off of 15.5, sensitivities of 70.8% and 51.6% and specificities of 78% and 72.6% were observed for intubation and ICU admission, respectively.

Conclusion

CT scan and semiquantitative scoring method could be beneficial and applicable in predicting the patient’s condition.
Literatur
2.
Zurück zum Zitat Baghaei P, et al. Clinical manifestations of patients with coronavirus disease 2019 (COVID‑19) in a referral center in Iran. Tanaffos. 2020;19(2):122.PubMedPubMedCentral Baghaei P, et al. Clinical manifestations of patients with coronavirus disease 2019 (COVID‑19) in a referral center in Iran. Tanaffos. 2020;19(2):122.PubMedPubMedCentral
3.
Zurück zum Zitat Canovi S, et al. The association between clinical laboratory data and chest CT findings explains disease severity in a large Italian cohort of COVID‑19 patients. BMC Infect Dis. 2021;21(1):157.CrossRef Canovi S, et al. The association between clinical laboratory data and chest CT findings explains disease severity in a large Italian cohort of COVID‑19 patients. BMC Infect Dis. 2021;21(1):157.CrossRef
4.
Zurück zum Zitat Cao Y, et al. Imaging and clinical features of patients with 2019 novel coronavirus SARS-CoV-2: a systematic review and meta-analysis. J Med Virol. 2020;92(9):1449–59.CrossRef Cao Y, et al. Imaging and clinical features of patients with 2019 novel coronavirus SARS-CoV-2: a systematic review and meta-analysis. J Med Virol. 2020;92(9):1449–59.CrossRef
5.
Zurück zum Zitat Chung M, et al. CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiology. 2020;295(1):202–7.CrossRef Chung M, et al. CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiology. 2020;295(1):202–7.CrossRef
6.
Zurück zum Zitat Song F, et al. Emerging 2019 novel coronavirus (2019-nCoV) pneumonia. Radiology. 2020;295(1):210–7.CrossRef Song F, et al. Emerging 2019 novel coronavirus (2019-nCoV) pneumonia. Radiology. 2020;295(1):210–7.CrossRef
7.
Zurück zum Zitat Hope MD, et al. A role for CT in COVID‑19? What data really tell us so far. Lancet. 2020;395(10231):1189–90.CrossRef Hope MD, et al. A role for CT in COVID‑19? What data really tell us so far. Lancet. 2020;395(10231):1189–90.CrossRef
8.
Zurück zum Zitat Ai T, et al. Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID‑19) in China: a report of 1014 cases. Radiology. 2020;296(2):E32–E40.CrossRef Ai T, et al. Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID‑19) in China: a report of 1014 cases. Radiology. 2020;296(2):E32–E40.CrossRef
9.
Zurück zum Zitat Fang Y, et al. Sensitivity of chest CT for COVID‑19: comparison to RT-PCR. Radiology. 2020;296(2):E115–E7.CrossRef Fang Y, et al. Sensitivity of chest CT for COVID‑19: comparison to RT-PCR. Radiology. 2020;296(2):E115–E7.CrossRef
10.
Zurück zum Zitat Yang R, et al. Chest CT severity score: an imaging tool for assessing severe COVID‑19. Radiol Cardiothorac Imaging. 2020;2(2):e200047.CrossRef Yang R, et al. Chest CT severity score: an imaging tool for assessing severe COVID‑19. Radiol Cardiothorac Imaging. 2020;2(2):e200047.CrossRef
11.
Zurück zum Zitat Salahshour F, et al. Clinical and chest CT features as a predictive tool for COVID‑19 clinical progress: introducing a novel semi-quantitative scoring system. Eur Radiol. 2021;p:1–11. Salahshour F, et al. Clinical and chest CT features as a predictive tool for COVID‑19 clinical progress: introducing a novel semi-quantitative scoring system. Eur Radiol. 2021;p:1–11.
12.
Zurück zum Zitat Rossi SE, et al. Tree-in-bud pattern at thin-section CT of the lungs: radiologic-pathologic overview. Radiographics. 2005;25(3):789–801.CrossRef Rossi SE, et al. Tree-in-bud pattern at thin-section CT of the lungs: radiologic-pathologic overview. Radiographics. 2005;25(3):789–801.CrossRef
13.
Zurück zum Zitat Marjani M, et al. NRITLD protocol for the management of patients with COVID‑19 admitted to hospitals. Tanaffos. 2020;19(2):91.PubMedPubMedCentral Marjani M, et al. NRITLD protocol for the management of patients with COVID‑19 admitted to hospitals. Tanaffos. 2020;19(2):91.PubMedPubMedCentral
14.
Zurück zum Zitat McRae MP, et al. Clinical decision support tool and rapid point-of-care platform for determining disease severity in patients with COVID‑19. Lab A Chip. 2020;20(12):2075–85.CrossRef McRae MP, et al. Clinical decision support tool and rapid point-of-care platform for determining disease severity in patients with COVID‑19. Lab A Chip. 2020;20(12):2075–85.CrossRef
15.
Zurück zum Zitat Organization, W.H. Clinical management of severe acute respiratory infection (SARI) when COVID‑19 disease is suspected: interim guidance, 13 March 2020. : World Health Organization; 2020. Organization, W.H. Clinical management of severe acute respiratory infection (SARI) when COVID‑19 disease is suspected: interim guidance, 13 March 2020. : World Health Organization; 2020.
16.
Zurück zum Zitat Mahmoudi S, et al. Immunologic features in coronavirus disease 2019: functional exhaustion of T cells and cytokine storm. J Clin Immunol. 2020;40(7):974–6.CrossRef Mahmoudi S, et al. Immunologic features in coronavirus disease 2019: functional exhaustion of T cells and cytokine storm. J Clin Immunol. 2020;40(7):974–6.CrossRef
17.
Zurück zum Zitat Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3(1):32–5.CrossRef Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3(1):32–5.CrossRef
19.
Zurück zum Zitat Roberts J, et al. Why is COVID‑19 more severe in patients with diabetes? The role of angiotensin-converting enzyme 2, endothelial dysfunction and the immunoinflammatory system. Front Cardiovasc Med. 2020;7:392.CrossRef Roberts J, et al. Why is COVID‑19 more severe in patients with diabetes? The role of angiotensin-converting enzyme 2, endothelial dysfunction and the immunoinflammatory system. Front Cardiovasc Med. 2020;7:392.CrossRef
20.
Zurück zum Zitat Wong CK, et al. Clinical presentations, laboratory and radiological findings, and treatments for 11,028 COVID‑19 patients: a systematic review and meta-analysis. Sci Rep. 2020;10(1):1–16.CrossRef Wong CK, et al. Clinical presentations, laboratory and radiological findings, and treatments for 11,028 COVID‑19 patients: a systematic review and meta-analysis. Sci Rep. 2020;10(1):1–16.CrossRef
21.
Zurück zum Zitat Castro VM, McCoy TH, Perlis RH. Laboratory findings associated with severe illness and mortality among hospitalized individuals with coronavirus disease 2019 in Eastern Massachusetts. Jama Netw Open. 2020;3(10):e2023934.CrossRef Castro VM, McCoy TH, Perlis RH. Laboratory findings associated with severe illness and mortality among hospitalized individuals with coronavirus disease 2019 in Eastern Massachusetts. Jama Netw Open. 2020;3(10):e2023934.CrossRef
23.
Zurück zum Zitat Guan CS, et al. Imaging features of coronavirus disease 2019 (COVID‑19): evaluation on thin-section CT. Acad Radiol. 2020;27(5):609–13.CrossRef Guan CS, et al. Imaging features of coronavirus disease 2019 (COVID‑19): evaluation on thin-section CT. Acad Radiol. 2020;27(5):609–13.CrossRef
24.
Zurück zum Zitat Sun D, et al. Clinical features of severe pediatric patients with coronavirus disease 2019 in Wuhan: a single center’s observational study. World J Pediatr. 2020;p:1–9. Sun D, et al. Clinical features of severe pediatric patients with coronavirus disease 2019 in Wuhan: a single center’s observational study. World J Pediatr. 2020;p:1–9.
25.
Zurück zum Zitat Francone M, et al. Chest CT score in COVID‑19 patients: correlation with disease severity and short-term prognosis. Eur Radiol. 2020;30(12):6808–17.CrossRef Francone M, et al. Chest CT score in COVID‑19 patients: correlation with disease severity and short-term prognosis. Eur Radiol. 2020;30(12):6808–17.CrossRef
26.
Zurück zum Zitat Homayounieh F, et al. Clinical and imaging features predict mortality in COVID‑19 infection in Iran. Plos One. 2020;15(9):e239519.CrossRef Homayounieh F, et al. Clinical and imaging features predict mortality in COVID‑19 infection in Iran. Plos One. 2020;15(9):e239519.CrossRef
27.
Zurück zum Zitat Hafez MA. The mean severity score and its correlation with common computed tomography chest manifestations in Egyptian patients with COVID-2019 pneumonia. Egypt J Radiol Nucl Med. 2020;51(1):1–9.CrossRef Hafez MA. The mean severity score and its correlation with common computed tomography chest manifestations in Egyptian patients with COVID-2019 pneumonia. Egypt J Radiol Nucl Med. 2020;51(1):1–9.CrossRef
28.
Zurück zum Zitat Hilal K, et al. Correlation of computerized tomography (CT) severity score for COVID‑19 pneumonia with clinical outcomes. bioRxiv. 2021.CrossRef Hilal K, et al. Correlation of computerized tomography (CT) severity score for COVID‑19 pneumonia with clinical outcomes. bioRxiv. 2021.CrossRef
Metadaten
Titel
Chest CT severity score: assessment of COVID‑19 severity and short-term prognosis in hospitalized Iranian patients
verfasst von
Alireza Aziz-Ahari
Mahsa Keyhanian
Setareh Mamishi
Shima Mahmoudi
Ebrahim Ebrahimi Bastani
Fatemeh Asadi
Mohammadreza Khaleghi
Publikationsdatum
08.02.2022
Verlag
Springer Vienna
Erschienen in
Wiener Medizinische Wochenschrift / Ausgabe 3-4/2022
Print ISSN: 0043-5341
Elektronische ISSN: 1563-258X
DOI
https://doi.org/10.1007/s10354-022-00914-5