Skip to main content
Erschienen in: memo - Magazine of European Medical Oncology 4/2023

Open Access 29.08.2023 | short review

Challenges in prevention, early detection, and management of febrile neutropenia in adult patients with solid tumors

verfasst von: Dr. med. Petar Popov

Erschienen in: memo - Magazine of European Medical Oncology | Ausgabe 4/2023

Summary

Febrile neutropenia (FN) is a common oncologic emergency where quick patient assessment and prompt initiation of antimicrobial treatment is crucial. Guidelines provide detailed recommendations on prevention and treatment; however, their real-world implementation can prove to be difficult. Score systems for outcome risk are effective in identifying low-risk patients with FN. After initiation of therapy, regular re-evaluation of antimicrobial treatment is necessary, and further diagnostic studies should be tailored to each patient. Use of granulocyte colony-stimulating factor (G-CSF) prophylactically in chemotherapy regimens with intermediate FN risk as well as therapeutically in patients with manifest FN is variable in clinical practice and needs to be better defined. Future steps of reducing risk of FN involve investigating underlying genetic factors. Regarding early detection of FN, patient education is paramount. This short review gives an overview of current guidelines and highlights key challenges in management of FN.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Febrile neutropenia: definition, incidence, mortality

Febrile neutropenia (FN) is a common and potentially life-threatening complication following chemotherapy. FN is defined as an oral temperature of > 38.3 °C or two consecutive readings of > 38.0 °C within 2 h and an absolute neutrophil count (ANC) of < 0.5 × 109/l, or expected to fall below 0.5 × 109/l. The incidence of FN is estimated at about 8/1000 patients receiving chemotherapy and it is associated with frequent complications, an in-hospital mortality rate of up to 10%, and a high financial burden [1, 2]. Therefore, understanding FN is of crucial importance to clinicians and patients.
Evidence-based guidelines on the prevention and treatment of FN have been established by the European Society for Medical Oncology (ESMO) [1], American Society of Clinical Oncology (ASCO) [3, 4], and National Comprehensive Cancer Network (NCCN) [5], which provide detailed recommendations and useful algorithms for clinical decision-making.

Initial workup and risk assessment in patients with FN

Initial workup of patients with suspected FN involves thorough history and physical examination as well as complete blood count (CBC) and biochemistry analysis to assess kidney and liver function, coagulation status, and level of inflammatory markers, such as C‑reactive protein (CRP). Peripheral and central blood cultures along with specimens from suspected sites of infection (e.g., urine or stool culture, sputum) should be taken before beginning empiric broad-spectrum antimicrobial therapy. Regarding imaging, chest radiographs are easily obtainable and can provide relevant information related to FN and/or present comorbidities as part of initial workup. Across guidelines, there is a universal consensus that antibiotics should be initiated within 1 h of admission.
Individual outcome risk of patients presenting with FN can be assessed using scoring systems such as the Multinational Association for Supportive Care in Cancer (MASCC) index [6] or the Clinical Index of Stable Febrile Neutropenia (CISNE) [7], shown in Tables 1 and 2, respectively. Both systems have shown themselves to be effective screening tools to help identify low-risk patients (who may be candidates for outpatient treatment) based on readily available clinical information [8]. Importantly, recent literature suggests superiority of CISNE, a three-tier scoring system, in the acute setting [9, 10].
Table 1
Multinational Association for Supportive Care in Cancer (MASCC) score: adapted from Klastersky et al. [6]
Characteristic
Score (points)a
Severity of symptoms
None or mild: +5
Moderate: +3
Severe: 0
Hypotension
No: +5
Yes: 0
Active COPD
No: +4
Yes: 0
Type of cancer
Solid tumor: +4
Hematologic, no prior fungal infection: +4
Hematologic, prior fungal infection: 0
Dehydration
No: +3
Yes: 0
Status at onset of fever
Outpatient: +3
Inpatient: 0
Age (years)
< 60: +2
≥ 60: 0
COPD chronic obstructive pulmonary disease
aScore ≥ 21 = low risk (mortality < 5%)
Table 2
Clinical Index of Stable Febrile Neutropenia (CISNE) score: adapted from Carmona-Bayonas et al. [7]
Characteristic
Score (points)a
ECOG performance status
< 2: 0
≥ 2: +2
Stress-induced hyperglycemia
No: 0
Yes: +2
COPD
No: 0
Yes: +1
Cardiovascular disease history
No: 0
Yes: +1
Mucositis grade ≥ 2
No: 0
Yes: +1
Monocytes
≥ 200/µl: 0
< 200/µl: +1
COPD chronic obstructive pulmonary disease, ECOG Eastern Cooperative Oncology Group
aScore ≤ 2 = non-high risk, 0 = low risk (risk of complications 1.1%), 1–2 = intermediate risk (risk of complications 6.2%)

Etiology and optimal antimicrobial treatment in FN

In most patients with FN, an infectious focus or agent cannot be identified, with bacteremia present in only up to 30% of cases. Confirmed bacteremia, although providing useful information regarding choice of antibiotic treatment, is associated with higher mortality rates, especially in case of Gram-negative bacteremia [1, 11].
Common sources of bacteremia in FN are translocation of enteric bacteria into the bloodstream and catheter-related bloodstream infections (CRBSI) [12]; differential time to positivity (DTP) of ≥ 2 h between central and peripheral blood cultures is a sensitive and specific indicator of CRBSI and can therefore inform decisions regarding removal of indwelling catheters [1, 13]. However, FN is a diverse syndrome, and further diagnostic workup, such as imaging studies (e.g., computed tomography) to locate focus of infection or testing for fungal or viral etiologies is often necessary during the course of hospitalization in the event of persisting fever and/or worsening symptoms.
Choice of initial empiric antimicrobial treatment should be made based on patient-related factors such as outcome risk and allergies, as well as local epidemiological and antibiotic resistance data; in-hospital patients should receive broad-spectrum antibiotics with anti-pseudomonal activity, e.g., piperacillin–tazobactam [14]. While guidelines provide straight-forward recommendations regarding de-escalating and discontinuing antibiotic treatment upon recovery from FN, decisions about escalating or switching antimicrobial agents can prove to be challenging and should be discussed with infectious disease specialists, clinical microbiologists, or other specialists [1]. Implementation of antimicrobial stewardship programs has been shown to both improve clinical outcomes and lower use of carbapenems and glycopeptides [15].

Antibacterial prophylaxis and the role of G-CSF in prevention and treatment of FN

Chemoprophylaxis with fluoroquinolones after chemotherapy, although widely used in the past, is associated with the risk of antibiotic resistance [1]. The ASCO panel suggests chemoprophylaxis be used in situations where prolonged severe neutropenia (ANC ≤ 0.1 × 109/l for ≥ 7 days) can be expected. As this is unlikely to occur with current chemotherapy regimens for solid tumors, the panel recommends against the routine use of chemoprophylaxis in this setting, suggesting it should only be considered in patients with increased risk of death in the event of FN [3, 4].
Use of granulocyte colony-stimulating factor (G-CSF) for prophylaxis of FN has been shown to have a significant impact on reducing incidence, duration, and severity of FN [1, 5]. Current guidelines provide algorithms on primary FN prophylaxis in chemotherapy patients. In general, risk factors for development of FN can be defined as chemotherapy regimen-related, on the one hand, and patient-related, on the other hand.
There are clear recommendations to give or withhold G‑CSF in chemotherapy regimens associated with high (> 20%) and low (< 10%) FN risk, respectively [1]. However, regimens with intermediate (10–20%) FN risk require case-to-case consideration of patient-related risk factors such as age, comorbidities, and performance status [1, 5, 16]. This leads to variable real-world use of G‑CSF within this heterogeneous group, with an overall trend of reduced FN incidence in patients who receive G‑CSF prophylaxis [17].
Therapeutic use of G‑CSF in manifest FN is a controversial topic due to scarce evidence. A large meta-analysis of 14 randomized clinical trials showed shorter time to neutrophil recovery and shorter duration of hospital stay with use of G‑CSF in patients with FN; however, overall mortality was not affected [18]. The NCCN panel distinguishes between patients with FN who have already received prophylactic G‑CSF versus those who have not, and recommends considering short-acting G‑CSF in patients at high risk of infection-related complications or death [5]. Overall, more data on the use of G‑CSF in the setting of FN are required before specific recommendations can be defined.

Role of genetic factors in predicting and reducing risk of FN

Aside from all clinical patient-related factors discussed above, predictive biomarkers for chemotherapy-induced neutropenia have been identified. For example, dihydropyrimidine dehydrogenase (DPYD) gene variants causing decreased metabolism of fluoropyrimidines (e.g., 5-fluoruracyl, capecitabine) are associated with higher toxicity of these agents, including shorter time to neutropenia [19]. Consequently, testing for these gene variants and dose-reduction when appropriate has become widespread clinical practice [20]. Further genetic variants which appear to have predictive value for neutropenia, such as single nucleotide polymorphisms (SNPs) in the hyaluronan-mediated motility receptor (HMMR) gene, have been investigated [21]. Identifying new potentially relevant genetic factors could help to predict and reduce FN risk in chemotherapy patients [16].

Discussion

Adequate management of FN, a classic oncologic emergency, requires sufficient clinical experience and in-depth knowledge of current guidelines. However, implementing guidelines in everyday practice may prove challenging. Initial workup must often be carried out under stressful conditions and time constraints; the universal consensus of beginning antibiotic therapy within 1 h of admission is often not feasible in the setting of emergency care [22].
As discussed above, individual risk assessment is of crucial importance. Unfortunately, established outcome risk scores such as MASCC, although possessing high predictive value, are rarely used in the real-world setting [23]. Their integration into everyday practice could be of significant benefit in clinical decision-making.
Another challenging aspect in FN is the need to re-evaluate patients on a regular basis according to clinical presentation and diagnostic findings; cancer patients are often frail, of advanced age, and have multiple comorbidities. Infections can drastically worsen pre-existing conditions, leading to complex clinical situations. Therefore, treatment of FN patients (especially high-risk individuals) sometimes requires a multidisciplinary approach.
Regarding early detection of FN, patient education likely plays the most important role in reducing time to administration of first antibiotic dose. Real-world data suggest incidence of FN is highest after the first cycle of chemotherapy [24, 25], emphasizing the importance of providing patients with up-front and clear instructions on monitoring symptoms and body temperature, and contacting the appropriate service when needed [1].
Due to factors such as inaccurate measurement of body temperature (e.g., axillary or rectal instead of oral temperature) and use of certain medications, such as corticosteroids or nonsteroidal anti-inflammatory drugs (NSAIDs), which may “blunt” the natural fever response to infection, patients should be encouraged to contact medical care providers even if their temperature does not exactly match the definition criteria for FN.
Current challenges in the field of FN are summarized in Fig. 1. Future improvements in FN prevention lie in better understanding individual patient risk with regard to G‑CSF use and identifying underlying predictive biomarkers.

Conflict of interest

P. Popov declares that he/she has no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

Abo für kostenpflichtige Inhalte

Literatur
1.
Zurück zum Zitat Klastersky J, et al. Management of febrile neutropaenia: ESMO Clinical Practice Guidelines. Ann Oncol. 2016;27(suppl 5):v111–v8.CrossRefPubMed Klastersky J, et al. Management of febrile neutropaenia: ESMO Clinical Practice Guidelines. Ann Oncol. 2016;27(suppl 5):v111–v8.CrossRefPubMed
2.
Zurück zum Zitat Boccia R, et al. Chemotherapy-induced neutropenia and febrile neutropenia in the US: A beast of burden that needs to be tamed? Oncologist. 2022;27(8):625–36.CrossRefPubMedPubMedCentral Boccia R, et al. Chemotherapy-induced neutropenia and febrile neutropenia in the US: A beast of burden that needs to be tamed? Oncologist. 2022;27(8):625–36.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Taplitz RA, et al. Outpatient management of fever and neutropenia in adults treated for malignancy: American Society of Clinical Oncology and Infectious Diseases Society of America Clinical Practice guideline update. J Clin Oncol. 2018;36(14):1443–53.CrossRefPubMed Taplitz RA, et al. Outpatient management of fever and neutropenia in adults treated for malignancy: American Society of Clinical Oncology and Infectious Diseases Society of America Clinical Practice guideline update. J Clin Oncol. 2018;36(14):1443–53.CrossRefPubMed
4.
Zurück zum Zitat Flowers CR, et al. Antimicrobial prophylaxis and outpatient management of fever and neutropenia in adults treated for malignancy: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2013;31(6):794–810.CrossRefPubMed Flowers CR, et al. Antimicrobial prophylaxis and outpatient management of fever and neutropenia in adults treated for malignancy: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2013;31(6):794–810.CrossRefPubMed
5.
Zurück zum Zitat Becker PS, et al. NCCN guidelines insights: Hematopoietic growth factors, version 1.2020. J Natl Compr Canc Netw. 2020;18(1):12–22.CrossRefPubMed Becker PS, et al. NCCN guidelines insights: Hematopoietic growth factors, version 1.2020. J Natl Compr Canc Netw. 2020;18(1):12–22.CrossRefPubMed
6.
Zurück zum Zitat Klastersky J, et al. The Multinational Association for Supportive Care in Cancer risk index: A multinational scoring system for identifying low-risk febrile neutropenic cancer patients. J Clin Oncol. 2000;18(16):3038–51.CrossRefPubMed Klastersky J, et al. The Multinational Association for Supportive Care in Cancer risk index: A multinational scoring system for identifying low-risk febrile neutropenic cancer patients. J Clin Oncol. 2000;18(16):3038–51.CrossRefPubMed
7.
Zurück zum Zitat Carmona-Bayonas A, et al. Prediction of serious complications in patients with seemingly stable febrile neutropenia: validation of the Clinical Index of Stable Febrile Neutropenia in a prospective cohort of patients from the FINITE study. J Clin Oncol. 2015;33(5):465–71.CrossRefPubMed Carmona-Bayonas A, et al. Prediction of serious complications in patients with seemingly stable febrile neutropenia: validation of the Clinical Index of Stable Febrile Neutropenia in a prospective cohort of patients from the FINITE study. J Clin Oncol. 2015;33(5):465–71.CrossRefPubMed
8.
Zurück zum Zitat Ahn S, et al. Comparison of the MASCC and CISNE scores for identifying low-risk neutropenic fever patients: analysis of data from three emergency departments of cancer centers in three continents. Support Care Cancer. 2018;26(5):1465–70.PubMed Ahn S, et al. Comparison of the MASCC and CISNE scores for identifying low-risk neutropenic fever patients: analysis of data from three emergency departments of cancer centers in three continents. Support Care Cancer. 2018;26(5):1465–70.PubMed
9.
Zurück zum Zitat Zheng B, et al. Accuracy of the Multinational Association of Supportive Care in Cancer (MASCC) and Clinical Index of Stable Febrile Neutropenia (CISNE) scores for predicting serious complications in adult patients with febrile neutropenia: A systematic review and meta-analysis. Crit Rev Oncol Hematol. 2020;149:102922.CrossRefPubMed Zheng B, et al. Accuracy of the Multinational Association of Supportive Care in Cancer (MASCC) and Clinical Index of Stable Febrile Neutropenia (CISNE) scores for predicting serious complications in adult patients with febrile neutropenia: A systematic review and meta-analysis. Crit Rev Oncol Hematol. 2020;149:102922.CrossRefPubMed
10.
Zurück zum Zitat Mohindra R, et al. CISNE versus MASCC: Identifying low risk febrile neutropenic patients. Am J Emerg Med. 2020;38(11):2259–63.CrossRefPubMed Mohindra R, et al. CISNE versus MASCC: Identifying low risk febrile neutropenic patients. Am J Emerg Med. 2020;38(11):2259–63.CrossRefPubMed
11.
Zurück zum Zitat Klastersky J, et al. Bacteraemia in febrile neutropenic cancer patients. Int J Antimicrob Agents. 2007;30(Suppl 1):S51–S9.CrossRefPubMed Klastersky J, et al. Bacteraemia in febrile neutropenic cancer patients. Int J Antimicrob Agents. 2007;30(Suppl 1):S51–S9.CrossRefPubMed
12.
Zurück zum Zitat Zimmer AJ, Freifeld AG. Optimal Management of Neutropenic Fever in Patients With Cancer. J Oncol Pract. 2019;15(1):19–24.CrossRefPubMed Zimmer AJ, Freifeld AG. Optimal Management of Neutropenic Fever in Patients With Cancer. J Oncol Pract. 2019;15(1):19–24.CrossRefPubMed
13.
Zurück zum Zitat Al-Juaid A, et al. Differential time to positivity: vascular catheter drawn cultures for the determination of catheter-related bloodstream infection. Scand J Infect Dis. 2012;44(10):721–5.CrossRefPubMed Al-Juaid A, et al. Differential time to positivity: vascular catheter drawn cultures for the determination of catheter-related bloodstream infection. Scand J Infect Dis. 2012;44(10):721–5.CrossRefPubMed
14.
Zurück zum Zitat Schmidt-Hieber M, et al. Management of febrile neutropenia in the perspective of antimicrobial de-escalation and discontinuation. Expert Rev Anti Infect Ther. 2019;17(12):983–95.CrossRefPubMed Schmidt-Hieber M, et al. Management of febrile neutropenia in the perspective of antimicrobial de-escalation and discontinuation. Expert Rev Anti Infect Ther. 2019;17(12):983–95.CrossRefPubMed
15.
16.
Zurück zum Zitat Ba Y, et al. Current management of chemotherapy-induced neutropenia in adults: key points and new challenges: Committee of Neoplastic Supportive-Care (CONS), China Anti-Cancer Association Committee of Clinical Chemotherapy, China Anti-Cancer Association. Cancer Biol Med. 2020;17(4):896–909.CrossRefPubMedPubMedCentral Ba Y, et al. Current management of chemotherapy-induced neutropenia in adults: key points and new challenges: Committee of Neoplastic Supportive-Care (CONS), China Anti-Cancer Association Committee of Clinical Chemotherapy, China Anti-Cancer Association. Cancer Biol Med. 2020;17(4):896–909.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Campbell K, et al. G‑CSF primary prophylaxis use and outcomes in patients receiving chemotherapy at intermediate risk for febrile neutropenia: a scoping review. Expert Rev Hematol. 2022;15(7):619–33.CrossRefPubMed Campbell K, et al. G‑CSF primary prophylaxis use and outcomes in patients receiving chemotherapy at intermediate risk for febrile neutropenia: a scoping review. Expert Rev Hematol. 2022;15(7):619–33.CrossRefPubMed
18.
Zurück zum Zitat Mhaskar R, et al. Colony-stimulating factors for chemotherapy-induced febrile neutropenia. Cochrane Database Syst Rev. 2014;2014(10):CD3039.PubMedPubMedCentral Mhaskar R, et al. Colony-stimulating factors for chemotherapy-induced febrile neutropenia. Cochrane Database Syst Rev. 2014;2014(10):CD3039.PubMedPubMedCentral
19.
Zurück zum Zitat Ruzzo A, et al. Dihydropyrimidine dehydrogenase pharmacogenetics for predicting fluoropyrimidine-related toxicity in the randomised, phase III adjuvant TOSCA trial in high-risk colon cancer patients. Br J Cancer. 2017;117(9):1269–77.CrossRefPubMedPubMedCentral Ruzzo A, et al. Dihydropyrimidine dehydrogenase pharmacogenetics for predicting fluoropyrimidine-related toxicity in the randomised, phase III adjuvant TOSCA trial in high-risk colon cancer patients. Br J Cancer. 2017;117(9):1269–77.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Bidadi B, et al. Pathway-based analysis of genome-wide association data identified SNPs in HMMR as biomarker for chemotherapy-induced neutropenia in breast cancer patients. Front Pharmacol. 2018;9:158.CrossRefPubMedPubMedCentral Bidadi B, et al. Pathway-based analysis of genome-wide association data identified SNPs in HMMR as biomarker for chemotherapy-induced neutropenia in breast cancer patients. Front Pharmacol. 2018;9:158.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Kyriacou DN, Jovanovic B, Frankfurt O. Timing of initial antibiotic treatment for febrile neutropenia in the emergency department: the need for evidence-based guidelines. J Natl Compr Canc Netw. 2014;12(11):1569–73.CrossRefPubMed Kyriacou DN, Jovanovic B, Frankfurt O. Timing of initial antibiotic treatment for febrile neutropenia in the emergency department: the need for evidence-based guidelines. J Natl Compr Canc Netw. 2014;12(11):1569–73.CrossRefPubMed
23.
Zurück zum Zitat Bhardwaj PV, et al. Use of MASCC score in the inpatient management of febrile neutropenia: a single-center retrospective study. Support Care Cancer. 2021;29(10):5905–14.CrossRefPubMedPubMedCentral Bhardwaj PV, et al. Use of MASCC score in the inpatient management of febrile neutropenia: a single-center retrospective study. Support Care Cancer. 2021;29(10):5905–14.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Rapoport BL, et al. Febrile neutropenia (FN) occurrence outside of clinical trials: occurrence and predictive factors in adult patients treated with chemotherapy and an expected moderate FN risk. Rationale and design of a real-world prospective, observational, multinational study. BMC Cancer. 2018;18(1):917.CrossRefPubMedPubMedCentral Rapoport BL, et al. Febrile neutropenia (FN) occurrence outside of clinical trials: occurrence and predictive factors in adult patients treated with chemotherapy and an expected moderate FN risk. Rationale and design of a real-world prospective, observational, multinational study. BMC Cancer. 2018;18(1):917.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Weycker D, et al. Risk and consequences of chemotherapy-induced febrile neutropenia in patients with metastatic solid tumors. J Oncol Pract. 2015;11(1):47–54.CrossRefPubMed Weycker D, et al. Risk and consequences of chemotherapy-induced febrile neutropenia in patients with metastatic solid tumors. J Oncol Pract. 2015;11(1):47–54.CrossRefPubMed
Metadaten
Titel
Challenges in prevention, early detection, and management of febrile neutropenia in adult patients with solid tumors
verfasst von
Dr. med. Petar Popov
Publikationsdatum
29.08.2023
Verlag
Springer Vienna
Erschienen in
memo - Magazine of European Medical Oncology / Ausgabe 4/2023
Print ISSN: 1865-5041
Elektronische ISSN: 1865-5076
DOI
https://doi.org/10.1007/s12254-023-00909-x

Weitere Artikel der Ausgabe 4/2023

memo - Magazine of European Medical Oncology 4/2023 Zur Ausgabe