Skip to main content
Erschienen in:

Open Access 01.11.2016 | review article

An overview of psoriatic arthritis – epidemiology, clinical features, pathophysiology and novel treatment targets

verfasst von: Andreas Kerschbaumer, Karl H. Fenzl, Ludwig Erlacher, Daniel Aletaha

Erschienen in: Wiener klinische Wochenschrift | Ausgabe 21-22/2016

Summary

Psoriatic arthritis is a chronic inflammatory joint disease occurring in a subgroup of patients suffering from psoriasis. This article gives an overview of the complexity of psoriatic arthritis, looking at several aspects of this heterogeneous disease, such as epidemiology, important clinical features and comorbidities as well as current concepts of the pathophysiology and subsequent insights in novel treatment targets.

Epidemiology

A meta-analysis carried out by Alamanos et al. found a wide variation in the annual incidence of psoriatic arthritis (PsA) ranging from 0.1 to 23.1 cases per 100,000 (median 6.4/100,000) inhabitants with large differences between countries. The mean age at diagnosis varied between 40.7 and 52.0 years (median 47.7 years). Prevalence rates also varied between 1 case per 100,000 (Japan) to 420 per 100,000 (Italian) inhabitants [1]. Depending on the definitions used (e.g. diagnostic codes, patient self-reporting, rheumatologist diagnosis and classification criteria) prevalence and incidence rates vary substantially. Prevalence rates of PsA in psoriasis (Pso) patients range from 6 % to 41 % [2].

Clinical features

The presence of Pso, inflammatory arthritis and absence of positive serological tests for rheumatoid arthritis (RA) are the hallmarks of PsA. In 60–70 % of patients Pso precedes PsA, while in 15–20 % arthritis precedes the onset of Pso. In a small group of patients (15–20 %) the two manifestations appear within 1 year. Asymmetrical oligoarthritis is the most common joint pattern at disease onset [3]. Regarding joint involvement, five groups of inflammatory joint patterns were defined by Moll and Wright: (1) distal interphalangeal (DIP) predominant arthritis, (2) arthritis mutilans, (3) symmetrical polyarthritis, (4) asymmetrical oligoarthritis or monoarthritis and (5) ankylosing spondylitis predominance [4]. Moll and Wright proposed asymmetrical oligoarthritis as the most frequent clinical joint pattern of PsA. Studies regarding the joint pattern distribution in PsA patients vary, partly because of different definitions of PsA by different researchers and partly due to the fact that there is a probable change of the joint pattern with increasing disease duration [5]. Axial PsA, with typical features, such as asymmetrical sacroiliitis, nonmarginal and asymmetrical syndesmophytes, paravertebral ossification and involvement of the cervical spine can be manifested in a broad variety of symptoms [6]. Dactylitis is the clinical term for diffuse inflammation and swelling of a whole finger or toe and represents a cardinal finding in PsA patients [4]. The pathophysiological correlate is the combination of flexor tenosynovitis, joint effusion and subcutaneous edema, which is difficult to distinguish clinically and the diagnosis can therefore be supported by magnetic resonance imaging (MRI) or ultrasound examinations [7]. Inflammation at tendon, ligament, joint capsule sites and fascia insertion sites into bone is called enthesitis and is another hallmark feature of PsA. Pain and swelling in affected areas are very common and can be found in approximately half of PsA patients. Typical entheseal inflammation sites are the Achilles tendon, the plantar fascia, the greater trochanter tubercle of the femur, the medial femur condyles and epicondyles of the olecranon [8]. Last, but not least, nail involvement is much more common with PsA patients than with Pso patients without arthritis [4]. Clinical presentation of nail changes includes nail pitting, transverse ridging, yellowish discoloration in onycholysis, subungual hyperkeratosis, splinter hemorrhages and even total destruction of the nail [4, 9].
Of special importance are extra-articular manifestations (EAM) of PsA. They are much more common than previously thought and seem to be associated with axial disease. The first study exclusively focusing on EAM in PsA by Peluso et al. in 2015 could demonstrate an EAM prevalence of 49 % in a retrospective analysis of 387 PsA patients. Most were male patients with axial disease and a significantly longer disease duration than PsA patients without EAM [10]. The most common EAM affect the eyes, the gastrointestinal tract, the heart and arteries and the urogenital system and are summarized in Table 1.
Table 1
Extra-articular manifestations of PsA
Gastrointestinal
Ocular
Cardiovascular
Urogenital
Crohn’s disease
Uveitis
Bundle branch blocks
Urethritis
Ulcerative colitis
Conjunctivitis
Intraventricular blocks
Prostatitis
Non-specific colitis
Increased arterial stiffness
Balanitis
Increased carotid media thickness
Cervicitis
Vaginitis

Comorbidities

The most important comorbidities associated with PsA are those of cardiovascular diseases. An increased prevalence of cardiovascular risk factors in PsA patients was shown in several studies and PsA seems to be associated with obesity, hypertension, insulin resistance, type II diabetes and hyperlipidemia. Vascular comorbidities include ischemic heart disease, hypertension, dyslipidemia, atherosclerosis, peripheral vascular disease and cerebrovascular disease. The pathophysiological link seems to be a shared inflammatory pathway of both metabolic syndrome and PsA [11, 12]. A large cohort study in the United Kingdom found an increased incidence of diabetes in PsA, which may be explained by obesity and lifestyle factors [13]. Metabolic syndrome and insulin resistance are highly prevalent in PsA patients and there is a strong association to the severity of inflammatory disease [14, 15]. Thyroid autoimmunity is increased in PsA patients, reflected in increased antibodies against thyroid peroxidase and a hypoechoic thyroid on ultrasound examination, especially in female patients [16].

Pathophysiology

The occurrence of PsA is almost certainly immune-mediated and probably shares pathogenic mechanisms with Pso. The PsA synovium shows infiltration with T cells, B cells and macrophages. Clonally expanded CD8+ T cells are frequent in PsA. Plasmacytoid dendritic cells are thought to play a key role in Pso and there is some evidence that they are also involved in PsA. The extensive bone lesions in PsA are consistent with the findings of osteoclastic progenitors in peripheral blood of PsA patients, as well as upregulation of receptor activator of nuclear factor kappa b ligand (RANKL) in the synovial lining layer. Cytokines derived from Th17 are likely to be important in PsA, given their prominence in Pso and in other forms of spondylarthritis [17]. Innate immunity also seems to play a role in the pathogenesis of PsA [18].

Concepts of pathogenesis

Two major hypotheses regarding the pathogenesis of PsA are under discussion and in the scientific focus at the moment. One hypothesis considers PsA as a classical autoimmune disease, the other as a disease originating from inflammation primarily occurring in the entheseal organ after trauma or physical stress [1921].

Classical autoimmune disease

Looking at a classical autoimmune mechanism, with autoreactive CD8+ T cell clones inducing inflammation after binding a self-peptide through major histocompatibility complex (MHC) class I molecules, PsA shows certain genetic and immunological features to support this hypothesis. There is evidence for a susceptibility to develop PsA in association with certain MHC class I genes [22]. The observation of CD4+ T cell depletion and persistence of disease in human immunodeficiency virus (HIV) positive PsA patients suggest that PsA is driven by autoreactive CD8+ T cells, activated through presentation of a self-peptide by MHC class I susceptibility molecules [23]. Additionally, the absence of autoantibodies and predominance of CD8+ T cells in joint fluid and in synovial tissue supports the claim that PsA is an MHC class I-associated and CD8+ T cell-mediated autoimmune disease [20]. A relationship of genotype and determining phenotypes was proposed by FitzGerald et al. in 2015 [20]; therefore, of particular interest may be the possible pathogenetic explanation of Moll and Wright’s initial proposed subtypes of PsA with entheseal, synovial and axial predominant forms [4].

Enthesitis as primary site of inflammation

In 1998 McGonagle et al. proposed the hypothesis that synovitis in spondylarthropathies may be secondary to entheseal inflammation, occurring as an epiphenomenon of proinflammatory cytokines and growth factors from the enthesitis [21]. Subsequent anatomical studies could show that enthesis, initially declared to be the insertion site of a muscle or a tendon into bone, is not that simple to define. The entheseal structure and physiology seem to be more complex and the definition of an entheseal organ, including enthesis and surrounding tissues, such as bursae, periosteal fibrocartilage, synovial covered fat pads and sesamoid bones would fit better in terms of complexity [24, 25]. The close anatomical relationship between synovium and enthesis is especially prone to mechanical stress. Microtrauma-induced secretion of immune mediators seems to promote an altered vascularity of entheses in elderly, healthy individuals and may furthermore induce inflammation in predisposed patients, leading to clinically significant inflammation of joints and development of spondylarthropathy or PsA [26, 27]. This may also be part of the explanation of an epidemiological association of higher body mass index (BMI) with PsA development, with increased mechanical stress on entheseal structures due to greater body weight [25].
Further evidence supporting this hypothesis is the initial site of inflammation in spondylarthropathy model-related animal models. In 2014 Jacques et al. could demonstrate a mechanotransduction-associated origin of enthesitis and new bone formation at entheseal sites in TNFΔARE mice through activation of mitogen-activated protein kinase (MAPK) and Erk1/2 signalling pathways [28].

Microbiome

As described in Table 1 an increased risk for developing Crohn’s disease is evident as a possible EAM of PsA. Furthermore, a higher incidence of subclinical gut inflammation has also been described in a subgroup of PsA patients [29]. A decreased bacterial diversity in PsA patients in comparison to Pso patients and healthy individuals has also been observed [30]. Gut dysbiosis might therefore also be a potential modulator of autoimmunity.

Obesity

Obesity is an independent risk factor for development of PsA, as described in the section on risk factors. Low-grade chronic inflammation is associated with obesity and occurs in many organs and not limited to adipose tissue. White adipose tissue is an endocrine active organ secreting soluble mediators, which are responsible for a proinflammatory environment [31, 32]. Weight loss intervention in Pso patients receiving biologic agents resulted in an increased efficacy of biologic agents compared to controls [33]. In a recent review about autoimmune effects of obesity, Versini et al. concluded that the proinflammatory state through increased production of many adipokines including interleukin (IL)-6, tumor necrosis factor (TNF) alpha, resistin and leptin, aggravates the development of PsA and its comorbidities and decreases the efficacy of biologic therapy [32].

Interleukin 23/Th17 pathway

In PsA patients, a new population of immune cells, IL-17+CD8+ T‑cells, were recently discovered in synovial fluid where IL-17+CD4-T-cell levels are increased in PsA synovial fluid in contrast to RA patients. These cells are comprised mainly of CD8+ cells, are positively correlated with disease activity (acute phase reactants, clinical and radiographic signs of active inflammatory joint disease) and may represent an important subpopulation of immune cells in the pathophysiology of PsA [34]. In Pso, IL-23 was found to be fundamentally important in pathogenesis and is mainly synthesized by dendritic cells of the dermis and macrophages, which is the main trigger for IL-17 production in the skin, initiating skin inflammation and acanthosis. Furthermore, pathogen products may directly stimulate the production of IL-17 [35]. Additionally, the treatment response of patients induced by inhibition of this pathway with biologic agents, such as ustekinumab (anti IL-12/23, European Medicines Agency EMA approval 01-2009), secukinumab (anti IL-17A, EMA approval 01-2015), ixekizumab (anti IL-17A, EMA approval 04-2016) and brodalumab (anti IL-17R, EMA approval pending) further underlines its importance in the pathogenesis of PsA [36].

Novel treatment targets

In PsA therapy, conventional disease-modifying anti-rheumatic drugs (cDMARD) are commonly used in newly diagnosed diseases [37]. While evidence from large, well-designed clinical trials is missing, methotrexate, leflunomide and sulfasalazine are still regarded as first choice if treatment with non-steroidal anti-inflammatory drugs (NSAIDs) is insufficient. Current guidelines favor methotrexate as the first choice cDMARD, which could show better response than NSAIDs alone, especially regarding swollen and tender joints [38]. Leflunomide was shown to be significantly superior to placebo, with effects on peripheral arthritis and other PsA manifestations, such as pain, fatigue, dactylitis and skin disease [39]. Apremilast is a new, orally administered, selective inhibitor of phosphodiesterase 4 (PDE4). The inhibition of PDE4 increases cyclic adenosine monophosphate, downregulates the inflammatory cascade and leads to inhibition of Th1, Th2 and Th17 cytokines. Its clinical efficacy could be demonstrated in phase 3 trials by improving signs and symptoms of PsA as well as physical function [40, 41]. Ustekinumab is a fully human monoclonal immunoglobulin G1 antibody that binds the common p40 subunit of IL-12 and IL-23. Inhibition of IL-12 and IL-23 leads to an inhibition of Th1 and Th17 T‑cells leads to an inhibition of important inflammatory pathways in PsA [36]. In phase 3 trials ustekinumab especially showed improvement in skin disease but other factors, such as enthesitis, dactylitis, nail disease, physical function and quality of life also improve [42]. Another new therapeutic agent is secukinumab, a human monoclonal IgG1k antibody, targeting IL-17A, which also has a proinflammatory role in the pathophysiology of PsA. Recent phase 3 trials in PsA patients showed good efficacy of secukinumab in anti-TNF naive patients as well as patients who had previously received anti-TNF agents [43].

Conclusion

Psoriatic arthritis resembles a complex inflammatory joint disease and this review tries to shed light on different aspects of PsA. Besides the psoriatic skin disease, which can also be difficult to diagnose in the first place or even be absent in the beginning of the course of PsA, the clinician has to focus on arthritis of peripheral joints, as well as axial disease, dactylitis and enthesitis. PsA is a very heterogeneous disease with a wide variety of extra-articular manifestations involving ocular, gastrointestinal, vascular, metabolic and urogenital symptoms. Comorbidities, such as the whole spectrum of the metabolic syndrome and thyroid autoimmunity, add additional complexity to PsA management. Our scientific insight into the pathophysiology of PsA is enlarging and implications on novel treatment options are evident. In this review, we hope to highlight some important aspects of PsA and simultaneously sensitize clinicians to the complexity of this heterogeneous disease.
Conflict of interest
A. Kerschbaumer, K.H. Fenzl, L. Erlacher and D. Aletaha declare that they have no competing interests.
Open access funding provided by Medical University of Vienna.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Unsere Produktempfehlungen

Abo für kostenpflichtige Inhalte

Literatur
1.
Zurück zum Zitat Alamanos Y, Voulgari PV, Drosos AA. Incidence and prevalence of psoriatic arthritis: a systematic review. J Rheumatol. 2008;35(7):1354–8.PubMed Alamanos Y, Voulgari PV, Drosos AA. Incidence and prevalence of psoriatic arthritis: a systematic review. J Rheumatol. 2008;35(7):1354–8.PubMed
2.
Zurück zum Zitat Ogdie A, Schwartzman S, Husni ME. Recognizing and managing comorbidities in psoriatic arthritis. Curr Opin Rheumatol. 2015;27(2):118–26.CrossRefPubMed Ogdie A, Schwartzman S, Husni ME. Recognizing and managing comorbidities in psoriatic arthritis. Curr Opin Rheumatol. 2015;27(2):118–26.CrossRefPubMed
3.
Zurück zum Zitat Wilson FC, Icen M, Crowson CS, McEvoy MT, Gabriel SE, Kremers HM. Time trends in epidemiology and characteristics of psoriatic arthritis over 3 decades: a population-based study. J Rheumatol. 2009;36(2):361–7.CrossRefPubMedPubMedCentral Wilson FC, Icen M, Crowson CS, McEvoy MT, Gabriel SE, Kremers HM. Time trends in epidemiology and characteristics of psoriatic arthritis over 3 decades: a population-based study. J Rheumatol. 2009;36(2):361–7.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Gladman DD, Antoni C, Mease P, Clegg DO, Nash P. Psoriatic arthritis: epidemiology, clinical features, course, and outcome. Ann Rheum Dis. 2005;64(suppl 2):14–7. Gladman DD, Antoni C, Mease P, Clegg DO, Nash P. Psoriatic arthritis: epidemiology, clinical features, course, and outcome. Ann Rheum Dis. 2005;64(suppl 2):14–7.
6.
Zurück zum Zitat Lubrano E, Parsons WJ, Marchesoni A, Olivieri I, D’Angelo S, Cauli A, et al. The Definition and Measurement of Axial Psoriatic Arthritis. J Rheumatol Suppl. 2015;93:40–2.CrossRefPubMed Lubrano E, Parsons WJ, Marchesoni A, Olivieri I, D’Angelo S, Cauli A, et al. The Definition and Measurement of Axial Psoriatic Arthritis. J Rheumatol Suppl. 2015;93:40–2.CrossRefPubMed
7.
Zurück zum Zitat Olivieri I, Salvarani C, Cantini F, Scarano E, Padula A, Niccoli L, et al. Fast spin echo-T2-weighted sequences with fat saturation in dactylitis of spondylarthritis: No evidence of entheseal involvement of the flexor digitorum tendons. Arthritis Rheum. 2002;46(11):2964–7.CrossRefPubMed Olivieri I, Salvarani C, Cantini F, Scarano E, Padula A, Niccoli L, et al. Fast spin echo-T2-weighted sequences with fat saturation in dactylitis of spondylarthritis: No evidence of entheseal involvement of the flexor digitorum tendons. Arthritis Rheum. 2002;46(11):2964–7.CrossRefPubMed
8.
Zurück zum Zitat McGonagle DG, Helliwell P, Veale D. Enthesitis in Psoriatic Disease. Dermatology. 2012;225(2):100–9.CrossRefPubMed McGonagle DG, Helliwell P, Veale D. Enthesitis in Psoriatic Disease. Dermatology. 2012;225(2):100–9.CrossRefPubMed
9.
Zurück zum Zitat Edwards F, De Berker D. Nail psoriasis: Clinical presentation and best practice recommendations. Drugs. 2009;69:2351–61.CrossRefPubMed Edwards F, De Berker D. Nail psoriasis: Clinical presentation and best practice recommendations. Drugs. 2009;69:2351–61.CrossRefPubMed
10.
Zurück zum Zitat Peluso R, Iervolino S, Vitiello M, Bruner V, Lupoli G, Di Minno MND. Extra-articular manifestations in psoriatic arthritis patients. Clin Rheumatol. 2015;34(4):745–53.CrossRefPubMed Peluso R, Iervolino S, Vitiello M, Bruner V, Lupoli G, Di Minno MND. Extra-articular manifestations in psoriatic arthritis patients. Clin Rheumatol. 2015;34(4):745–53.CrossRefPubMed
11.
Zurück zum Zitat Han C, Robinson DWJ, Hackett MV, Paramore LC, Fraeman KH, Bala MV. Cardiovascular disease and risk factors in patients with rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis. J Rheumatol. 2006;33(11):2167–72.PubMed Han C, Robinson DWJ, Hackett MV, Paramore LC, Fraeman KH, Bala MV. Cardiovascular disease and risk factors in patients with rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis. J Rheumatol. 2006;33(11):2167–72.PubMed
12.
Zurück zum Zitat Tam LS, Tomlinson B, Chu TTW, Li M, Leung YY, Kwok LW, et al. Cardiovascular risk profile of patients with psoriatic arthritis compared to controls – The role of inflammation. Rheumatology. 2008;47(5):718–23.CrossRefPubMed Tam LS, Tomlinson B, Chu TTW, Li M, Leung YY, Kwok LW, et al. Cardiovascular risk profile of patients with psoriatic arthritis compared to controls – The role of inflammation. Rheumatology. 2008;47(5):718–23.CrossRefPubMed
13.
Zurück zum Zitat Dubreuil M, Rho YH, Man A, Zhu Y, Zhang Y, Love TJ, et al. Diabetes incidence in psoriatic arthritis, psoriasis and rheumatoid arthritis: A UK population-based cohort study. Rheumatol (united kingdom). 2014;53(2):346–52. Dubreuil M, Rho YH, Man A, Zhu Y, Zhang Y, Love TJ, et al. Diabetes incidence in psoriatic arthritis, psoriasis and rheumatoid arthritis: A UK population-based cohort study. Rheumatol (united kingdom). 2014;53(2):346–52.
14.
Zurück zum Zitat Solomon DH, Love TJ, Canning C, Schneeweiss S. Risk of diabetes among patients with rheumatoid arthritis, psoriatic arthritis and psoriasis. Ann Rheum Dis. 2010;69(12):2114–7.CrossRefPubMedPubMedCentral Solomon DH, Love TJ, Canning C, Schneeweiss S. Risk of diabetes among patients with rheumatoid arthritis, psoriatic arthritis and psoriasis. Ann Rheum Dis. 2010;69(12):2114–7.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Haroon M, Gallagher P, Heffernan E, FitzGerald O. High prevalence of metabolic syndrome and of insulin resistance in psoriatic arthritis is associated with the severity of underlying disease. J Rheumatol. 2014;41(7):1357–65.CrossRefPubMed Haroon M, Gallagher P, Heffernan E, FitzGerald O. High prevalence of metabolic syndrome and of insulin resistance in psoriatic arthritis is associated with the severity of underlying disease. J Rheumatol. 2014;41(7):1357–65.CrossRefPubMed
16.
Zurück zum Zitat Antonelli A, Delle Sedie A, Fallahi P, Ferrari SM, Maccheroni M, Ferrannini E, et al. High prevalence of thyroid autoimmunity and hypothyroidism in patients with psoriatic arthritis. J Rheumatol. 2006;33(10):2026–8.PubMed Antonelli A, Delle Sedie A, Fallahi P, Ferrari SM, Maccheroni M, Ferrannini E, et al. High prevalence of thyroid autoimmunity and hypothyroidism in patients with psoriatic arthritis. J Rheumatol. 2006;33(10):2026–8.PubMed
18.
Zurück zum Zitat Hueber AJ, McInnes IB. Immune regulation in psoriasis and psoriatic arthritis – recent developments. Immunol Lett. 2007;114(2):59–65.CrossRefPubMed Hueber AJ, McInnes IB. Immune regulation in psoriasis and psoriatic arthritis – recent developments. Immunol Lett. 2007;114(2):59–65.CrossRefPubMed
19.
Zurück zum Zitat Barnas JL, Ritchlin CT. Etiology and Pathogenesis of Psoriatic Arthritis. Rheum Dis Clin North Am. 2015;41(4):643–63.CrossRefPubMed Barnas JL, Ritchlin CT. Etiology and Pathogenesis of Psoriatic Arthritis. Rheum Dis Clin North Am. 2015;41(4):643–63.CrossRefPubMed
20.
Zurück zum Zitat FitzGerald O, Haroon M, Giles JT, Winchester R. Concepts of pathogenesis in psoriatic arthritis: genotype determines clinical phenotype. Arthritis Res Ther. 2015;17(1):115.CrossRefPubMedPubMedCentral FitzGerald O, Haroon M, Giles JT, Winchester R. Concepts of pathogenesis in psoriatic arthritis: genotype determines clinical phenotype. Arthritis Res Ther. 2015;17(1):115.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat McGonagle D, Gibbon W, Emery P. Classification of inflammatory arthritis by enthesitis. Lancet. 1998;352(9134):1137–40.CrossRefPubMed McGonagle D, Gibbon W, Emery P. Classification of inflammatory arthritis by enthesitis. Lancet. 1998;352(9134):1137–40.CrossRefPubMed
22.
Zurück zum Zitat Eder L, Chandran V, Pellet F, Shanmugarajah S, Rosen CF, Bull SB, et al. Human leucocyte antigen risk alleles for psoriatic arthritis among patients with psoriasis. Ann Rheum Dis. 2012;71(1):50–5.CrossRefPubMed Eder L, Chandran V, Pellet F, Shanmugarajah S, Rosen CF, Bull SB, et al. Human leucocyte antigen risk alleles for psoriatic arthritis among patients with psoriasis. Ann Rheum Dis. 2012;71(1):50–5.CrossRefPubMed
23.
Zurück zum Zitat Curran SA, FitzGerald OM, Costello PJ, Selby JM, Kane DJ, Bresnihan B, et al. Nucleotide sequencing of psoriatic arthritis tissue before and during methotrexate administration reveals a complex inflammatory T cell infiltrate with very few clones exhibiting features that suggest they drive the inflammatory process by recognizing aut. J Immunol. 2004;172(3):1935–44.CrossRefPubMed Curran SA, FitzGerald OM, Costello PJ, Selby JM, Kane DJ, Bresnihan B, et al. Nucleotide sequencing of psoriatic arthritis tissue before and during methotrexate administration reveals a complex inflammatory T cell infiltrate with very few clones exhibiting features that suggest they drive the inflammatory process by recognizing aut. J Immunol. 2004;172(3):1935–44.CrossRefPubMed
24.
Zurück zum Zitat Benjamin M, McGonagle D. The anatomical basis for disease localisation in seronegative spondyloarthropathy at entheses and related sites. J Anat. 2001;199(Pt 5):503–26.CrossRefPubMedPubMedCentral Benjamin M, McGonagle D. The anatomical basis for disease localisation in seronegative spondyloarthropathy at entheses and related sites. J Anat. 2001;199(Pt 5):503–26.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat McGonagle D, Tan AL. The enthesis in psoriatic arthritis. Clin Exp Rheumatol. 2015;33(5 Suppl 93):36–9. McGonagle D, Tan AL. The enthesis in psoriatic arthritis. Clin Exp Rheumatol. 2015;33(5 Suppl 93):36–9.
26.
Zurück zum Zitat Benjamin M, Toumi H, Suzuki D, Redman S, Emery P, McGonagle D. Microdamage and altered vascularity at the enthesis-bone interface provides an anatomic explanation for bone involvement in the HLA-B27-associated spondylarthritides and allied disorders. Arthritis Rheum. 2007;56(1):224–33.CrossRefPubMed Benjamin M, Toumi H, Suzuki D, Redman S, Emery P, McGonagle D. Microdamage and altered vascularity at the enthesis-bone interface provides an anatomic explanation for bone involvement in the HLA-B27-associated spondylarthritides and allied disorders. Arthritis Rheum. 2007;56(1):224–33.CrossRefPubMed
28.
Zurück zum Zitat Jacques P, Lambrecht S, Verheugen E, Pauwels E, Kollias G, Armaka M, et al. Proof of concept: enthesitis and new bone formation in spondyloarthritis are driven by mechanical strain and stromal cells. Ann Rheum Dis. 2014;73(2):437–45.CrossRefPubMed Jacques P, Lambrecht S, Verheugen E, Pauwels E, Kollias G, Armaka M, et al. Proof of concept: enthesitis and new bone formation in spondyloarthritis are driven by mechanical strain and stromal cells. Ann Rheum Dis. 2014;73(2):437–45.CrossRefPubMed
29.
Zurück zum Zitat Schatteman L, Mielants H, Veys EM, Cuvelier C, De Vos M, Gyselbrecht L, et al. Gut inflammation in psoriatic arthritis: a prospective ileocolonoscopic study. J Rheumatol. 1995;22(4):680–3.PubMed Schatteman L, Mielants H, Veys EM, Cuvelier C, De Vos M, Gyselbrecht L, et al. Gut inflammation in psoriatic arthritis: a prospective ileocolonoscopic study. J Rheumatol. 1995;22(4):680–3.PubMed
30.
Zurück zum Zitat Scher JU, Ubeda C, Artacho A, Attur M, Isaac S, Reddy SM, et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol. 2015;67(1):128–39. doi:10.1002/art.38892.CrossRefPubMedPubMedCentral Scher JU, Ubeda C, Artacho A, Attur M, Isaac S, Reddy SM, et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol. 2015;67(1):128–39. doi:10.​1002/​art.​38892.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Al-Mutairi N, Nour T. The effect of weight reduction on treatment outcomes in obese patients with psoriasis on biologic therapy: a randomized controlled prospective trial. Expert Opin Biol Ther. 2014;14(6):749–56.CrossRefPubMed Al-Mutairi N, Nour T. The effect of weight reduction on treatment outcomes in obese patients with psoriasis on biologic therapy: a randomized controlled prospective trial. Expert Opin Biol Ther. 2014;14(6):749–56.CrossRefPubMed
34.
Zurück zum Zitat Menon B, Gullick NJ, Walter GJ, Rajasekhar M, Garrood T, Evans HG, et al. Interleukin-17+CD8+ T Cells Are Enriched in the Joints of Patients With Psoriatic Arthritis and Correlate With Disease Activity and Joint Damage Progression. Arthritis Rheumatol. 2014;66(5):1272–81. doi:10.1002/art.38376.CrossRefPubMedPubMedCentral Menon B, Gullick NJ, Walter GJ, Rajasekhar M, Garrood T, Evans HG, et al. Interleukin-17+CD8+ T Cells Are Enriched in the Joints of Patients With Psoriatic Arthritis and Correlate With Disease Activity and Joint Damage Progression. Arthritis Rheumatol. 2014;66(5):1272–81. doi:10.​1002/​art.​38376.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Cai Y, Shen X, Ding C, Qi C, Li K, Li X, et al. Pivotal Role of Dermal IL-17-Producing γδ T Cells in Skin Inflammation. Immunity. 2011;35(4):596–610.CrossRefPubMedPubMedCentral Cai Y, Shen X, Ding C, Qi C, Li K, Li X, et al. Pivotal Role of Dermal IL-17-Producing γδ T Cells in Skin Inflammation. Immunity. 2011;35(4):596–610.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Mease PJ. Biologic Therapy for Psoriatic Arthritis. Rheum Dis Clin North Am. 2015;41(4):723–38.CrossRefPubMed Mease PJ. Biologic Therapy for Psoriatic Arthritis. Rheum Dis Clin North Am. 2015;41(4):723–38.CrossRefPubMed
37.
Zurück zum Zitat Gossec L, Smolen JS, Ramiro S, de Wit M, Cutolo M, Dougados M, et al. European League Against Rheumatism (EULAR) recommendations for the management of psoriatic arthritis with pharmacological therapies. Ann Rheum Dis. 2015;75(3):499–510.CrossRefPubMed Gossec L, Smolen JS, Ramiro S, de Wit M, Cutolo M, Dougados M, et al. European League Against Rheumatism (EULAR) recommendations for the management of psoriatic arthritis with pharmacological therapies. Ann Rheum Dis. 2015;75(3):499–510.CrossRefPubMed
38.
Zurück zum Zitat Soriano ER. Management of Psoriatic Arthritis: Traditional Disease-Modifying Rheumatic Agents and Targeted Small Molecules. Rheum Dis Clin North Am. 2015;41(4):711–22.CrossRefPubMed Soriano ER. Management of Psoriatic Arthritis: Traditional Disease-Modifying Rheumatic Agents and Targeted Small Molecules. Rheum Dis Clin North Am. 2015;41(4):711–22.CrossRefPubMed
39.
Zurück zum Zitat Behrens F, Finkenwirth C, Pavelka K, Štolfa J, Šipek-Dolnicar A, Thaçi D, et al. Leflunomide in psoriatic arthritis: results from a large European prospective observational study. Arthritis Care Res (Hoboken). 2013;65(3):464–70.CrossRef Behrens F, Finkenwirth C, Pavelka K, Štolfa J, Šipek-Dolnicar A, Thaçi D, et al. Leflunomide in psoriatic arthritis: results from a large European prospective observational study. Arthritis Care Res (Hoboken). 2013;65(3):464–70.CrossRef
40.
Zurück zum Zitat Cutolo M, Myerson GE, Fleischmann RM, Lioté F, Díaz-González F, Van den Bosch F, et al. A Phase III, Randomized, Controlled Trial of Apremilast in Patients with Psoriatic Arthritis: Results of the PALACE 2 Trial. J Rheumatol. 2016;43(9):1724–34.CrossRefPubMed Cutolo M, Myerson GE, Fleischmann RM, Lioté F, Díaz-González F, Van den Bosch F, et al. A Phase III, Randomized, Controlled Trial of Apremilast in Patients with Psoriatic Arthritis: Results of the PALACE 2 Trial. J Rheumatol. 2016;43(9):1724–34.CrossRefPubMed
41.
Zurück zum Zitat Kavanaugh A, Mease PJ, Gomez-Reino JJ, Adebajo AO, Wollenhaupt J, Gladman DD, et al. Treatment of psoriatic arthritis in a phase 3 randomised, placebo-controlled trial with apremilast, an oral phosphodiesterase 4 inhibitor. Ann Rheum Dis. 2014;73(6):1020.CrossRefPubMedPubMedCentral Kavanaugh A, Mease PJ, Gomez-Reino JJ, Adebajo AO, Wollenhaupt J, Gladman DD, et al. Treatment of psoriatic arthritis in a phase 3 randomised, placebo-controlled trial with apremilast, an oral phosphodiesterase 4 inhibitor. Ann Rheum Dis. 2014;73(6):1020.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Kavanaugh A, Puig L, Gottlieb AB, Ritchlin C, You Y, Li S, et al. Efficacy and safety of ustekinumab in psoriatic arthritis patients with peripheral arthritis and physician-reported spondylitis: post-hoc analyses from two phase III, multicentre, double-blind, placebo-controlled studies (PSUMMIT-1/PSUMMIT-2). Ann Rheum Dis. 2016. doi:10.1136/annrheumdis-2015-209068. Kavanaugh A, Puig L, Gottlieb AB, Ritchlin C, You Y, Li S, et al. Efficacy and safety of ustekinumab in psoriatic arthritis patients with peripheral arthritis and physician-reported spondylitis: post-hoc analyses from two phase III, multicentre, double-blind, placebo-controlled studies (PSUMMIT-1/PSUMMIT-2). Ann Rheum Dis. 2016. doi:10.​1136/​annrheumdis-2015-209068.
43.
Zurück zum Zitat Kavanaugh A, McInnes IB, Mease PJ, Hall S, Chinoy H, Kivitz AJ, et al. Efficacy of Subcutaneous Secukinumab in Patients with Active Psoriatic Arthritis Stratified by Prior Tumor Necrosis Factor Inhibitor Use: Results from the Randomized Placebo-controlled FUTURE 2 Study. J Rheumatol. 2016;43(9):1713–7.CrossRefPubMed Kavanaugh A, McInnes IB, Mease PJ, Hall S, Chinoy H, Kivitz AJ, et al. Efficacy of Subcutaneous Secukinumab in Patients with Active Psoriatic Arthritis Stratified by Prior Tumor Necrosis Factor Inhibitor Use: Results from the Randomized Placebo-controlled FUTURE 2 Study. J Rheumatol. 2016;43(9):1713–7.CrossRefPubMed
Metadaten
Titel
An overview of psoriatic arthritis – epidemiology, clinical features, pathophysiology and novel treatment targets
verfasst von
Andreas Kerschbaumer
Karl H. Fenzl
Ludwig Erlacher
Daniel Aletaha
Publikationsdatum
01.11.2016
Verlag
Springer Vienna
Erschienen in
Wiener klinische Wochenschrift / Ausgabe 21-22/2016
Print ISSN: 0043-5325
Elektronische ISSN: 1613-7671
DOI
https://doi.org/10.1007/s00508-016-1111-9

Weitere Artikel der Ausgabe 21-22/2016

Wiener klinische Wochenschrift 21-22/2016 Zur Ausgabe

mitteilungen der gesellschaft der ärzte in wien

Veranstaltungen

images in clinical medicine

Large vessel arteritis