Skip to main content
Erschienen in:

01.10.2015 | Review

The complex interplay between Notch signaling and Snail1 transcription factor in the regulation of epithelial–mesenchymal transition (EMT)

Notch and Snail1 in epithelial–mesenchymal transition (EMT)

verfasst von: M. Brzozowa-Zasada, PhD, A. Piecuch, MSc, O. Segiet, MD, Prof. K. Stęplewska, Prof. A. Gabriel, Prof. R. Wojnicz

Erschienen in: European Surgery | Ausgabe 5/2015

Einloggen, um Zugang zu erhalten

Summary

Background

The epithelial–mesenchymal transition (EMT) is a highly coordinated process observed during embryonic development and adult tissue repair. It is characterized by the loss of cell–cell adhesion and apicobasal polarity, and the transition to a cell type with a spindle-like phenotype able to migrate through the basal membranes.

Methods

This review article includes available date from peer-reviewed publications associated with the role of Notch signaling and Snail1 transcription factor in activation and regulation of EMT.

Results

Growing evidences in the past few years demonstrated a significant role of Notch in EMT activation. It is not surprising because this pathway is the nexus of a unique and versatile signaling network, that regulates and is regulated by a variety of cellular mechanisms highly dependent on the biological context—especially tissue microenvironment. This compartment sends signals promoting and regulating EMT, which usually acts as a transcriptional repressors. Among them, Snail1 has been shown to be crucial for cellular movement during cancer progression and metastasis. In cancer patients, increased level of Snail1 is usually connected with poor clinical outcome, probably due to downregulation of E-cadherin expression. Moreover, the continuous expression of E-cadherin during developmental EMT in Snail1-deficient mouse embryos clearly supports the idea that its transcriptional repression is mostly related to Snail1 activity.

Conclusion

Cooperation of Notch signaling and Snail1 plays very significant role in such pathologies as wound healing and cancer development. Nevertheless, they are also involved in tissue embryonic development.
Literatur
1.
Zurück zum Zitat Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA. Epithelial–mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest. 2009;119:1438–49. doi:10.1172/JCI38019.PubMedCentralCrossRefPubMed Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA. Epithelial–mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest. 2009;119:1438–49. doi:10.1172/JCI38019.PubMedCentralCrossRefPubMed
2.
Zurück zum Zitat Davis FM, Stewart TA, Thompson EW, Monteih GR. Targeting EMT in cancer: opportunities for pharmacological intervention. Trends Pharmacol Sci. 2014;35:479–88. doi:10.1016/j.tips.2014.06.006CrossRefPubMed Davis FM, Stewart TA, Thompson EW, Monteih GR. Targeting EMT in cancer: opportunities for pharmacological intervention. Trends Pharmacol Sci. 2014;35:479–88. doi:10.1016/j.tips.2014.06.006CrossRefPubMed
3.
Zurück zum Zitat Iwatsuki M, Mimori K, Yokobori T, et al. Epithelial–mesenchymal transition in cancer development and its clinical significance. Cancer Sci. 2010;101:293–9. doi:10.1111/j.1349-7006.2009.01419.xCrossRefPubMed Iwatsuki M, Mimori K, Yokobori T, et al. Epithelial–mesenchymal transition in cancer development and its clinical significance. Cancer Sci. 2010;101:293–9. doi:10.1111/j.1349-7006.2009.01419.xCrossRefPubMed
4.
Zurück zum Zitat Noseda M, McLean G, Niesses K, et al. Notch activation results in phenotypic and functional changes consistent with endothelial-to-mesenchymal transformation. Circ Res. 2004;94:910–7.CrossRefPubMed Noseda M, McLean G, Niesses K, et al. Notch activation results in phenotypic and functional changes consistent with endothelial-to-mesenchymal transformation. Circ Res. 2004;94:910–7.CrossRefPubMed
5.
Zurück zum Zitat Chen J, Imanaka N, Chen J, Griffin JD. Hypoxia potentiates Notch signaling in breast cancer leading to decreased E-cadherin expression and increased cell migration and invasion. Br J Cancer. 2010;102:351–60. doi:10.1038/sj.bjc.6605486PubMedCentralCrossRefPubMed Chen J, Imanaka N, Chen J, Griffin JD. Hypoxia potentiates Notch signaling in breast cancer leading to decreased E-cadherin expression and increased cell migration and invasion. Br J Cancer. 2010;102:351–60. doi:10.1038/sj.bjc.6605486PubMedCentralCrossRefPubMed
6.
Zurück zum Zitat Zavadil J, Cermak L, Soto-Nieves N, Bottinger EP. Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J. 2004;23:1155–65.PubMedCentralCrossRefPubMed Zavadil J, Cermak L, Soto-Nieves N, Bottinger EP. Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J. 2004;23:1155–65.PubMedCentralCrossRefPubMed
7.
Zurück zum Zitat Brzozowa M, Mielańczyk Ł, Michalski M, et al. The role of Notch signaling pathway in gastrin cancer pathogenesis. Contemp Oncol. 2013;17:1–5. doi:10.5114/wo.2013.33765 Brzozowa M, Mielańczyk Ł, Michalski M, et al. The role of Notch signaling pathway in gastrin cancer pathogenesis. Contemp Oncol. 2013;17:1–5. doi:10.5114/wo.2013.33765
8.
Zurück zum Zitat Brzozowa M, Wojnicz R, Kowalczyk-Ziomek G, Helewski K. The Notch ligand delta-like 4(DLL4) as a traget in angiogenesis-based cancer therapy. Contemp Oncol. 2013;17:234–7. doi:10.5114/wo.2013.35588 Brzozowa M, Wojnicz R, Kowalczyk-Ziomek G, Helewski K. The Notch ligand delta-like 4(DLL4) as a traget in angiogenesis-based cancer therapy. Contemp Oncol. 2013;17:234–7. doi:10.5114/wo.2013.35588
9.
Zurück zum Zitat Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7:415–28.CrossRefPubMed Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7:415–28.CrossRefPubMed
10.
Zurück zum Zitat Yang MH, Hsu DS, Wang HW, et al. Bmi1 is essential in Twist1-induced epithelial–mesenchymal transition. Nat Cell Biol. 2010;12:982–92. doi:10.1038/ncb2099CrossRefPubMed Yang MH, Hsu DS, Wang HW, et al. Bmi1 is essential in Twist1-induced epithelial–mesenchymal transition. Nat Cell Biol. 2010;12:982–92. doi:10.1038/ncb2099CrossRefPubMed
11.
Zurück zum Zitat Kroepil F, Fluegen G, Totikov Z, et al. Down-regulation of CDH1 is associated with expression of SNAI1 in colorectal adenomas. PLoS One. 2012;7:e46665. doi:10.1371/journal.pone.0046665PubMedCentralCrossRefPubMed Kroepil F, Fluegen G, Totikov Z, et al. Down-regulation of CDH1 is associated with expression of SNAI1 in colorectal adenomas. PLoS One. 2012;7:e46665. doi:10.1371/journal.pone.0046665PubMedCentralCrossRefPubMed
12.
Zurück zum Zitat Pena C, Garcia JM, Larriba MJ, et al. SNAI1 expression in colon cancer related with CDH1 and VDR downregulation in normal adjacent tissue. Oncogene. 2009;28:4375–85. doi:10.1038/onc.2009.285CrossRefPubMed Pena C, Garcia JM, Larriba MJ, et al. SNAI1 expression in colon cancer related with CDH1 and VDR downregulation in normal adjacent tissue. Oncogene. 2009;28:4375–85. doi:10.1038/onc.2009.285CrossRefPubMed
13.
Zurück zum Zitat Carver EA, Jiang R, LAN Y, Oram KF, Gridley T. The mouse snail gene encodes a key regulator of the epithelial–mesenchymal transition. Mol Cell Biol. 2001;21:8184–8.PubMedCentralCrossRefPubMed Carver EA, Jiang R, LAN Y, Oram KF, Gridley T. The mouse snail gene encodes a key regulator of the epithelial–mesenchymal transition. Mol Cell Biol. 2001;21:8184–8.PubMedCentralCrossRefPubMed
14.
Zurück zum Zitat Koch U, Radtke F. Notch and cancer: a double-edged sword. Cell Mol Life. 2007;64:2746–62.CrossRef Koch U, Radtke F. Notch and cancer: a double-edged sword. Cell Mol Life. 2007;64:2746–62.CrossRef
15.
Zurück zum Zitat Borgrefe T, Oswald F. The Notch signaling pathway: transcriptional regulation at Notch target genes. Cell Mol Life Sci. 2009;66:1631–46.CrossRef Borgrefe T, Oswald F. The Notch signaling pathway: transcriptional regulation at Notch target genes. Cell Mol Life Sci. 2009;66:1631–46.CrossRef
17.
Zurück zum Zitat Leong KG, Karsan A. Recent insights into the role of Notch signaling in tumorigenesis. Blood. 2006;107:2223–33.CrossRefPubMed Leong KG, Karsan A. Recent insights into the role of Notch signaling in tumorigenesis. Blood. 2006;107:2223–33.CrossRefPubMed
18.
Zurück zum Zitat Balόs V, Blanco M, Medina V, Aparicio G, Diaz-Prado S, Grande E. Notch signaling in cancer stem cells. Clin Transl Oncol. 2009;11:11–9.CrossRef Balόs V, Blanco M, Medina V, Aparicio G, Diaz-Prado S, Grande E. Notch signaling in cancer stem cells. Clin Transl Oncol. 2009;11:11–9.CrossRef
19.
Zurück zum Zitat Timmerman LA, Grego-Bessa J, Raya A, et al. Notch promotes epithelial–mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev. 2004;18:99–115. doi:10.1101/gad.276304PubMedCentralCrossRefPubMed Timmerman LA, Grego-Bessa J, Raya A, et al. Notch promotes epithelial–mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev. 2004;18:99–115. doi:10.1101/gad.276304PubMedCentralCrossRefPubMed
20.
Zurück zum Zitat Liu ZC, Wang HS, Zhang G, et al. AKT/GSK-3b regulates stability and transcription of snail which is crucial for bFGF-induced epithelial–mesenchymal transition of prostate cancer cells. Biochim Biophys Acta. 2014;1840:3096–105. doi:10.1016/j.bbagen.2014.07.018CrossRefPubMed Liu ZC, Wang HS, Zhang G, et al. AKT/GSK-3b regulates stability and transcription of snail which is crucial for bFGF-induced epithelial–mesenchymal transition of prostate cancer cells. Biochim Biophys Acta. 2014;1840:3096–105. doi:10.1016/j.bbagen.2014.07.018CrossRefPubMed
21.
Zurück zum Zitat Ma C, Wang J, Gao Y, et al. The role of glycogen synthase kinase 3beta in the transformation of epidermal cells. Cancer Res. 2007;67:7756–64.CrossRefPubMed Ma C, Wang J, Gao Y, et al. The role of glycogen synthase kinase 3beta in the transformation of epidermal cells. Cancer Res. 2007;67:7756–64.CrossRefPubMed
22.
Zurück zum Zitat Luna-Zurita L, Prados B, Grego-Bessa J, et al. Integration of a Notch-dependent mesenchymal gene program and Bmp2-driven cell invasiveness regulates murine cardiac valve formation. J Clin Invest. 2010;120:3493–507. doi:10.1172/JCI42666PubMedCentralCrossRefPubMed Luna-Zurita L, Prados B, Grego-Bessa J, et al. Integration of a Notch-dependent mesenchymal gene program and Bmp2-driven cell invasiveness regulates murine cardiac valve formation. J Clin Invest. 2010;120:3493–507. doi:10.1172/JCI42666PubMedCentralCrossRefPubMed
23.
Zurück zum Zitat MacGrogan D, Luna-Zurita L, de la Pompa JL. Notch signaling in cardiac valve development and disease. Birth Defects Res A Clin Mol Teratol. 2011;91:449–59. doi:10.1002/bdra.20815CrossRefPubMed MacGrogan D, Luna-Zurita L, de la Pompa JL. Notch signaling in cardiac valve development and disease. Birth Defects Res A Clin Mol Teratol. 2011;91:449–59. doi:10.1002/bdra.20815CrossRefPubMed
24.
Zurück zum Zitat Luna-Zurita L, Prados B, Grego-Bessa J, et al. Integration of a Notch-dependent mesenchymal gene program and Bmp2-driven cell invasiveness regulates murine cardiac valve formation. J Clin Invest. 2010;120:3493–507. doi:10.1172/JCI42666PubMedCentralCrossRefPubMed Luna-Zurita L, Prados B, Grego-Bessa J, et al. Integration of a Notch-dependent mesenchymal gene program and Bmp2-driven cell invasiveness regulates murine cardiac valve formation. J Clin Invest. 2010;120:3493–507. doi:10.1172/JCI42666PubMedCentralCrossRefPubMed
25.
Zurück zum Zitat Riley MF, McBride KL, Cole SE. NOTCH1 missense alleles associated with left ventricular outflow tract defects exhibit impaired receptor processing and defective EMT. Biochim Biophys Acta. 2011;1812:121–9. doi:10.1016/j.bbadis.2010.10.002PubMedCentralCrossRefPubMed Riley MF, McBride KL, Cole SE. NOTCH1 missense alleles associated with left ventricular outflow tract defects exhibit impaired receptor processing and defective EMT. Biochim Biophys Acta. 2011;1812:121–9. doi:10.1016/j.bbadis.2010.10.002PubMedCentralCrossRefPubMed
26.
Zurück zum Zitat Urbanek K, Cabral-da-Silva MC, Ide-Iwata N, et al. Inhibition of notch1-dependent cardiomyogenesis leads to a dilated myopathy in the neonatal heart. Circ Res. 2010;107:429–41. doi:10.1161/CIRCRESAHA.110.218487PubMedCentralCrossRefPubMed Urbanek K, Cabral-da-Silva MC, Ide-Iwata N, et al. Inhibition of notch1-dependent cardiomyogenesis leads to a dilated myopathy in the neonatal heart. Circ Res. 2010;107:429–41. doi:10.1161/CIRCRESAHA.110.218487PubMedCentralCrossRefPubMed
27.
Zurück zum Zitat Gupta N, Xu Z, El-Sehemy A, Steed H, Fu Y. Notch3 induces epithelial–mesenchymal transition and attenuates carboplatin-induced apoptosis in ovarian cancer cells. Gynecol Oncol. 2013;130:200–6. doi:10.1016/j.ygyno.2013.03.019CrossRefPubMed Gupta N, Xu Z, El-Sehemy A, Steed H, Fu Y. Notch3 induces epithelial–mesenchymal transition and attenuates carboplatin-induced apoptosis in ovarian cancer cells. Gynecol Oncol. 2013;130:200–6. doi:10.1016/j.ygyno.2013.03.019CrossRefPubMed
28.
Zurück zum Zitat Park JT, Chen X, Tropè CG, Davidson B, IeM S, Wang TL. Notch3 overexpression is related to the recurrence of ovarian cancer and confers resistance to carboplatin. Am J Pathol. 2010;177:1087–94. doi:10.2353/ajpath.2010.100316.28PubMedCentralCrossRefPubMed Park JT, Chen X, Tropè CG, Davidson B, IeM S, Wang TL. Notch3 overexpression is related to the recurrence of ovarian cancer and confers resistance to carboplatin. Am J Pathol. 2010;177:1087–94. doi:10.2353/ajpath.2010.100316.28PubMedCentralCrossRefPubMed
29.
Zurück zum Zitat Higgins CF. Multiple molecular mechanisms for multidrug resistance transporters. Nature. 2007;446:749–57.CrossRefPubMed Higgins CF. Multiple molecular mechanisms for multidrug resistance transporters. Nature. 2007;446:749–57.CrossRefPubMed
30.
Zurück zum Zitat Wang Z, Li Y, Kong D, et al. Acquisition of epithelial–mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. Cancer Res. 2009;69:2400–7. doi:10.1158/0008-5472.CAN-08-4312PubMedCentralCrossRefPubMed Wang Z, Li Y, Kong D, et al. Acquisition of epithelial–mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. Cancer Res. 2009;69:2400–7. doi:10.1158/0008-5472.CAN-08-4312PubMedCentralCrossRefPubMed
31.
Zurück zum Zitat Jordà M, Olmeda D, Vinyals A, et al. Upregulation of MMP-9 in MDCK epithelial cell line in response to expression of the Snail transcription factor. J Cell Sci. 2005;118:3371–85.CrossRefPubMed Jordà M, Olmeda D, Vinyals A, et al. Upregulation of MMP-9 in MDCK epithelial cell line in response to expression of the Snail transcription factor. J Cell Sci. 2005;118:3371–85.CrossRefPubMed
32.
Zurück zum Zitat Zheng G, Lyons JG, Tan TK, et al. Disruption of E-cadherin by matrix metalloproteinase directly mediates epithelial–mesenchymal transition downstream of transforming growth factor-beta1 in renal tubular epithelial cells. Am J Pathol. 2009;175:580–91. doi:10.2353/ajpath.2009.080983PubMedCentralCrossRefPubMed Zheng G, Lyons JG, Tan TK, et al. Disruption of E-cadherin by matrix metalloproteinase directly mediates epithelial–mesenchymal transition downstream of transforming growth factor-beta1 in renal tubular epithelial cells. Am J Pathol. 2009;175:580–91. doi:10.2353/ajpath.2009.080983PubMedCentralCrossRefPubMed
33.
Zurück zum Zitat Bachelder RE, Yoon SO, Franci C, de Herreros AG, Mercurio AM. Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: implications for the epithelial–mesenchymal transition. J Cell Biol. 2005;168:29–33.PubMedCentralCrossRefPubMed Bachelder RE, Yoon SO, Franci C, de Herreros AG, Mercurio AM. Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: implications for the epithelial–mesenchymal transition. J Cell Biol. 2005;168:29–33.PubMedCentralCrossRefPubMed
34.
Zurück zum Zitat Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M, Hung MC. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial–mesenchymal transition. Nat Cell Biol. 2004;6:931–40.CrossRefPubMed Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M, Hung MC. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial–mesenchymal transition. Nat Cell Biol. 2004;6:931–40.CrossRefPubMed
35.
Zurück zum Zitat Chen X, Xiao W, Liu X, et al. Blockade of Jagged/Notch pathway abrogates transforming growth factor b2-induced epithelial–mesenchymal transition in human retinal pigment epithelium cells. Curr Mol Med. 2014;14:523–34.CrossRefPubMed Chen X, Xiao W, Liu X, et al. Blockade of Jagged/Notch pathway abrogates transforming growth factor b2-induced epithelial–mesenchymal transition in human retinal pigment epithelium cells. Curr Mol Med. 2014;14:523–34.CrossRefPubMed
36.
Zurück zum Zitat Higgins DF, Kimura K, Bernhardt WM, et al. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Invest. 2007;117:3810–20.PubMedCentralPubMed Higgins DF, Kimura K, Bernhardt WM, et al. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Invest. 2007;117:3810–20.PubMedCentralPubMed
37.
Zurück zum Zitat Luo D, Wang J, Li J, Post M. Mouse snail is a target gene for HIF. Mol Cancer Res. 2011;9:234–45. doi:10.1158/1541-7786.MCR-10-0214CrossRefPubMed Luo D, Wang J, Li J, Post M. Mouse snail is a target gene for HIF. Mol Cancer Res. 2011;9:234–45. doi:10.1158/1541-7786.MCR-10-0214CrossRefPubMed
38.
Zurück zum Zitat Zhang L, Huang G, Li X, et al. Hypoxia induces epithelial–mesenchymal transition via activation of SNAI1 by hypoxia-inducible factor—1a in hepatocellular carcinoma. BMC Cancer. 2013;13:108. doi:10.1186/1471-2407-13-108PubMedCentralCrossRefPubMed Zhang L, Huang G, Li X, et al. Hypoxia induces epithelial–mesenchymal transition via activation of SNAI1 by hypoxia-inducible factor—1a in hepatocellular carcinoma. BMC Cancer. 2013;13:108. doi:10.1186/1471-2407-13-108PubMedCentralCrossRefPubMed
39.
Zurück zum Zitat Ishida T, Hijioka H, Kume K, Miyawaki A, Nakamura N. Notch signaling induces EMT in OSCC cell lines in a hypoxic environment. Oncol Lett. 2013;6:1201–6.PubMedCentralPubMed Ishida T, Hijioka H, Kume K, Miyawaki A, Nakamura N. Notch signaling induces EMT in OSCC cell lines in a hypoxic environment. Oncol Lett. 2013;6:1201–6.PubMedCentralPubMed
40.
Zurück zum Zitat Chen J, Imanaka N, Chen J, Griffin JD. Hypoxia potentiates Notch signaling in breast cancer leading to decreased E-cadherin expression and increased cell migration and invasion. Br J Cancer. 2010;102:351–60. doi:10.1038/sj.bjc.6605486PubMedCentralCrossRefPubMed Chen J, Imanaka N, Chen J, Griffin JD. Hypoxia potentiates Notch signaling in breast cancer leading to decreased E-cadherin expression and increased cell migration and invasion. Br J Cancer. 2010;102:351–60. doi:10.1038/sj.bjc.6605486PubMedCentralCrossRefPubMed
41.
Zurück zum Zitat Sahlgren C, Gustafsson MV, Jin S, Poellinger L, Lendahl U. Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci U S A. 2008;105:6392–7. doi:10.1073/pnas.0802047105PubMedCentralCrossRefPubMed Sahlgren C, Gustafsson MV, Jin S, Poellinger L, Lendahl U. Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci U S A. 2008;105:6392–7. doi:10.1073/pnas.0802047105PubMedCentralCrossRefPubMed
42.
Zurück zum Zitat Pietras A, von Stedingk K, Lindgren D, Påhlman S, Axelson H. JAG2 induction in hypoxic tumor cells alters Notch signaling and enhances endothelial cell tube formation. Mol Cancer Res. 2011;9:626–36. doi:10.1158/1541-7786.MCR-10-0508CrossRefPubMed Pietras A, von Stedingk K, Lindgren D, Påhlman S, Axelson H. JAG2 induction in hypoxic tumor cells alters Notch signaling and enhances endothelial cell tube formation. Mol Cancer Res. 2011;9:626–36. doi:10.1158/1541-7786.MCR-10-0508CrossRefPubMed
43.
Zurück zum Zitat Danza G, Serio C D, Rosati F, et al. Notch signaling modulates hypoxia-induced neuroendocrine differentiation of human prostate cancer cells. Mol Cancer Res. 2012;10:230–8. doi:10.1158/1541-7786.MCR-11-0296PubMedCentralCrossRefPubMed Danza G, Serio C D, Rosati F, et al. Notch signaling modulates hypoxia-induced neuroendocrine differentiation of human prostate cancer cells. Mol Cancer Res. 2012;10:230–8. doi:10.1158/1541-7786.MCR-11-0296PubMedCentralCrossRefPubMed
44.
Zurück zum Zitat Wang Z, Li Y, Kong D, et al. Acquisition of epithelial–mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. Cancer Res. 2009;69:2400–7. doi:10.1158/0008-5472.CAN-08-4312PubMedCentralCrossRefPubMed Wang Z, Li Y, Kong D, et al. Acquisition of epithelial–mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. Cancer Res. 2009;69:2400–7. doi:10.1158/0008-5472.CAN-08-4312PubMedCentralCrossRefPubMed
45.
Zurück zum Zitat Schust J, Sperl B, Hollis A, Mayer TU, Berg T. Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. Chem Biol. 2006;13:1235–42.CrossRefPubMed Schust J, Sperl B, Hollis A, Mayer TU, Berg T. Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. Chem Biol. 2006;13:1235–42.CrossRefPubMed
46.
Zurück zum Zitat Siddiquee K, Zhang S, Guida WC, et al. Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity. Proc Natl Acad Sci U S A. 2007;104:7391–6.PubMedCentralCrossRefPubMed Siddiquee K, Zhang S, Guida WC, et al. Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity. Proc Natl Acad Sci U S A. 2007;104:7391–6.PubMedCentralCrossRefPubMed
47.
Zurück zum Zitat Li H, Wang H, Wang F, Gu Q, Xu X. Snail involves in the transforming growth factor b1-mediated epithelial–mesenchymal transition of retinal pigment epithelial cells. PLoS One. 2011;6:e23322. doi:10.1371/journal.pone.0023322PubMedCentralCrossRefPubMed Li H, Wang H, Wang F, Gu Q, Xu X. Snail involves in the transforming growth factor b1-mediated epithelial–mesenchymal transition of retinal pigment epithelial cells. PLoS One. 2011;6:e23322. doi:10.1371/journal.pone.0023322PubMedCentralCrossRefPubMed
48.
Zurück zum Zitat Lv M, Li Y, Ji MH, Zhuang M, Tang JH. Inhibition of invasion and epithelial–mesenchymal transition of human breast cancer cells by hydrogen sulfide through decreased phospho-p38 expression. Mol Med Rep. 2014;10:341–6. doi:10.3892/mmr.2014.2161PubMed Lv M, Li Y, Ji MH, Zhuang M, Tang JH. Inhibition of invasion and epithelial–mesenchymal transition of human breast cancer cells by hydrogen sulfide through decreased phospho-p38 expression. Mol Med Rep. 2014;10:341–6. doi:10.3892/mmr.2014.2161PubMed
49.
Zurück zum Zitat Bao B, Li Y, Ahmad A, et al. Targeting CSC-related miRNAs for cancer therapy by natural agents. Curr Drug Targets. 2011;13:1858–68.CrossRef Bao B, Li Y, Ahmad A, et al. Targeting CSC-related miRNAs for cancer therapy by natural agents. Curr Drug Targets. 2011;13:1858–68.CrossRef
50.
Zurück zum Zitat Zhang JP, Zeng C, Xu L, Gong J, Fang JH, Zhuang SM. MicroRNA-148a suppresses the epithelial–mesenchymal transition and metastasis of hepatoma cells by targeting Met/Snail signaling. Oncogene. 2014;33:4069–76. doi:10.1038/onc.2013.369CrossRefPubMed Zhang JP, Zeng C, Xu L, Gong J, Fang JH, Zhuang SM. MicroRNA-148a suppresses the epithelial–mesenchymal transition and metastasis of hepatoma cells by targeting Met/Snail signaling. Oncogene. 2014;33:4069–76. doi:10.1038/onc.2013.369CrossRefPubMed
51.
Zurück zum Zitat Peng Y, Liu YM, Li LC, Wang LL, Wu XL. MicroRNA-503 inhibits gastric cancer cell growth and epithelial-to-mesenchymal transition. Oncol Lett. 2014;7:1233–8.PubMedCentralPubMed Peng Y, Liu YM, Li LC, Wang LL, Wu XL. MicroRNA-503 inhibits gastric cancer cell growth and epithelial-to-mesenchymal transition. Oncol Lett. 2014;7:1233–8.PubMedCentralPubMed
52.
Zurück zum Zitat Chen Z, Li S, Huang K, et al. The nuclear protein expression levels of SNAI1 and ZEB1 are involved in the progression and lymph node metastasis of cervical cancer via the epithelial–mesenchymal transition pathway. Hum Pathol. 2013;44:2097–105. doi:10.1016/j.humpath.2013.04.001CrossRefPubMed Chen Z, Li S, Huang K, et al. The nuclear protein expression levels of SNAI1 and ZEB1 are involved in the progression and lymph node metastasis of cervical cancer via the epithelial–mesenchymal transition pathway. Hum Pathol. 2013;44:2097–105. doi:10.1016/j.humpath.2013.04.001CrossRefPubMed
Metadaten
Titel
The complex interplay between Notch signaling and Snail1 transcription factor in the regulation of epithelial–mesenchymal transition (EMT)
Notch and Snail1 in epithelial–mesenchymal transition (EMT)
verfasst von
M. Brzozowa-Zasada, PhD
A. Piecuch, MSc
O. Segiet, MD
Prof. K. Stęplewska
Prof. A. Gabriel
Prof. R. Wojnicz
Publikationsdatum
01.10.2015
Verlag
Springer Vienna
Erschienen in
European Surgery / Ausgabe 5/2015
Print ISSN: 1682-8631
Elektronische ISSN: 1682-4016
DOI
https://doi.org/10.1007/s10353-015-0339-3

Weitere Artikel der Ausgabe 5/2015

European Surgery 5/2015 Zur Ausgabe