Skip to main content

01.02.2024 | themenschwerpunkt

Pathogenese der Uveitis

verfasst von: Prof. Dr. rer. nat. Gerhild Wildner, Prof. Dr. med. Stephan Thurau

Erschienen in: Spektrum der Augenheilkunde

Einloggen, um Zugang zu erhalten

Zusammenfassung

Uveitis als Entzündung des inneren Auges kann verschiedene Ursachen haben: Am häufigsten ist in Europa die Autoimmunität, während Trauma, Infektion oder Masquerade-Syndrome seltener sind. In diesem Artikel werden die aktuellen Kenntnisse zur Pathogenese der autoimmunen Uveitis zusammengefasst. Das Immunprivileg des Auges verhindert die unmittelbare Aktivierung der Immunsystems vor Ort, stattdessen wird eine extraokuläre Aktivierung mit Augenprotein-ähnlichen Umweltantigenen (antigene Mimikry) postuliert, die dann von T‑Zellen mit okulären Autoantigenen verwechselt werden. Die T‑Zellen rekrutieren die Entzündungszellen, die für die Gewebsdestruktion verantwortlich sind, in das Auge. T‑Helfer-1(Th1)- und Th17-Zellen, die okuläre Autoantigene erkennen, spielen die Hauptrolle bei der Uveitis, diese können im Auge auch zu Th1/Th17-Mischtypen oder sogar zu regulatorischen Zellen differenzieren. Es gibt genetische Assoziationen mit verschiedenen Uveitistypen, vor allem mit HLA-Klasse-I-Molekülen. Es wurden aber auch zahlreiche andere Gene, die die Immunantwort beeinflussen, gefunden. Das Mikrobiom, das eine maßgebliche Rolle als „Trainingspartner“ für Zellen des Immunsystems spielt, wird ebenfalls als möglicher Auslöser für Uveitis diskutiert, entweder durch antigene Mimikry von Bakterienmolekülen, die okuläre Autoantigenmoleküle imitieren, oder die Störung der Balance des Immunsystems.
Literatur
1.
Zurück zum Zitat Jabs DA, Nussenblatt RB, Rosenbaum JT. Standardization of uveitis nomenclature for reporting clinical data. Results of the First International Workshop. Am J Ophthalmol. 2005;140(3):509–16.PubMedCrossRef Jabs DA, Nussenblatt RB, Rosenbaum JT. Standardization of uveitis nomenclature for reporting clinical data. Results of the First International Workshop. Am J Ophthalmol. 2005;140(3):509–16.PubMedCrossRef
2.
Zurück zum Zitat Mochizuki M, Kuwabara T, McAllister C, Nussenblatt RB, Gery I. Adoptive transfer of experimental autoimmune uveoretinitis in rats. Immunopathogenic mechanisms and histologic features. Invest Ophthalmol Vis Sci. 1985;26(1):1–9.PubMed Mochizuki M, Kuwabara T, McAllister C, Nussenblatt RB, Gery I. Adoptive transfer of experimental autoimmune uveoretinitis in rats. Immunopathogenic mechanisms and histologic features. Invest Ophthalmol Vis Sci. 1985;26(1):1–9.PubMed
3.
Zurück zum Zitat Smith JR, Stempel AJ, Bharadwaj A, Appukuttan B. Involvement of B cells in non-infectious uveitis. Clinical & translational immunology. 2016;5(2):e63.CrossRef Smith JR, Stempel AJ, Bharadwaj A, Appukuttan B. Involvement of B cells in non-infectious uveitis. Clinical & translational immunology. 2016;5(2):e63.CrossRef
4.
Zurück zum Zitat Wang R‑X, Yu C‑R, Dambuza IM, Mahdi RM, Dolinska MB, Sergeev YV, et al. Interleukin-35 induces regulatory B cells that suppress autoimmune disease. Nat Med. 2014;20:633–41.PubMedPubMedCentralCrossRef Wang R‑X, Yu C‑R, Dambuza IM, Mahdi RM, Dolinska MB, Sergeev YV, et al. Interleukin-35 induces regulatory B cells that suppress autoimmune disease. Nat Med. 2014;20:633–41.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Dambuza IM, He C, Choi JK, Yu C‑R, Wang R, Mattapallil MJ, et al. IL-12p35 induces expansion of IL-10 and IL-35-expressing regulatory B cells and ameliorates autoimmune disease. Nature communications. 2017;8(1):719. Dambuza IM, He C, Choi JK, Yu C‑R, Wang R, Mattapallil MJ, et al. IL-12p35 induces expansion of IL-10 and IL-35-expressing regulatory B cells and ameliorates autoimmune disease. Nature communications. 2017;8(1):719.
6.
Zurück zum Zitat Egwuagu CE, Yu C‑R. Interleukin 35-Producing B Cells (i35-Breg): A New Mediator of Regulatory B‑Cell Functions in CNS Autoimmune Diseases. Crit Rev Immunol. 2015;35(1):49–57.PubMedPubMedCentralCrossRef Egwuagu CE, Yu C‑R. Interleukin 35-Producing B Cells (i35-Breg): A New Mediator of Regulatory B‑Cell Functions in CNS Autoimmune Diseases. Crit Rev Immunol. 2015;35(1):49–57.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Davis JL, Chan CC, Nussenblatt RB. Diagnostic vitrectomy in intermediate uveitis. Dev Ophthalmol. 1992;23:120–32. Davis JL, Chan CC, Nussenblatt RB. Diagnostic vitrectomy in intermediate uveitis. Dev Ophthalmol. 1992;23:120–32.
8.
Zurück zum Zitat Hogan MJ, Wood IS, Godfrey WA. Aqueous Humor Cytology in Uveitis. JAMA Ophthalmol. 1973;89(3):217–20. Hogan MJ, Wood IS, Godfrey WA. Aqueous Humor Cytology in Uveitis. JAMA Ophthalmol. 1973;89(3):217–20.
9.
Zurück zum Zitat Belfort R Jr., Moura NC, Mendes NF. T and B Lymphocytes in the Aqueous Humor of Patients With Uveitis. JAMA Ophthalmol. 1982;100(3):465–7. Belfort R Jr., Moura NC, Mendes NF. T and B Lymphocytes in the Aqueous Humor of Patients With Uveitis. JAMA Ophthalmol. 1982;100(3):465–7.
10.
Zurück zum Zitat Wildner G, Hunig T, Thurau SR. Orally induced, peptide-specific gamma/delta TCR+ cells suppress experimental autoimmune uveitis. Eur J Immunol. 1996;26(9):2140–8.PubMedCrossRef Wildner G, Hunig T, Thurau SR. Orally induced, peptide-specific gamma/delta TCR+ cells suppress experimental autoimmune uveitis. Eur J Immunol. 1996;26(9):2140–8.PubMedCrossRef
11.
Zurück zum Zitat Grégoire S, Terrada C, Martin GH, Fourcade G, Baeyens A, Marodon G, et al. Treatment of Uveitis by In Situ Administration of Ex Vivo-Activated Polyclonal Regulatory T Cells. J Immunol. 2016;196(5):2109–18.PubMedCrossRef Grégoire S, Terrada C, Martin GH, Fourcade G, Baeyens A, Marodon G, et al. Treatment of Uveitis by In Situ Administration of Ex Vivo-Activated Polyclonal Regulatory T Cells. J Immunol. 2016;196(5):2109–18.PubMedCrossRef
12.
Zurück zum Zitat Gilbert RM, Zhang X, Sampson RD, Ehrenstein MR, Nguyen DX, Chaudhry M, et al. Clinical Remission of Sight-Threatening Non-Infectious Uveitis Is Characterized by an Upregulation of Peripheral T‑Regulatory Cell Polarized Towards T‑bet and TIGIT. Front Immunol. 2018;9:907. Gilbert RM, Zhang X, Sampson RD, Ehrenstein MR, Nguyen DX, Chaudhry M, et al. Clinical Remission of Sight-Threatening Non-Infectious Uveitis Is Characterized by an Upregulation of Peripheral T‑Regulatory Cell Polarized Towards T‑bet and TIGIT. Front Immunol. 2018;9:907.
13.
Zurück zum Zitat Thorne JE, Suhler E, Skup M, Tari S, Macaulay D, Chao J, et al. Prevalence of Noninfectious Uveitis in the United States: A Claims-Based Analysis. JAMA Ophthalmol. 2016;134(11):1237–45.CrossRef Thorne JE, Suhler E, Skup M, Tari S, Macaulay D, Chao J, et al. Prevalence of Noninfectious Uveitis in the United States: A Claims-Based Analysis. JAMA Ophthalmol. 2016;134(11):1237–45.CrossRef
14.
Zurück zum Zitat Gritz DC, Wong IG. Incidence and prevalence of uveitis in Northern California; the Northern California Epidemiology of Uveitis Study. Ophthalmology. 2004;111(3):491–500.PubMedCrossRef Gritz DC, Wong IG. Incidence and prevalence of uveitis in Northern California; the Northern California Epidemiology of Uveitis Study. Ophthalmology. 2004;111(3):491–500.PubMedCrossRef
15.
Zurück zum Zitat Shechter R, London A, Schwartz M. Orchestrated leukocyte recruitment to immune-privileged sites: absolute barriers versus educational gates. Nat Rev Immunol. 2013;13(3):206–18.PubMedCrossRef Shechter R, London A, Schwartz M. Orchestrated leukocyte recruitment to immune-privileged sites: absolute barriers versus educational gates. Nat Rev Immunol. 2013;13(3):206–18.PubMedCrossRef
16.
Zurück zum Zitat Taylor AW, Streilein JW, Cousins SW. Identification of alpha-melanocyte stimulating hormone as a potential immunosuppressive factor in aqueous humor. Curr Eye Res. 1992;11(12):1199–206.PubMedCrossRef Taylor AW, Streilein JW, Cousins SW. Identification of alpha-melanocyte stimulating hormone as a potential immunosuppressive factor in aqueous humor. Curr Eye Res. 1992;11(12):1199–206.PubMedCrossRef
17.
Zurück zum Zitat Taylor AW, Yee DG. Somatostatin is an immunosuppressive factor in aqueous humor. Invest Ophthalmol Vis Sci. 2003;44(6):2644–9.PubMedCrossRef Taylor AW, Yee DG. Somatostatin is an immunosuppressive factor in aqueous humor. Invest Ophthalmol Vis Sci. 2003;44(6):2644–9.PubMedCrossRef
18.
Zurück zum Zitat Stein-Streilein J, Lucas K. A current understanding of ocular immune privilege. CIR. 2011;7(3):336–43.CrossRef Stein-Streilein J, Lucas K. A current understanding of ocular immune privilege. CIR. 2011;7(3):336–43.CrossRef
19.
Zurück zum Zitat Taylor AW. Ocular immunosuppressive microenvironment. Chem Immunol. Allergy. 2007;92:71–85. Taylor AW. Ocular immunosuppressive microenvironment. Chem Immunol. Allergy. 2007;92:71–85.
20.
Zurück zum Zitat McPherson SW, Heuss ND, Local GDS. “On-Demand” Generation and Function of Antigen-Specific Foxp3+ Regulatory T Cells. J Immunol. 2013;190(10):4971–81.PubMedCrossRef McPherson SW, Heuss ND, Local GDS. “On-Demand” Generation and Function of Antigen-Specific Foxp3+ Regulatory T Cells. J Immunol. 2013;190(10):4971–81.PubMedCrossRef
21.
Zurück zum Zitat Whitcup SM, DeBarge LR, Caspi RR, Harning R, Nussenblatt RB, Chan CC. Monoclonal antibodies against ICAM‑1 (CD54) and LFA‑1 (CD11a/CD18) inhibit experimental autoimmune uveitis. Clin Immunol Immunopathol. 1993;67(2):143–50.PubMedCrossRef Whitcup SM, DeBarge LR, Caspi RR, Harning R, Nussenblatt RB, Chan CC. Monoclonal antibodies against ICAM‑1 (CD54) and LFA‑1 (CD11a/CD18) inhibit experimental autoimmune uveitis. Clin Immunol Immunopathol. 1993;67(2):143–50.PubMedCrossRef
22.
Zurück zum Zitat Whitcup SM, DeBarge LR, Rosen H, Nussenblatt RB, Chan CC. Monoclonal antibody against CD11b/CD18 inhibits endotoxin-induced uveitis. Invest Ophthalmol Vis Sci. 1993;34(3):673–81. Whitcup SM, DeBarge LR, Rosen H, Nussenblatt RB, Chan CC. Monoclonal antibody against CD11b/CD18 inhibits endotoxin-induced uveitis. Invest Ophthalmol Vis Sci. 1993;34(3):673–81.
23.
Zurück zum Zitat Wildner G. Antigenic mimicry—The key to autoimmunity in immune privileged organs. J Autoimmun. 2022;102942. Wildner G. Antigenic mimicry—The key to autoimmunity in immune privileged organs. J Autoimmun. 2022;102942.
24.
Zurück zum Zitat Oldstone MBA. Molecular mimicry and immune-mediated diseases. FASEB j. 1998;12(13):1255–65.PubMedCrossRef Oldstone MBA. Molecular mimicry and immune-mediated diseases. FASEB j. 1998;12(13):1255–65.PubMedCrossRef
25.
Zurück zum Zitat Geginat J, Paroni M, Pagani M, Galimberti D, De Francesco R, Scarpini E, et al. The Enigmatic Role of Viruses in Multiple Sclerosis: Molecular Mimicry or Disturbed Immune Surveillance? Trends Immunol. 2017;38(7):498–512.PubMedPubMedCentralCrossRef Geginat J, Paroni M, Pagani M, Galimberti D, De Francesco R, Scarpini E, et al. The Enigmatic Role of Viruses in Multiple Sclerosis: Molecular Mimicry or Disturbed Immune Surveillance? Trends Immunol. 2017;38(7):498–512.PubMedPubMedCentralCrossRef
26.
27.
Zurück zum Zitat Thurau S, Engelke H, McCluskey P, Symes RJ, Whist E, Teuchner B, et al. Uveitis in Tumor Patients Treated with Immunological Checkpoint- and Signal Transduction Pathway-Inhibitors. Ocul Immunol Inflamm. 2022;30(7–8:1588–94.CrossRef Thurau S, Engelke H, McCluskey P, Symes RJ, Whist E, Teuchner B, et al. Uveitis in Tumor Patients Treated with Immunological Checkpoint- and Signal Transduction Pathway-Inhibitors. Ocul Immunol Inflamm. 2022;30(7–8:1588–94.CrossRef
28.
Zurück zum Zitat Thurau S, Wildner G, Gamulescu MA. Ocular side effects of modern oncological therapy : Immunological checkpoint and MEK/BRAF signal transduction inhibitors. Ophthalmologie. 2023;120(5):559–73.PubMedCrossRef Thurau S, Wildner G, Gamulescu MA. Ocular side effects of modern oncological therapy : Immunological checkpoint and MEK/BRAF signal transduction inhibitors. Ophthalmologie. 2023;120(5):559–73.PubMedCrossRef
29.
Zurück zum Zitat Wildner G. Tumors, tumor therapies, autoimmunity and the eye. Autoimmun Rev. 2021;20(9):102892.PubMedCrossRef Wildner G. Tumors, tumor therapies, autoimmunity and the eye. Autoimmun Rev. 2021;20(9):102892.PubMedCrossRef
30.
Zurück zum Zitat Kucuksezer UC, Aktas-Cetin E, Bilgic-Gazioglu S, Tugal-Tutkun I, Gül A, Deniz G. Natural killer cells dominate a Th‑1 polarized response in Behçet’s disease patients with uveitis. Clin Exp Rheumatol. 2015;33(6 Suppl 94):S24–9. Kucuksezer UC, Aktas-Cetin E, Bilgic-Gazioglu S, Tugal-Tutkun I, Gül A, Deniz G. Natural killer cells dominate a Th‑1 polarized response in Behçet’s disease patients with uveitis. Clin Exp Rheumatol. 2015;33(6 Suppl 94):S24–9.
31.
Zurück zum Zitat Fu Q, Man X, Wang X, Song N, Li Y, Xue J, et al. CD83(+) CCR7(+) NK cells induced by interleukin 18 by dendritic cells promote experimental autoimmune uveitis. J Cell Mol Med. 2019;23(3):1827–39.PubMedCrossRef Fu Q, Man X, Wang X, Song N, Li Y, Xue J, et al. CD83(+) CCR7(+) NK cells induced by interleukin 18 by dendritic cells promote experimental autoimmune uveitis. J Cell Mol Med. 2019;23(3):1827–39.PubMedCrossRef
32.
Zurück zum Zitat Thurau SR, Mempel TR, Flugel A, Diedrichs Mohring M, Krombach F, Kawakami N, et al. The fate of autoreactive, GFP+ T cells in rat models of uveitis analyzed by intravital fluorescence microscopy and FACS. Int Immunol. 2004;16(11):1573–82.PubMedCrossRef Thurau SR, Mempel TR, Flugel A, Diedrichs Mohring M, Krombach F, Kawakami N, et al. The fate of autoreactive, GFP+ T cells in rat models of uveitis analyzed by intravital fluorescence microscopy and FACS. Int Immunol. 2004;16(11):1573–82.PubMedCrossRef
33.
Zurück zum Zitat Rosenbaum JT. Extraarticular manifestations: uveitis. In: Inman R, Sieper J, Hrsg. Textbook of Axial Spondylarthritis. 1. Aufl. Oxford: Oxford University Press; 2016. S. 145–8. Rosenbaum JT. Extraarticular manifestations: uveitis. In: Inman R, Sieper J, Hrsg. Textbook of Axial Spondylarthritis. 1. Aufl. Oxford: Oxford University Press; 2016. S. 145–8.
34.
Zurück zum Zitat Diedrichs-Möhring M, Niesik S, Priglinger CS, Thurau SR, Obermayr F, Sperl S, et al. Intraocular DHODH-inhibitor PP-001 suppresses relapsing experimental uveitis and cytokine production of human lymphocytes, but not of RPE cells. J Neuroinflammation. 2018;15(1):54.PubMedPubMedCentralCrossRef Diedrichs-Möhring M, Niesik S, Priglinger CS, Thurau SR, Obermayr F, Sperl S, et al. Intraocular DHODH-inhibitor PP-001 suppresses relapsing experimental uveitis and cytokine production of human lymphocytes, but not of RPE cells. J Neuroinflammation. 2018;15(1):54.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Diedrichs-Möhring M, Leban J, Strobl S, Obermayr F, Wildner G. A New Small Molecule For Treating Inflammation and Chorioretinal Neovascularization in Relapsing-Remitting and Chronic Experimental Autoimmune Uveitis. Investigative Ophthalmology & Visual Science. 2015;56(2):1147–57. Diedrichs-Möhring M, Leban J, Strobl S, Obermayr F, Wildner G. A New Small Molecule For Treating Inflammation and Chorioretinal Neovascularization in Relapsing-Remitting and Chronic Experimental Autoimmune Uveitis. Investigative Ophthalmology & Visual Science. 2015;56(2):1147–57.
36.
Zurück zum Zitat Diedrichs-Mohring M, Hoffmann C, Wildner G. Antigen-dependent monophasic or recurrent autoimmune uveitis in rats. Int Immunol. 2008;20(3):365–74.PubMedCrossRef Diedrichs-Mohring M, Hoffmann C, Wildner G. Antigen-dependent monophasic or recurrent autoimmune uveitis in rats. Int Immunol. 2008;20(3):365–74.PubMedCrossRef
37.
Zurück zum Zitat Forrester JV, Huitinga I, Lumsden L, Dijkstra CD. Marrow-derived activated macrophages are required during the effector phase of experimental autoimmune uveoretinitis in rats. Curr Eye Res. 1998;17(4):426–37.PubMedCrossRef Forrester JV, Huitinga I, Lumsden L, Dijkstra CD. Marrow-derived activated macrophages are required during the effector phase of experimental autoimmune uveoretinitis in rats. Curr Eye Res. 1998;17(4):426–37.PubMedCrossRef
38.
Zurück zum Zitat Kaufmann U, Diedrichs-Mohring M, Wildner G. Dynamics of intraocular IFN-gamma, IL-17 and IL-10-producing cell populations during relapsing and monophasic rat experimental autoimmune uveitis. Plos One. 2012;7(11:e49008.CrossRef Kaufmann U, Diedrichs-Mohring M, Wildner G. Dynamics of intraocular IFN-gamma, IL-17 and IL-10-producing cell populations during relapsing and monophasic rat experimental autoimmune uveitis. Plos One. 2012;7(11:e49008.CrossRef
39.
Zurück zum Zitat Amadi-Obi A, Yu CR, Liu X, Mahdi RM, Clarke GL, Nussenblatt RB, et al. TH17 cells contribute to uveitis and scleritis and are expanded by IL‑2 and inhibited by IL-27/STAT1. Nat Med. 2007;13(6):711–8.PubMedCrossRef Amadi-Obi A, Yu CR, Liu X, Mahdi RM, Clarke GL, Nussenblatt RB, et al. TH17 cells contribute to uveitis and scleritis and are expanded by IL‑2 and inhibited by IL-27/STAT1. Nat Med. 2007;13(6):711–8.PubMedCrossRef
40.
Zurück zum Zitat Diedrichs-Möhring M, Kaufmann U, Wildner G. The immunopathogenesis of chronic and relapsing autoimmune uveitis—Lessons from experimental rat models. Prog Retin Eye Res. 2018;Jul:65:107–26.PubMedCrossRef Diedrichs-Möhring M, Kaufmann U, Wildner G. The immunopathogenesis of chronic and relapsing autoimmune uveitis—Lessons from experimental rat models. Prog Retin Eye Res. 2018;Jul:65:107–26.PubMedCrossRef
41.
Zurück zum Zitat Oh HM, Yu CR, Lee Y, Chan CC, Maminishkis A, Egwuagu CE. Autoreactive memory CD4+ T lymphocytes that mediate chronic uveitis reside in the bone marrow through STAT3-dependent mechanisms. J Immunol. 2011;187(6):3338–46.PubMedCrossRef Oh HM, Yu CR, Lee Y, Chan CC, Maminishkis A, Egwuagu CE. Autoreactive memory CD4+ T lymphocytes that mediate chronic uveitis reside in the bone marrow through STAT3-dependent mechanisms. J Immunol. 2011;187(6):3338–46.PubMedCrossRef
43.
Zurück zum Zitat Kilmartin DJ, Wilson D, Liversidge J, Dick AD, Bruce J, Acheson RW, et al. Immunogenetics and clinical phenotype of sympathetic ophthalmia in British and Irish patients. Br J Ophthalmol. 2001;85(3):281–6.PubMedPubMedCentralCrossRef Kilmartin DJ, Wilson D, Liversidge J, Dick AD, Bruce J, Acheson RW, et al. Immunogenetics and clinical phenotype of sympathetic ophthalmia in British and Irish patients. Br J Ophthalmol. 2001;85(3):281–6.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Kasper M, Heming M, Schafflick D, Li X, Lautwein T, Meyer Zu Horste M, et al. Intraocular dendritic cells characterize HLA-B27-associated acute anterior uveitis. Elife. 2021;10. Kasper M, Heming M, Schafflick D, Li X, Lautwein T, Meyer Zu Horste M, et al. Intraocular dendritic cells characterize HLA-B27-associated acute anterior uveitis. Elife. 2021;10.
46.
Zurück zum Zitat Perazzio SF, Andrade LEC, de Souza AWS. Understanding Behçet’s Disease in the Context of Innate Immunity Activation. Front Immunol. 2020;11:586558. Perazzio SF, Andrade LEC, de Souza AWS. Understanding Behçet’s Disease in the Context of Innate Immunity Activation. Front Immunol. 2020;11:586558.
47.
Zurück zum Zitat Trombke J, Loyal L, Braun J, Pleyer U, Thiel A, Pohlmann D. Analysis of peripheral inflammatory T cell subsets and their effector function in patients with Birdshot Retinochoroiditis. Sci Rep. 2021;11(1):8604.PubMedPubMedCentralCrossRef Trombke J, Loyal L, Braun J, Pleyer U, Thiel A, Pohlmann D. Analysis of peripheral inflammatory T cell subsets and their effector function in patients with Birdshot Retinochoroiditis. Sci Rep. 2021;11(1):8604.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Kurhan Yavuz S, Direskeneli H, Bozkurt N, Ozyazgan Y, Bavbek T, Kazokoglu H, et al. Anti-MHC autoimmunity in Behcet’s disease: T cell responses to an HLA-B-derived peptide cross-reactive with retinal‑S antigen in patients with uveitis. Clin Exp Immunol. 2000;120(1):162–6.PubMedPubMedCentralCrossRef Kurhan Yavuz S, Direskeneli H, Bozkurt N, Ozyazgan Y, Bavbek T, Kazokoglu H, et al. Anti-MHC autoimmunity in Behcet’s disease: T cell responses to an HLA-B-derived peptide cross-reactive with retinal‑S antigen in patients with uveitis. Clin Exp Immunol. 2000;120(1):162–6.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Wildner G, Thurau SR. Cross-reactivity between an HLA-B27-derived peptide and a retinal autoantigen peptide: a clue to major histocompatibility complex association with autoimmune disease. Eur J Immunol. 1994;24(11):2579–85.PubMedCrossRef Wildner G, Thurau SR. Cross-reactivity between an HLA-B27-derived peptide and a retinal autoantigen peptide: a clue to major histocompatibility complex association with autoimmune disease. Eur J Immunol. 1994;24(11):2579–85.PubMedCrossRef
50.
Zurück zum Zitat Takeuchi M, Mizuki N, Ohno S. Pathogenesis of Non-Infectious Uveitis Elucidated by Recent Genetic Findings. Front Immunol. 2021;12:640473. Takeuchi M, Mizuki N, Ohno S. Pathogenesis of Non-Infectious Uveitis Elucidated by Recent Genetic Findings. Front Immunol. 2021;12:640473.
51.
Zurück zum Zitat Mumcu G, Fortune F. Oral Health and Its Aetiological Role in Behçet’s Disease. Front Med (Lausanne). 2021;8:613419.PubMedCrossRef Mumcu G, Fortune F. Oral Health and Its Aetiological Role in Behçet’s Disease. Front Med (Lausanne). 2021;8:613419.PubMedCrossRef
52.
Zurück zum Zitat Ye Z, Zhang N, Wu C, Zhang X, Wang Q, Huang X, et al. A metagenomic study of the gut microbiome in Behcet’s disease. Microbiome. 2018;6(1):135.PubMedPubMedCentralCrossRef Ye Z, Zhang N, Wu C, Zhang X, Wang Q, Huang X, et al. A metagenomic study of the gut microbiome in Behcet’s disease. Microbiome. 2018;6(1):135.PubMedPubMedCentralCrossRef
53.
54.
Zurück zum Zitat Horai R, Zárate-Bladés CR, Dillenburg-Pilla P, Chen J, Kielczewski JL, Silver PB, et al. Microbiota-Dependent Activation of an Autoreactive T Cell Receptor Provokes Autoimmunity in an Immunologically Privileged Site. Immunity. 2015;43(2):343–53.PubMedPubMedCentralCrossRef Horai R, Zárate-Bladés CR, Dillenburg-Pilla P, Chen J, Kielczewski JL, Silver PB, et al. Microbiota-Dependent Activation of an Autoreactive T Cell Receptor Provokes Autoimmunity in an Immunologically Privileged Site. Immunity. 2015;43(2):343–53.PubMedPubMedCentralCrossRef
Metadaten
Titel
Pathogenese der Uveitis
verfasst von
Prof. Dr. rer. nat. Gerhild Wildner
Prof. Dr. med. Stephan Thurau
Publikationsdatum
01.02.2024
Verlag
Springer Vienna
Erschienen in
Spektrum der Augenheilkunde
Print ISSN: 0930-4282
Elektronische ISSN: 1613-7523
DOI
https://doi.org/10.1007/s00717-023-00563-y