Skip to main content

22.02.2024 | main topic

Avicenna’s views on pest control and medicinal plants he prescribed as natural pesticides

verfasst von: Mohammad Amrollahi-Sharifabadi, Jamal Rezaei Orimi, Zahra Adabinia, Tahereh Shakeri, Zahra Aghabeiglooei, Mohammad Hashemimehr, Maedeh Rezghi, PhD

Erschienen in: Wiener Medizinische Wochenschrift

Einloggen, um Zugang zu erhalten

Summary

The present study aimed to introduce Avicenna’s views on pest control and the medicinal plants he proposed as natural pesticides. Also, we addressed the strategies that he leveraged to formulate and prescribe them, and, finally, we put his views into perspective with modern science. The data were collected using Al-Qanun Fi Al-Tibb (The Canon of Medicine) as well as scientific databases. According to Al-Qanun Fi Al-Tibb, 42 medicinal plants are described as natural pest control agents. After introducing the pest control properties of each plant, Avicenna explained the appropriate strategies for use of these plants. These strategies or formulations included incensing, spraying, spreading, rubbing, smudging, and scent-dispersing, which are equivalent to the modern pesticide formulations of fumigants, aerosols, pastes and poisoned baits, lotions, creams, and slow-release formulations, respectively. This study revealed that Avicenna introduced the pest control approach with natural plants in his book Al-Qanun Fi Al-Tibb and, thus, harnessed the power of nature to control nature. Future research is recommended to find the pest control merits of the presented medicinal plants, in order to incorporate them into pest control programs and reduce environmental pollution resulting from the complications of current synthetic pesticides.
Literatur
1.
Zurück zum Zitat Chadha PP. Evaluation of genotoxicity in pesticide distributors of Punjab. J Life Sci. 2013;5:17–22. Chadha PP. Evaluation of genotoxicity in pesticide distributors of Punjab. J Life Sci. 2013;5:17–22.
2.
Zurück zum Zitat Himani PU, Mahawer SK, Kumar R, et al. Plant protection through agrochemicals and its consequences. Plant protection: from chemicals to biologicals. 2022. p. 25.CrossRef Himani PU, Mahawer SK, Kumar R, et al. Plant protection through agrochemicals and its consequences. Plant protection: from chemicals to biologicals. 2022. p. 25.CrossRef
3.
Zurück zum Zitat Tănăsescu E‑C, Lite M‑C. Harmful health effects of pesticides used on museum textile artifacts-overview. Ecotoxicol Environ Saf. 2022;247:114240.PubMedCrossRef Tănăsescu E‑C, Lite M‑C. Harmful health effects of pesticides used on museum textile artifacts-overview. Ecotoxicol Environ Saf. 2022;247:114240.PubMedCrossRef
4.
Zurück zum Zitat Fu H, Tan P, Wang R, et al. Advances in organophosphorus pesticides pollution: current status and challenges in ecotoxicological, sustainable agriculture, and degradation strategies. J Hazard Mater. 2022;424:127494.PubMedCrossRef Fu H, Tan P, Wang R, et al. Advances in organophosphorus pesticides pollution: current status and challenges in ecotoxicological, sustainable agriculture, and degradation strategies. J Hazard Mater. 2022;424:127494.PubMedCrossRef
5.
Zurück zum Zitat Schleiffer M, Speiser B. Presence of pesticides in the environment, transition into organic food, and implications for quality assurance along the European organic food chain—a review. Environ Pollut. 2022;120116. Schleiffer M, Speiser B. Presence of pesticides in the environment, transition into organic food, and implications for quality assurance along the European organic food chain—a review. Environ Pollut. 2022;120116.
6.
Zurück zum Zitat Arab A, Mostafalou S. Neurotoxicity of pesticides in the context of CNS chronic diseases. Int J Environ Health Res. 2022;32:2718–55.PubMedCrossRef Arab A, Mostafalou S. Neurotoxicity of pesticides in the context of CNS chronic diseases. Int J Environ Health Res. 2022;32:2718–55.PubMedCrossRef
7.
Zurück zum Zitat Acheuk F, Basiouni S, Shehata AA, et al. Status and prospects of botanical biopesticides in Europe and Mediterranean countries. Biomolecules. 2022;12:311.PubMedPubMedCentralCrossRef Acheuk F, Basiouni S, Shehata AA, et al. Status and prospects of botanical biopesticides in Europe and Mediterranean countries. Biomolecules. 2022;12:311.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Ngegba PM, Cui G, Khalid MZ, et al. Use of botanical pesticides in agriculture as an alternative to synthetic pesticides. Agriculture. 2022;12:600.CrossRef Ngegba PM, Cui G, Khalid MZ, et al. Use of botanical pesticides in agriculture as an alternative to synthetic pesticides. Agriculture. 2022;12:600.CrossRef
9.
Zurück zum Zitat Nasiri E, Orimi JR, Hashemimehr M, et al. Avicenna’s clinical toxicology approach and beneficial materia medica against oral poisoning. Arch Toxicol. 2023;97:981–9.PubMedCrossRef Nasiri E, Orimi JR, Hashemimehr M, et al. Avicenna’s clinical toxicology approach and beneficial materia medica against oral poisoning. Arch Toxicol. 2023;97:981–9.PubMedCrossRef
10.
Zurück zum Zitat Samarrai R, Radwan T, Samarrai M, et al. An analysis of otolaryngology in avicenna’s canon of medicine: utilizing the original Arabic text. Otolaryngol Head Neck Surg. 2023;. Samarrai R, Radwan T, Samarrai M, et al. An analysis of otolaryngology in avicenna’s canon of medicine: utilizing the original Arabic text. Otolaryngol Head Neck Surg. 2023;.
12.
Zurück zum Zitat Ibn-e-Sina A. Al-Qānūn fī al-Tibb (Canon of Medicine). Beirut: Dare Ehyae al-Torathe al-Arabi; 2005. Ibn-e-Sina A. Al-Qānūn fī al-Tibb (Canon of Medicine). Beirut: Dare Ehyae al-Torathe al-Arabi; 2005.
13.
Zurück zum Zitat Ujváry I. Pest control agents from natural products. In: Hayes’ Handbook of Pesticide Toxicology Elsevier; 2010. pp. 119–229.CrossRef Ujváry I. Pest control agents from natural products. In: Hayes’ Handbook of Pesticide Toxicology Elsevier; 2010. pp. 119–229.CrossRef
14.
Zurück zum Zitat Osborn D. Pesticides in modern agriculture. Environ Impacts Mod Agric. 2012;34:111.CrossRef Osborn D. Pesticides in modern agriculture. Environ Impacts Mod Agric. 2012;34:111.CrossRef
16.
Zurück zum Zitat Keswani C, Dilnashin H, Birla H, et al. Global footprints of organochlorine pesticides: a pan-global survey. Environ Geochem Health. 2022; 1–29. Keswani C, Dilnashin H, Birla H, et al. Global footprints of organochlorine pesticides: a pan-global survey. Environ Geochem Health. 2022; 1–29.
17.
Zurück zum Zitat Parra-Arroyo L, González-González RB, Castillo-Zacarías C, et al. Highly hazardous pesticides and related pollutants: toxicological, regulatory, and analytical aspects. Sci Total Environ. 2022;807:151879.ADSPubMedCrossRef Parra-Arroyo L, González-González RB, Castillo-Zacarías C, et al. Highly hazardous pesticides and related pollutants: toxicological, regulatory, and analytical aspects. Sci Total Environ. 2022;807:151879.ADSPubMedCrossRef
18.
Zurück zum Zitat Zaller JG, Kruse-Plaß M, Schlechtriemen U, et al. Pesticides in ambient air, influenced by surrounding land use and weather, pose a potential threat to biodiversity and humans. Sci Total Environ. 2022;838:156012.ADSPubMedPubMedCentralCrossRef Zaller JG, Kruse-Plaß M, Schlechtriemen U, et al. Pesticides in ambient air, influenced by surrounding land use and weather, pose a potential threat to biodiversity and humans. Sci Total Environ. 2022;838:156012.ADSPubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Intisar A, Ramzan A, Sawaira T, et al. Occurrence, toxic effects, and mitigation of pesticides as emerging environmental pollutants using robust nanomaterials—a review. Chemosphere. 2022;293:133538.PubMedCrossRef Intisar A, Ramzan A, Sawaira T, et al. Occurrence, toxic effects, and mitigation of pesticides as emerging environmental pollutants using robust nanomaterials—a review. Chemosphere. 2022;293:133538.PubMedCrossRef
22.
Zurück zum Zitat Silva V, Yang X, Fleskens L, et al. Environmental and human health at risk—scenarios to achieve the farm to fork 50 % pesticide reduction goals. Environ Int. 2022;165:107296.PubMedCrossRef Silva V, Yang X, Fleskens L, et al. Environmental and human health at risk—scenarios to achieve the farm to fork 50 % pesticide reduction goals. Environ Int. 2022;165:107296.PubMedCrossRef
27.
Zurück zum Zitat Toghueo RMK, Boyom FF. Endophytic penicillium species and their agricultural, biotechnological, and pharmaceutical applications. Biotech. 2020;10:107. Toghueo RMK, Boyom FF. Endophytic penicillium species and their agricultural, biotechnological, and pharmaceutical applications. Biotech. 2020;10:107.
28.
Zurück zum Zitat Todorović M, Zlatić N, Bojović B, et al. Biological properties of selected amaranthaceae halophytic species: a review. Brazilian J Pharm Sci. 2023;58. Todorović M, Zlatić N, Bojović B, et al. Biological properties of selected amaranthaceae halophytic species: a review. Brazilian J Pharm Sci. 2023;58.
29.
Zurück zum Zitat Tahghighi A, Ghafari S, Ghanavati S, et al. Repellency of aerial parts of teucrium polium L. essential oil formulation against anopheles stephensi. Int J Trop Insect Sci. 2022;42:3541–50.CrossRef Tahghighi A, Ghafari S, Ghanavati S, et al. Repellency of aerial parts of teucrium polium L. essential oil formulation against anopheles stephensi. Int J Trop Insect Sci. 2022;42:3541–50.CrossRef
30.
Zurück zum Zitat Ebadollahi A, Taghinezhad E. Modeling and optimization of the insecticidal effects of teucrium polium L. essential oil against red flour beetle (tribolium castaneum herbst) using response surface methodology. Inf Process Agric. 2020;7:286–93. Ebadollahi A, Taghinezhad E. Modeling and optimization of the insecticidal effects of teucrium polium L. essential oil against red flour beetle (tribolium castaneum herbst) using response surface methodology. Inf Process Agric. 2020;7:286–93.
31.
Zurück zum Zitat Khani A, Heydarian M. Fumigant and repellent properties of sesquiterpene-rich essential oil from teucrium polium subsp. capitatum (L.). Asian Pac J Trop Med. 2014;7:956–61.PubMedCrossRef Khani A, Heydarian M. Fumigant and repellent properties of sesquiterpene-rich essential oil from teucrium polium subsp. capitatum (L.). Asian Pac J Trop Med. 2014;7:956–61.PubMedCrossRef
32.
Zurück zum Zitat Radwan H, El-Missiry M, Al-Said W, et al. Investigation of the glucosinolates of Lepidium sativum growing in Egypt and their biological activity. Res J Med Med Sci. 2007;2:127–32. Radwan H, El-Missiry M, Al-Said W, et al. Investigation of the glucosinolates of Lepidium sativum growing in Egypt and their biological activity. Res J Med Med Sci. 2007;2:127–32.
33.
Zurück zum Zitat Ulukanli Z, Çenet M, Öztürk B, et al. Chemical characterization, phytotoxic, antimicrobial and insecticidal activities of Vitex agnus-castus’ essential oil from east mediterranean region. J Essent Oil Bear Plants. 2015;18:1500–7.CrossRef Ulukanli Z, Çenet M, Öztürk B, et al. Chemical characterization, phytotoxic, antimicrobial and insecticidal activities of Vitex agnus-castus’ essential oil from east mediterranean region. J Essent Oil Bear Plants. 2015;18:1500–7.CrossRef
34.
Zurück zum Zitat Keridis LAA, Mohamed RAEH, Abutaha N, et al. Larvicidal, and cytoxicity of lepidium sativum L. seed extract against culex pipiens L.(diptera: culicidae). Turkish J Zool. 2021;45:408–15.CrossRef Keridis LAA, Mohamed RAEH, Abutaha N, et al. Larvicidal, and cytoxicity of lepidium sativum L. seed extract against culex pipiens L.(diptera: culicidae). Turkish J Zool. 2021;45:408–15.CrossRef
35.
Zurück zum Zitat Chaubey MK. Insecticidal activity of Trachyspermum ammi (Umbelliferae), Anethum graveolens (Umbelliferae) and Nigella sativa (Ranunculaceae) essential oils against stored-product beetle Tribolium castaneum Herbst (Coleoptera: Tenebrionidae). African J Agric Res. 2007;2:596–600. Chaubey MK. Insecticidal activity of Trachyspermum ammi (Umbelliferae), Anethum graveolens (Umbelliferae) and Nigella sativa (Ranunculaceae) essential oils against stored-product beetle Tribolium castaneum Herbst (Coleoptera: Tenebrionidae). African J Agric Res. 2007;2:596–600.
36.
Zurück zum Zitat Ahmad F, Sagheer M, Hammad A, et al. Insecticidal activity of some plant extracts against trogoderma granarium (E.). Agriculturists. 2013;11:103–11.CrossRef Ahmad F, Sagheer M, Hammad A, et al. Insecticidal activity of some plant extracts against trogoderma granarium (E.). Agriculturists. 2013;11:103–11.CrossRef
37.
Zurück zum Zitat Yokosuka A, Koyama Y, Mimaki Y. Chemical constituents of the underground parts of Iris florentina and their cytotoxic activity. Nat Prod Commun. 2015;10:1934578X1501000641. Yokosuka A, Koyama Y, Mimaki Y. Chemical constituents of the underground parts of Iris florentina and their cytotoxic activity. Nat Prod Commun. 2015;10:1934578X1501000641.
38.
Zurück zum Zitat Khani A, Basavand F. Chemical composition and insecticidal activity of myrtle (myrtus communis L.) essential oil against two stored-product pests. European J Med Plants. 2012;1:83–9. Khani A, Basavand F. Chemical composition and insecticidal activity of myrtle (myrtus communis L.) essential oil against two stored-product pests. European J Med Plants. 2012;1:83–9.
39.
Zurück zum Zitat Hennia A, Nemmiche S, Dandlen S, et al. Myrtus communis essential oils: insecticidal, antioxidant and antimicrobial activities: a review. J Essent Oil Res. 2019;31:487–545.CrossRef Hennia A, Nemmiche S, Dandlen S, et al. Myrtus communis essential oils: insecticidal, antioxidant and antimicrobial activities: a review. J Essent Oil Res. 2019;31:487–545.CrossRef
40.
Zurück zum Zitat Batiha GE‑S, Wasef L, Teibo JO, et al. Commiphora myrrh: a phytochemical and pharmacological update. Naunyn-schmiedeberg’s Arch Pharmacol. 2022; 1–16. Batiha GE‑S, Wasef L, Teibo JO, et al. Commiphora myrrh: a phytochemical and pharmacological update. Naunyn-schmiedeberg’s Arch Pharmacol. 2022; 1–16.
41.
Zurück zum Zitat Meriga B, Mopuri R, MuraliKrishna T. Insecticidal, antimicrobial and antioxidant activities of bulb extracts of Allium sativum. Asian Pac J Trop Med. 2012;5:391–5.PubMedCrossRef Meriga B, Mopuri R, MuraliKrishna T. Insecticidal, antimicrobial and antioxidant activities of bulb extracts of Allium sativum. Asian Pac J Trop Med. 2012;5:391–5.PubMedCrossRef
42.
Zurück zum Zitat Hamada H, Awad M, El-Hefny M, et al. Insecticidal activity of garlic (Allium sativum) and ginger (Zingiber officinale) oils on the cotton leafworm, Spodoptera littoralis (Boisd.)(Lepidoptera: Noctuidae). African Entomol. 2018;26:84–94.CrossRef Hamada H, Awad M, El-Hefny M, et al. Insecticidal activity of garlic (Allium sativum) and ginger (Zingiber officinale) oils on the cotton leafworm, Spodoptera littoralis (Boisd.)(Lepidoptera: Noctuidae). African Entomol. 2018;26:84–94.CrossRef
43.
Zurück zum Zitat Velsankar K, Parvathy G, Mohandoss S, et al. Echinochloa frumentacea grains extract mediated synthesis and characterization of iron oxide nanoparticles: a greener nano drug for potential biomedical applications. J Drug Deliv Sci Technol. 2022;76:103799.CrossRef Velsankar K, Parvathy G, Mohandoss S, et al. Echinochloa frumentacea grains extract mediated synthesis and characterization of iron oxide nanoparticles: a greener nano drug for potential biomedical applications. J Drug Deliv Sci Technol. 2022;76:103799.CrossRef
44.
Zurück zum Zitat Park I‑K, Park J‑D, Kim C‑S, et al. Insecticidal and acaricidal activities of domestic plant extracts against five major arthropod pests. Korean J Pesticide Sci. 2002;6:271–8. Park I‑K, Park J‑D, Kim C‑S, et al. Insecticidal and acaricidal activities of domestic plant extracts against five major arthropod pests. Korean J Pesticide Sci. 2002;6:271–8.
45.
Zurück zum Zitat El Namaky A, El Sadawy H, Al Omari F, et al. Insecticidal activity of Punica granatum L. extract for the control of Rhynchophorus ferrugineus (Olivier)(Coleoptera: Curculionidae) and some of its histological and immunological aspects. J Biopestic. 2020;13:13–20. El Namaky A, El Sadawy H, Al Omari F, et al. Insecticidal activity of Punica granatum L. extract for the control of Rhynchophorus ferrugineus (Olivier)(Coleoptera: Curculionidae) and some of its histological and immunological aspects. J Biopestic. 2020;13:13–20.
46.
Zurück zum Zitat Hamouda AB, Mechi A, Zarred K, et al. Insecticidal activities of fruit peel extracts of pomegranate (Punica granatum) against the red flour beetle Tribolium castaneum. Tunis J Plant Prot. 2014;9:91–100. Hamouda AB, Mechi A, Zarred K, et al. Insecticidal activities of fruit peel extracts of pomegranate (Punica granatum) against the red flour beetle Tribolium castaneum. Tunis J Plant Prot. 2014;9:91–100.
47.
Zurück zum Zitat Mishra T, Pal M, Kumar A, et al. Termiticidal activity of Punica granatum fruit rind fractions and its compounds against Microcerotermes beesoni. Ind Crops Prod. 2017;107:320–5.CrossRef Mishra T, Pal M, Kumar A, et al. Termiticidal activity of Punica granatum fruit rind fractions and its compounds against Microcerotermes beesoni. Ind Crops Prod. 2017;107:320–5.CrossRef
48.
Zurück zum Zitat Chaghakaboodi Z, Nasiri J, Farahani S. Fumigation toxicity of the essential oils of ferula persica against tribolium castaneum and ephestia kuehniella. Agrotechniques Ind Crop. 2022;2:123–30. Chaghakaboodi Z, Nasiri J, Farahani S. Fumigation toxicity of the essential oils of ferula persica against tribolium castaneum and ephestia kuehniella. Agrotechniques Ind Crop. 2022;2:123–30.
49.
Zurück zum Zitat Salehi M, Naghavi MR, Bahmankar M. A review of ferula species: biochemical characteristics, pharmaceutical and industrial applications, and suggestions for biotechnologists. Ind Crops Prod. 2019;139:111511.CrossRef Salehi M, Naghavi MR, Bahmankar M. A review of ferula species: biochemical characteristics, pharmaceutical and industrial applications, and suggestions for biotechnologists. Ind Crops Prod. 2019;139:111511.CrossRef
50.
Zurück zum Zitat Farag M, Ahmed MH, Yousef H, et al. Repellent and insecticidal activities of Melia azedarach L. against cotton leafworm, Spodoptera littoralis (Boisd.). Z Naturforsch C. 2011;66:129–35.PubMedCrossRef Farag M, Ahmed MH, Yousef H, et al. Repellent and insecticidal activities of Melia azedarach L. against cotton leafworm, Spodoptera littoralis (Boisd.). Z Naturforsch C. 2011;66:129–35.PubMedCrossRef
51.
Zurück zum Zitat Khoshraftar Z, Safekordi A, Shamel A, et al. Evaluation of insecticidal activity of nanoformulation of Melia azedarach (leaf) extract as a safe environmental insecticide. Int J Environ Sci Technol. 2020;17:1159–70.CrossRef Khoshraftar Z, Safekordi A, Shamel A, et al. Evaluation of insecticidal activity of nanoformulation of Melia azedarach (leaf) extract as a safe environmental insecticide. Int J Environ Sci Technol. 2020;17:1159–70.CrossRef
52.
Zurück zum Zitat Michaelakis A, Strongilos AT, Bouzas EA, et al. Larvicidal activity of naturally occurring naphthoquinones and derivatives against the west nile virus vector culex pipiens. Parasitol Res. 2009;104:657–62.PubMedCrossRef Michaelakis A, Strongilos AT, Bouzas EA, et al. Larvicidal activity of naturally occurring naphthoquinones and derivatives against the west nile virus vector culex pipiens. Parasitol Res. 2009;104:657–62.PubMedCrossRef
53.
Zurück zum Zitat Rana S, Chauhan P. Spices that heal: review on untapped potential of lesser-known spices as immunity booster during COVID-19 pandemic. Ann Phytomedicine. 2022;11:7–11. Rana S, Chauhan P. Spices that heal: review on untapped potential of lesser-known spices as immunity booster during COVID-19 pandemic. Ann Phytomedicine. 2022;11:7–11.
54.
Zurück zum Zitat El-Sheikh TM, Bosly HA, Shalaby N. Insecticidal and repellent activities of methanolic extract of tribulus terrestris L.(Zygophyllaceae) against the malarial vector anopheles arabiensis (diptera: culicidae). Egypt Acad J Biol Sci A Entomol. 2012;5:13–22. El-Sheikh TM, Bosly HA, Shalaby N. Insecticidal and repellent activities of methanolic extract of tribulus terrestris L.(Zygophyllaceae) against the malarial vector anopheles arabiensis (diptera: culicidae). Egypt Acad J Biol Sci A Entomol. 2012;5:13–22.
55.
Zurück zum Zitat Bansal S, Singh KV, Sharma S. Larvicidal potential of wild mustard (cleome viscosa) and gokhru (tribulus terrestris) against mosquito vectors in the semi-arid region of western Rajasthan. JEB. 2014;35:327. Bansal S, Singh KV, Sharma S. Larvicidal potential of wild mustard (cleome viscosa) and gokhru (tribulus terrestris) against mosquito vectors in the semi-arid region of western Rajasthan. JEB. 2014;35:327.
56.
Zurück zum Zitat Karimi P, Malekifard F, Tavassoli M. Medicinal plant essential oils as promising anti-varroa agents: oxidative/nitrosative screens. S Afr J Bot. 2022;148:344–51.CrossRef Karimi P, Malekifard F, Tavassoli M. Medicinal plant essential oils as promising anti-varroa agents: oxidative/nitrosative screens. S Afr J Bot. 2022;148:344–51.CrossRef
57.
Zurück zum Zitat Agalya Priyadarshini K, Murugan K, Panneerselvam C, et al. Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using euphorbia hirta against anopheles stephensi Liston (diptera: culicidae). Parasitol Res. 2012;111:997–1006.CrossRef Agalya Priyadarshini K, Murugan K, Panneerselvam C, et al. Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using euphorbia hirta against anopheles stephensi Liston (diptera: culicidae). Parasitol Res. 2012;111:997–1006.CrossRef
58.
Zurück zum Zitat Ahmed S, Zia A, Mehmood S, et al. Change in malate dehydrogenase and alpha amylase activities in rubus fruticosus and valeriana jatamansi treated granary weevil, sitophilus granarius. Braz J Biol. 2020;81:387–91.CrossRef Ahmed S, Zia A, Mehmood S, et al. Change in malate dehydrogenase and alpha amylase activities in rubus fruticosus and valeriana jatamansi treated granary weevil, sitophilus granarius. Braz J Biol. 2020;81:387–91.CrossRef
59.
Zurück zum Zitat Torkey H, Abou-Yousef H, Azeiz AA, et al. Insecticidal effect of cucurbitacin E glycoside isolated from citrullus colocynthis against aphis craccivora. Aust J Basic Appl Sci. 2009;3:4060–6. Torkey H, Abou-Yousef H, Azeiz AA, et al. Insecticidal effect of cucurbitacin E glycoside isolated from citrullus colocynthis against aphis craccivora. Aust J Basic Appl Sci. 2009;3:4060–6.
60.
Zurück zum Zitat Ahmed M, Peiwen Q, Gu Z, et al. Insecticidal activity and biochemical composition of citrullus colocynthis, cannabis indica and artemisia argyi extracts against cabbage aphid (brevicoryne brassicae L.). Sci Rep. 2020;10:1–10. Ahmed M, Peiwen Q, Gu Z, et al. Insecticidal activity and biochemical composition of citrullus colocynthis, cannabis indica and artemisia argyi extracts against cabbage aphid (brevicoryne brassicae L.). Sci Rep. 2020;10:1–10.
61.
Zurück zum Zitat Pavela R. History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects—a review. Plant Prot Sci. 2016;52:229–41.ADSCrossRef Pavela R. History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects—a review. Plant Prot Sci. 2016;52:229–41.ADSCrossRef
62.
Zurück zum Zitat Dhen N, Majdoub O, Souguir S, et al. Chemical composition and fumigant toxicity of artemisia absinthium essential oil against rhyzopertha dominica and spodoptera littoralis. Tunis J Plant Prot. 2014;9:57–65. Dhen N, Majdoub O, Souguir S, et al. Chemical composition and fumigant toxicity of artemisia absinthium essential oil against rhyzopertha dominica and spodoptera littoralis. Tunis J Plant Prot. 2014;9:57–65.
63.
Zurück zum Zitat Fatmanur E, Çetin H, Yorgancilar M, et al. Detection of metabolite content in local bitter white lupin seeds (Lupinus Albus L.) and acaricidal and insecticidal effect of its seed extract. J Agric Sci. 2021;27:407–13. Fatmanur E, Çetin H, Yorgancilar M, et al. Detection of metabolite content in local bitter white lupin seeds (Lupinus Albus L.) and acaricidal and insecticidal effect of its seed extract. J Agric Sci. 2021;27:407–13.
64.
Zurück zum Zitat Luo C, Li D, Wang Y, et al. Chemical composition and insecticide efficacy of essential oils from citrus medica L. var. sarcodactylis swingle against tribolium castaneum herbst in stored medicinal materials. J Essent Oil Bear Plants. 2019;22:1182–94.CrossRef Luo C, Li D, Wang Y, et al. Chemical composition and insecticide efficacy of essential oils from citrus medica L. var. sarcodactylis swingle against tribolium castaneum herbst in stored medicinal materials. J Essent Oil Bear Plants. 2019;22:1182–94.CrossRef
65.
Zurück zum Zitat Pavel M, Ristić M, Stević T. Essential oils of thymus pulegioides and thymus glabrescens from romania: chemical composition and antimicrobial activity. J Serbian Chem Soc. 2010;75:27–34.CrossRef Pavel M, Ristić M, Stević T. Essential oils of thymus pulegioides and thymus glabrescens from romania: chemical composition and antimicrobial activity. J Serbian Chem Soc. 2010;75:27–34.CrossRef
66.
Zurück zum Zitat Bouabida H, Dris D. Phytochemical constituents and larvicidal activity of ruta graveolens, ruta montana and artemisia absinthium hydro-methanolic extract against mosquito vectors of avian plasmodium (culiseta longiareolata). S Afr J Bot. 2022;151:504–11.CrossRef Bouabida H, Dris D. Phytochemical constituents and larvicidal activity of ruta graveolens, ruta montana and artemisia absinthium hydro-methanolic extract against mosquito vectors of avian plasmodium (culiseta longiareolata). S Afr J Bot. 2022;151:504–11.CrossRef
67.
Zurück zum Zitat Delnavazi M‑R, Hadjiakhoondi A, Delazar A, et al. Phytochemical and antioxidant investigation of the aerial parts of dorema glabrum fisch. & CA mey. Iran J Pharm Res. 2015;14:925.PubMedPubMedCentral Delnavazi M‑R, Hadjiakhoondi A, Delazar A, et al. Phytochemical and antioxidant investigation of the aerial parts of dorema glabrum fisch. & CA mey. Iran J Pharm Res. 2015;14:925.PubMedPubMedCentral
68.
Zurück zum Zitat Maghsoodi F, Taheri P. Efficacy of althaea officinalis leaf extract in controlling alternaria spp. pathogenic on citrus. Eur J Plant Pathol. 2021;161:799–813.CrossRef Maghsoodi F, Taheri P. Efficacy of althaea officinalis leaf extract in controlling alternaria spp. pathogenic on citrus. Eur J Plant Pathol. 2021;161:799–813.CrossRef
69.
Zurück zum Zitat Lahcene S, Taibi F, Mestar N, et al. Insecticidal effects of the olea europaea subsp. laperrinei extracts on the flour pyralid ephestia kuehniella. Cell Mol Biol (Noisy-le-grand). 2018;64:6–12.PubMedCrossRef Lahcene S, Taibi F, Mestar N, et al. Insecticidal effects of the olea europaea subsp. laperrinei extracts on the flour pyralid ephestia kuehniella. Cell Mol Biol (Noisy-le-grand). 2018;64:6–12.PubMedCrossRef
70.
Zurück zum Zitat Ibrahim HY, Abdel-Mogib M, Mostafa ME. Insecticidal activity of radish, raphanus sativus linn.(brassicaceae) roots extracts. J Plant Prot Pathol. 2020;11:53–8. Ibrahim HY, Abdel-Mogib M, Mostafa ME. Insecticidal activity of radish, raphanus sativus linn.(brassicaceae) roots extracts. J Plant Prot Pathol. 2020;11:53–8.
71.
Zurück zum Zitat Malmir M, Serrano R, Canica M, et al. A comprehensive review on the medicinal plants from the genus asphodelus. Plants. 2018;7:20.PubMedPubMedCentralCrossRef Malmir M, Serrano R, Canica M, et al. A comprehensive review on the medicinal plants from the genus asphodelus. Plants. 2018;7:20.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Majumder P, Mondal HA, Das S. Insecticidal activity of Arum maculatum tuber lectin and its binding to the glycosylated insect gut receptors. J Agric Food Chem. 2005;53:6725–9.PubMedCrossRef Majumder P, Mondal HA, Das S. Insecticidal activity of Arum maculatum tuber lectin and its binding to the glycosylated insect gut receptors. J Agric Food Chem. 2005;53:6725–9.PubMedCrossRef
73.
Zurück zum Zitat Neves R, Da Camara CA. Chemical composition and acaricidal activity of the essential oils from vitex agnus-castus L.(verbenaceae) and selected monoterpenes. An Acad Bras Cienc. 2016;88:1221–33.PubMedCrossRef Neves R, Da Camara CA. Chemical composition and acaricidal activity of the essential oils from vitex agnus-castus L.(verbenaceae) and selected monoterpenes. An Acad Bras Cienc. 2016;88:1221–33.PubMedCrossRef
74.
Zurück zum Zitat Hashemi SM, Rostaefar A. Insecticidal activity of essential oil from juniperus communis L. subsp. hemisphaerica (Presl) Nyman against two stored product beetles. Ecol Balk. 2014; 6. Hashemi SM, Rostaefar A. Insecticidal activity of essential oil from juniperus communis L. subsp. hemisphaerica (Presl) Nyman against two stored product beetles. Ecol Balk. 2014; 6.
75.
Zurück zum Zitat Brahmi F, Abdenour A, Bruno M, et al. Chemical composition and in vitro antimicrobial, insecticidal and antioxidant activities of the essential oils of mentha pulegium L. and mentha rotundifolia (L.) huds growing in Algeria. Ind Crops Prod. 2016;88:96–105.CrossRef Brahmi F, Abdenour A, Bruno M, et al. Chemical composition and in vitro antimicrobial, insecticidal and antioxidant activities of the essential oils of mentha pulegium L. and mentha rotundifolia (L.) huds growing in Algeria. Ind Crops Prod. 2016;88:96–105.CrossRef
76.
Zurück zum Zitat Fatemikia S, Abbasipour H, Saeedizadeh A. Phytochemical and acaricidal study of the galbanum, ferula gumosa boiss.(apiaceae) essential oil against tetranychus urticae koch (tetranychidae). J Essent Oil Bear Plants. 2017;20:185–95.CrossRef Fatemikia S, Abbasipour H, Saeedizadeh A. Phytochemical and acaricidal study of the galbanum, ferula gumosa boiss.(apiaceae) essential oil against tetranychus urticae koch (tetranychidae). J Essent Oil Bear Plants. 2017;20:185–95.CrossRef
77.
Zurück zum Zitat Wang S, Li SC, Cheng FS, et al. Antifungal, repellency, and insecticidal activities of cymbopogon distans and ruta graveolens essential oils and their main chemical constituents. Chem Biodivers. 2022;19:e202200351.PubMedCrossRef Wang S, Li SC, Cheng FS, et al. Antifungal, repellency, and insecticidal activities of cymbopogon distans and ruta graveolens essential oils and their main chemical constituents. Chem Biodivers. 2022;19:e202200351.PubMedCrossRef
79.
Zurück zum Zitat Abbasipour H, Mahmoudvand M, Rastegar F, et al. Insecticidal activity of peganum harmala seed extract against the diamondback moth, plutella xylostella. Bull Insectology. 2010;63:259–63. Abbasipour H, Mahmoudvand M, Rastegar F, et al. Insecticidal activity of peganum harmala seed extract against the diamondback moth, plutella xylostella. Bull Insectology. 2010;63:259–63.
80.
Zurück zum Zitat Saada I, Mahdi K, Boubekka N, et al. Variability of insecticidal activity of Cupressus sempervirens L., Juniperus phoenicea L., Mentha rotundifolia (L.) Huds, and Asphodelus microcarpus Salzm. & Viv. extracts according to solvents and extraction systems. Biochem Syst Ecol. 2022;105:104502.CrossRef Saada I, Mahdi K, Boubekka N, et al. Variability of insecticidal activity of Cupressus sempervirens L., Juniperus phoenicea L., Mentha rotundifolia (L.) Huds, and Asphodelus microcarpus Salzm. & Viv. extracts according to solvents and extraction systems. Biochem Syst Ecol. 2022;105:104502.CrossRef
81.
Zurück zum Zitat Pavela R, Morshedloo MR, Lupidi G, et al. The volatile oils from the oleo-gum-resins of ferula assa-foetida and ferula gummosa: a comprehensive investigation of their insecticidal activity and eco-toxicological effects. Food Chem Toxicol. 2020;140:111312.PubMedCrossRef Pavela R, Morshedloo MR, Lupidi G, et al. The volatile oils from the oleo-gum-resins of ferula assa-foetida and ferula gummosa: a comprehensive investigation of their insecticidal activity and eco-toxicological effects. Food Chem Toxicol. 2020;140:111312.PubMedCrossRef
82.
Zurück zum Zitat Koorki Z, Shahidi-Noghabi S, Smagghe G, et al. Insecticidal activity of the essential oils from yarrow (Achillea wilhelmsii L.) and sweet asafetida (Ferula assa-foetida L.) against aphis gossypii glover.(Hemiptera: Aphididae) under controlled laboratory conditions. Int J Trop Insect Sci. 2022;42:2827–33.CrossRef Koorki Z, Shahidi-Noghabi S, Smagghe G, et al. Insecticidal activity of the essential oils from yarrow (Achillea wilhelmsii L.) and sweet asafetida (Ferula assa-foetida L.) against aphis gossypii glover.(Hemiptera: Aphididae) under controlled laboratory conditions. Int J Trop Insect Sci. 2022;42:2827–33.CrossRef
83.
Zurück zum Zitat Jemâa JMB, Tersim N, Toudert KT, et al. Insecticidal activities of essential oils from leaves of laurus nobilis L. from Tunisia, Algeria and Morocco, and comparative chemical composition. J Stored Prod Res. 2012;48:97–104.CrossRef Jemâa JMB, Tersim N, Toudert KT, et al. Insecticidal activities of essential oils from leaves of laurus nobilis L. from Tunisia, Algeria and Morocco, and comparative chemical composition. J Stored Prod Res. 2012;48:97–104.CrossRef
84.
Zurück zum Zitat El-Akhal F, Guemmouh R, Ez Zoubi Y, et al. Larvicidal activity of nerium oleander against larvae west nile vector mosquito culex pipiens (diptera: culicidae). J Parasitol Res. 2015;2015. El-Akhal F, Guemmouh R, Ez Zoubi Y, et al. Larvicidal activity of nerium oleander against larvae west nile vector mosquito culex pipiens (diptera: culicidae). J Parasitol Res. 2015;2015.
85.
Zurück zum Zitat Adewumi OA, Singh V, Singh G. Chemical composition, traditional uses and biological activities of artemisia species. J Pharmacogn Phytochem. 2020;9:1124–40. Adewumi OA, Singh V, Singh G. Chemical composition, traditional uses and biological activities of artemisia species. J Pharmacogn Phytochem. 2020;9:1124–40.
Metadaten
Titel
Avicenna’s views on pest control and medicinal plants he prescribed as natural pesticides
verfasst von
Mohammad Amrollahi-Sharifabadi
Jamal Rezaei Orimi
Zahra Adabinia
Tahereh Shakeri
Zahra Aghabeiglooei
Mohammad Hashemimehr
Maedeh Rezghi, PhD
Publikationsdatum
22.02.2024
Verlag
Springer Vienna
Erschienen in
Wiener Medizinische Wochenschrift
Print ISSN: 0043-5341
Elektronische ISSN: 1563-258X
DOI
https://doi.org/10.1007/s10354-024-01034-y