Skip to main content
Log in

Evaluation of insecticidal activity of nanoformulation of Melia azedarach (leaf) extract as a safe environmental insecticide

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Continued use of chemical pesticides causes environmental pollution in Iran and other countries. The use of botanical compounds such as plant extracts is considered as an alternative to synthetic pesticides. In this study, insecticidal activities of the nanoencapsulated leaf extracts of Melia azedarach of Iranian origin were evaluated for the first time. In the current study, the chemical composition of Melia extract and insecticidal activities of the plant extract and coated nanoliposomes on adults of Trialeurodes vaporariorum and Myzus persicae were evaluated. Results indicated that the Melia extract (uncoated nanoliposomes and coated nanoliposomes) is more toxic to the T. vaporariorum. The nanoencapsulated M. azedarach (leaf) extract morphology was determined by transmission electron microscopy (TEM) and optical microscopy (OM). The results of TEM and OM indicated that the morphology of nanoencapsulated Melia (leaf) extract is in spherical shape. The major components in plant extract were as follows: benzenedicarboxylic acid (41.307%), ethyl benzoate (16.18%) and isoxazole (6.13%). The fumigant toxicity of nanoencapsulated M. azedarach had an ordered relationship with the concentration and time exposure. Probit analysis showed that the LC50 values of plant extract for T. vaporariorum and M. persicae were 492.85 and 547.65 ppm for 48-h exposure, respectively. The mortality percentage of Trialeurodes vaporariorum by pure plant extract and plant extract of Melia azedarach loaded nanoliposomes for 20 days after the production of pesticides 13% and 83% were obtained, respectively. The overall results indicated that nanoencapsulated M. azedarach extract has high potential in controlling pests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aisha AF, Majid AM, Ismail Z (2014) Preparation and characterization of nano liposomes of Orthosiphon stamineus ethanolic extract in soybean phospholipids. BMC Biotechnol 14:23

    Google Scholar 

  • Al-Marzoqi AH, Hameed IH, Idan SA (2015) Analysis of bioactive chemical components of two medicinal plants (Coriandrum sativum and Melia azedarach) leaves using gas chromatography–mass spectrometry (GC–MS). Afr J Biotechnol 14:2812–2830

    Google Scholar 

  • Badar Y (1991) Toxicological studies of Melia azedarach L. (flowers and berries). Pak J Pharm Sci 4:153–158

    Google Scholar 

  • Bass C, Puinean AM, Zimmer CT, Denholm I, Field LM, Foster SP, Gutbrod O, Nauen R, Slater R, Williamson MS (2014) The evolution of insecticide resistance in the peach potato aphid, Myzus persicae. Insect Biochem Mol Biol 51:41–51

    CAS  Google Scholar 

  • Benelli G, Govindarajan M, Rajeswary M, Vaseeharan B, Alyahya SA, Alharbi NS, Kadaikunnan S, Khaled JM, Maggi F (2018) Insecticidal activity of camphene, zerumbone and α-humulene from Cheilocostus speciosus rhizome essential oil against the Old-World bollworm, Helicoverpa armigera. Ecotoxicol Environ Saf 148:781–786

    CAS  Google Scholar 

  • Benelli G, Pavela R, Drenaggi E, Maggi F (2019) Insecticidal efficacy of the essential oil of jambú (Acmella oleracea (L.) RK Jansen) cultivated in central Italy against filariasis mosquito vectors, houseflies and moth pests. J Ethnopharmacol 229:272–279

    CAS  Google Scholar 

  • Borges DF, Lopes EA, Moraes AR, Soares MS, Visôtto LE, Oliveira CR, Valente VM (2018) Formulation of botanicals for the control of plant-pathogens: a review. Crop Prot 110:135–140

    Google Scholar 

  • Bullangpoti V, Wajnberg E, Audant P, Feyereisen R (2012) Antifeedant activity of Jatropha gossypifolia and M. azedarach senescent leaf extracts on Spodoptera frugiperda (Lepidoptera: noctuidae) and their potential use as synergists. Pest Manag Sci 68:1255–1264

    CAS  Google Scholar 

  • Chiffelle I, Huerta Fuentes A, Lizana Rojas D (2009) Physical and chemical characterization of M. azedarach L. fruit and leaf for use as botanical insecticide. Chil J Agric Res 69:38–45

    Google Scholar 

  • Chortyk OT, Pomonis JG, Johnson AW (1996) Syntheses and characterizations of insecticidal sucrose esters. J Agric Food Chem 44:1551–1557

    CAS  Google Scholar 

  • Dales MJ (1996) A review of plant materials used for controlling insect pests of stored products. NRI Bull 65:1–91

    Google Scholar 

  • Davies TG, Field LM, Usherwood PN, Williamson MS (2007) DDT, pyrethrins, pyrethroids and insect sodium channels. IUBMB Life 59:151–162

    CAS  Google Scholar 

  • de Oliveira JL, Campos EV, Bakshi M, Abhilash PC, Fraceto LF (2014) Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnol Adv 32:1550–1561

    Google Scholar 

  • Defagó M, Valladares G, Banchio E, Carpinella C, Palacios S (2006) Insecticide and antifeedant activity of different plant parts of M. azedarach on Xanthogaleruca luteola. Fitoterapia 77:500–505

    Google Scholar 

  • Derbalah AS (2012) Efficacy of some botanical extracts against Trogoderma granarium in wheat grains with toxicity evaluation. Sci World J 2012:2012. https://doi.org/10.1100/2012/639854

    Article  Google Scholar 

  • Esmaeily S, Samih MA, Zarabi M, Jafarbeigi F (2014) Sublethal effects of some synthetic and botanical insecticides on Bemisia tabaci (Hemiptera: Aleyrodidae). J Plant Prot Res 54:171–178

    CAS  Google Scholar 

  • Farag M, Ahmed MH, Yousef H, Abdel-Rahman AH (2011) Repellent and insecticidal activities of M. azedarach L. against cotton leafworm, Spodoptera littoralis (Boisd.). Z Naturforsch C 66:129–135

    CAS  Google Scholar 

  • Gill RK, Rawal RK, Bariwal J (2015) Recent advances in the chemistry and biology of benzothiazoles. Arch Pharm 48:155–178

    Google Scholar 

  • Gong KJ, Shi AM, Liu HZ, Liu L, Hu H, Yang Y, Adhikari B, Wang Q (2016) Preparation of nanoliposome loaded with peanut peptide fraction: stability and bioavailability. Food Funct 7:2034–2042

    CAS  Google Scholar 

  • Guella G, Pietra F, Dini F (1996) Rarisetenolide, epoxyrarisetenolide, and epirarisetenolide, new-skeleton sesquiterpene lactones as taxonomic markers and defensive agents of the marine ciliated morphospecies euplotes rariseta. Helv Chim Acta 79:2180–2189

    CAS  Google Scholar 

  • Jaafar-Maalej C, Diab R, Andrieu V, Elaissari A, Fessi H (2010) Ethanol injection method for hydrophilic and lipophilic drug-loaded liposome preparation. J Liposome Res 20:228–243

    CAS  Google Scholar 

  • Jiang H, Wang J, Song L, Cao X, Yao X, Tang F, Yue Y (2018) Chemical composition of an insecticidal extract from Robinia pseudacacia L. seeds and it’s efficacy against aphids in oilseed rape. Crop Protec 104:1–6

    CAS  Google Scholar 

  • Kang MA, Seo MJ, Hwang IC, Jang C, Park HJ, Yu YM, Youn YN (2012) Insecticidal activity and feeding behavior of the green peach aphid, Myzus persicae, after treatment with nano types of pyrifluquinazon. J Asia Pac Entomol 15:533–541

    CAS  Google Scholar 

  • Karabelas AJ, Plakas KV, Solomou ES, Drossou V, Sarigiannis DA (2009) Impact of European legislation on marketed pesticides—a view from the standpoint of health impact assessment studies. Environ Int 35:1096–1107

    CAS  Google Scholar 

  • Khan MF, Rawat AK, Pawar B, Gautam S, Srivastava AK, Negi DS (2014) Bioactivity-guided chemical analysis of M. azedarach L. (Meliaceae), displaying antidiabetic activity. Fitoterapia 98:98–103

    CAS  Google Scholar 

  • Khoshraftar Z, Shamel A, Safekordi AA, Zaefizadeh M (2018) Chemical composition of an insecticidal hydroalcoholic extract from tea leaves against green peach aphid. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-018-2177-x

    Article  Google Scholar 

  • Khosravi R, Sendi JJ (2013) Effect of neem pesticide (Achook) on midgut enzymatic activities and selected biochemical compounds in the hemolymph of lesser mulberry pyralid, Glyphodes pyloalis Walker (Lepidoptera: Pyralidae). J Plant Prot Res 53:238–247

    Google Scholar 

  • Kibrom G, Kebede K, Weldehaweria G, Dejen G, Mekonen S, Gebreegziabher E, Nagappan R (2012) Field evaluation of aqueous extract of M. azedarach Linn. seeds against cabbage aphid, Brevicoryne brassicae Linn. (Homoptera: Aphididae), and its predator Coccinella septempunctata Linn. (Coleoptera: Coccinellidae). Arch Phytopathol Plant Prot 45:1273–1279

    Google Scholar 

  • Kim SI, Roh JY, Kim DH, Lee HS, Ahn YJ (2003) Insecticidal activities of aromatic plant extracts and essential oils against Sitophilus oryzae and Callosobruchus chinensis. J Stored Prod Res 39:293–303

    CAS  Google Scholar 

  • Kłyś M, Przystupińska A (2015) The mortality of Oryzaephilus surinamensis Linnaeus, 1758 (Coleoptera: Silvanidae) induced by powdered plants. J Plant Prot Res 55:110–116

    Google Scholar 

  • Kookana RS, Boxall AB, Reeves PT, Ashauer R, Beulke S, Chaudhry Q, Cornelis G, Fernandes TF, Gan J, Kah M, Lynch I (2014) Nanopesticides: guiding principles for regulatory evaluation of environmental risks. J Agric Food Chem 62:4227–4240

    CAS  Google Scholar 

  • Lei C, Geng L, Xu X, Shao X, Li Z (2018) Isoxazole-containing neonicotinoids: design, synthesis, and insecticidal evaluation. Bioorg Med Chem Lett 28:831–833

    CAS  Google Scholar 

  • Lu Y, Wu K, Jiang Y, Guo Y, Desneux N (2012) Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487:362–365

    CAS  Google Scholar 

  • M’rabet Y, Rokbeni N, Cluzet S, Boulila A, Richard T, Krisa S, Marzouki L, Casabianca H, Hosni K (2017) Profiling of phenolic compounds and antioxidant activity of M. azedarach L. leaves and fruits at two stages of maturity. Ind Crops Prod 107:232–243

    Google Scholar 

  • Mahdi S, Sasan J, Sara K (2011) Contact toxicities of oxygenated monoterpenes to different populations of Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae). J Plant Prot Res 51:225–233

    CAS  Google Scholar 

  • Mahmoodi L, Valizadegan O, Mahdavi V (2014) Fumigant toxicity of Petroselinum crispum L. (Apiaceae) essential oil on Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) adults under greenhouse conditions. J Plant Prot Res 54:294–299

    CAS  Google Scholar 

  • Moretti MD, Sanna-Passino G, Demontis S, Bazzoni E (2002) Essential oil formulations useful as a new tool for insect pest control. AAPs Pharm Sci Tech 3:64–74

    Google Scholar 

  • Mozafari MR (2010) Nanoliposomes: preparation and analysis. In Liposomes. Humana Press, pp 29–50. https://doi.org/10.1007/978-1-60327-360-2_2

    Google Scholar 

  • Oberemok VV, Laikova KV, Gninenko YI, Zaitsev AS, Nyadar PM, Adeyemi TA (2015) A short history of insecticides. J Plant Prot Res 55:221–226

    CAS  Google Scholar 

  • Orhan IE, Guner E, Ozcelik B, Senol FS, Caglar SS, Emecen G, Kocak O, Sener B (2012a) Assessment of antimicrobial, insecticidal and genotoxic effects of M. azedarach L. (chinaberry) naturalized in Anatolia. Int J Food Sci Nutr 63:560–565

    CAS  Google Scholar 

  • Orhan IE, Guner E, Ozturk N, Senol FS, Erdem SA, Kartal M, Sener B (2012b) Enzyme inhibitory and antioxidant activity of M. azedarach L. naturalized in Anatolia and its phenolic acid and fatty acid composition. Ind Crops Prod 37:213–218

    CAS  Google Scholar 

  • Osanloo M, Amani A, Sereshti H, Abai MR, Esmaeili F, Sedaghat MM (2017) Preparation and optimization nanoemulsion of Tarragon (Artemisia dracunculus) essential oil as effective herbal larvicide against Anopheles stephensi. Ind Crops Prod 109:214–219

    CAS  Google Scholar 

  • Passino GS, Bazzoni E, Moretti MD (2004) Microencapsulated essential oils active against indianmeal moth. Bol Sanid Veg Plagas 30:125–132

    Google Scholar 

  • Pavela R, Benelli G (2016) Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci 21:1000–1007

    CAS  Google Scholar 

  • Qureshi NA, Ashraf A, Afzal M, Ullah N, Iqbal A, Haleem S (2015) Toxic potential of M. azedarach leaves extract against Odontotermes obesus and Microtermes obesi. Int J Biosci 6:120–127

    Google Scholar 

  • Safavi SA, Bakhshaei M (2017) Biological parameters of Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) exposed to lethal and sublethal concentrations of Calypso. J Crop Protection 6:341–351

    Google Scholar 

  • Schmidt GH, Ahmed AA, Breuer M (1997) Effect ofM. azedarach extract on larval development and reproduction parameters of Spodoptera littoralis (Boisd.) and Agrotis ipsilon (Hufn.) (lep. noctuidae). Anz Schädl Skd Pflanzenschutz, Umweltschutz 70:4–12. https://doi.org/10.1007/BF02009609

    Article  Google Scholar 

  • Specos MM, Garcia JJ, Tornesello J, Marino P, Vecchia MD, Tesoriero MD, Hermida LG (2010) Microencapsulated citronella oil for mosquito repellent finishing of cotton textiles. Trans R Soc Trop Med Hyg 104(10):653–658

    CAS  Google Scholar 

  • Sun R, Li Y, Xiong L, Liu Y, Wang Q (2011) Design, synthesis, and insecticidal evaluation of new benzoylureas containing isoxazoline and isoxazole group. J Agric Food Chem 59:4851–4859

    CAS  Google Scholar 

  • Upadhyay A, Gopal M, Srivastava C (2010) Isoxazole derivatives as a potential insecticide for managing Callosobruchus chinensis. J Pestic Sci 35:464–469

    CAS  Google Scholar 

  • Wan NF, Ji XY, Jiang JX, Zhang YM, Liang JH, Li B (2015) An ecological indicator to evaluate the effect of chemical insecticide pollution management on complex ecosystems. Ecol Indic 53:11–17

    CAS  Google Scholar 

  • Yang YC, Choi HY, Choi WS, Clark JM, Ahn YJ (2004) Ovicidal and adulticidal activity of Eucalyptus globulus leaf oil terpenoids against Pediculus humanus capitis (Anoplura: Pediculidae). J Agric Food Chem 52:2507–2511

    CAS  Google Scholar 

  • Yang FL, Li XG, Zhu F, Lei CL (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57:10156–10162

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank all members of Chemistry Research Laboratory of Azad University, Ardabil, Iran, and the University of Science and Research Branch, Islamic Azad University, Tehran, for supporting Ph.D. thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Shamel.

Ethics declarations

Conflict of interest

There is no conflict of interest for the authors.

Additional information

Editorial responsibility: Xu Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoshraftar, Z., Safekordi, A.A., Shamel, A. et al. Evaluation of insecticidal activity of nanoformulation of Melia azedarach (leaf) extract as a safe environmental insecticide. Int. J. Environ. Sci. Technol. 17, 1159–1170 (2020). https://doi.org/10.1007/s13762-019-02448-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-019-02448-7

Keywords

Navigation