Skip to main content
Erschienen in: Spektrum der Augenheilkunde 6/2021

15.09.2020 | original article

Biometric changes of the crystalline lens during accommodation

verfasst von: Nino Hirnschall, Prof. Barbara Kiss, Ayfer Guer, Prof. Oliver Findl, MBA, EBO

Erschienen in: Spektrum der Augenheilkunde | Ausgabe 6/2021

Einloggen, um Zugang zu erhalten

Summary

Background

To measure intralenticular biometrical changes during accommodation.

Material and methods

This prospective study included two different age groups of volunteers (18–25 years and 30–39 years) and in each age group three different groups of ametropia (emmetropic, myopic, and hyperopic volunteers). All volunteers were measured using partial coherence interferometry (ACMaster, Carl Zeiss Meditec, Germany) in an unaccommodated and an accommodated state. Intralenticular biometric changes concerning anterior and posterior cortex and lens nucleus were analysed.

Results

In total, 104 eyes of 104 volunteers were included in this study. During accommodation in the group of subjects in their 20s, the following changes were observed: In the emmetropic group, the nucleus thickness increased by +0.414 mm, whereas the anterior cortex and posterior cortex thickness remained relatively constant at −0.006 mm (−0.186 mm to 0.046 mm) and +0.008 mm (−0.008 mm to 0.024 mm), respectively.

Conclusions

The increase of the human crystalline lens with age is characterised by a higher increase in cortex thickness than in nucleus thickness. During accommodation, the thickening of the lens is primarily explained by the thickening of the lens nucleus.
Literatur
2.
Zurück zum Zitat Nishi Y, Mireskandari K, Khaw P, et al. Lens refilling to restore accommodation. J Cataract Refract Surg. 2009;35(2):374–82.CrossRef Nishi Y, Mireskandari K, Khaw P, et al. Lens refilling to restore accommodation. J Cataract Refract Surg. 2009;35(2):374–82.CrossRef
3.
Zurück zum Zitat Gwon A. Lens regeneration in mammals: a review. Surv Ophthalmol. 2006;51(1):51–62.CrossRef Gwon A. Lens regeneration in mammals: a review. Surv Ophthalmol. 2006;51(1):51–62.CrossRef
4.
Zurück zum Zitat Schachar RA. The mechanism of accommodation and presbyopia. Int Ophthalmol Clin. 2006;46(3):39–61.CrossRef Schachar RA. The mechanism of accommodation and presbyopia. Int Ophthalmol Clin. 2006;46(3):39–61.CrossRef
5.
Zurück zum Zitat Ramasubramanian V, Glasser A. Prediction of accommodative optical response in prepresbyopic subjects using ultrasound biomicroscopy. J Cataract Refract Surg. 2015;41(5):964–80.CrossRef Ramasubramanian V, Glasser A. Prediction of accommodative optical response in prepresbyopic subjects using ultrasound biomicroscopy. J Cataract Refract Surg. 2015;41(5):964–80.CrossRef
6.
Zurück zum Zitat Win-Hall DM, Houser J, Glasser A. Static and dynamic accommodation measured using the WAM-5500 Autorefractor. Optom Vis Sci. 2010;87(11):873–82.CrossRef Win-Hall DM, Houser J, Glasser A. Static and dynamic accommodation measured using the WAM-5500 Autorefractor. Optom Vis Sci. 2010;87(11):873–82.CrossRef
7.
Zurück zum Zitat Ostrin L, Kasthurirangan S, Win-Hall D, et al. Simultaneous measurements of refraction and A‑scan biometry during accommodation in humans. Optom Vis Sci. 2006;83(9):657–65.CrossRef Ostrin L, Kasthurirangan S, Win-Hall D, et al. Simultaneous measurements of refraction and A‑scan biometry during accommodation in humans. Optom Vis Sci. 2006;83(9):657–65.CrossRef
8.
Zurück zum Zitat Drexler W, Findl O, Menapace R, et al. Partial coherence interferometry: a novel approach to biometry in cataract surgery. Am J Ophthalmol. 1998;126(4):524–34.CrossRef Drexler W, Findl O, Menapace R, et al. Partial coherence interferometry: a novel approach to biometry in cataract surgery. Am J Ophthalmol. 1998;126(4):524–34.CrossRef
9.
Zurück zum Zitat Findl O, Drexler W, Menapace R, et al. Accurate determination of effective lens position and lens-capsule distance with 4 intraocular lenses. J Cataract Refract Surg. 1998;24(8):1094–8.CrossRef Findl O, Drexler W, Menapace R, et al. Accurate determination of effective lens position and lens-capsule distance with 4 intraocular lenses. J Cataract Refract Surg. 1998;24(8):1094–8.CrossRef
10.
Zurück zum Zitat Drexler W, Hitzenberger CK, Baumgartner A, et al. Investigation of dispersion effects in ocular media by multiple wavelength partial coherence interferometry. Exp Eye Res. 1998;66(1):25–33.CrossRef Drexler W, Hitzenberger CK, Baumgartner A, et al. Investigation of dispersion effects in ocular media by multiple wavelength partial coherence interferometry. Exp Eye Res. 1998;66(1):25–33.CrossRef
11.
Zurück zum Zitat Findl O, Drexler W, Menapace R, et al. High precision biometry of pseudophakic eyes using partial coherence interferometry. J Cataract Refract Surg. 1998;24(8):1087–93.CrossRef Findl O, Drexler W, Menapace R, et al. High precision biometry of pseudophakic eyes using partial coherence interferometry. J Cataract Refract Surg. 1998;24(8):1087–93.CrossRef
12.
Zurück zum Zitat Dubbelman M, Van der Heijde GL, Weeber HA, et al. Changes in the internal structure of the human crystalline lens with age and accommodation. Vision Res. 2003;43(22):2363–75.CrossRef Dubbelman M, Van der Heijde GL, Weeber HA, et al. Changes in the internal structure of the human crystalline lens with age and accommodation. Vision Res. 2003;43(22):2363–75.CrossRef
13.
Zurück zum Zitat Neri A, Ruggeri M, Protti A, et al. Dynamic imaging of accommodation by swept-source anterior segment optical coherence tomography. J Cataract Refract Surg. 2015;41(3):501–10.CrossRef Neri A, Ruggeri M, Protti A, et al. Dynamic imaging of accommodation by swept-source anterior segment optical coherence tomography. J Cataract Refract Surg. 2015;41(3):501–10.CrossRef
14.
Zurück zum Zitat Leng L, Yuan Y, Chen Q, et al. Biometry of anterior segment of human eye on both horizontal and vertical meridians during accommodation imaged with extended scan depth optical coherence tomography. Plos One. 2014;9(8):e104775.CrossRef Leng L, Yuan Y, Chen Q, et al. Biometry of anterior segment of human eye on both horizontal and vertical meridians during accommodation imaged with extended scan depth optical coherence tomography. Plos One. 2014;9(8):e104775.CrossRef
15.
Zurück zum Zitat Zhong J, Tao A, Xu Z, et al. Whole eye axial biometry during accommodation using ultra-long scan depth optical coherence tomography. Am J Ophthalmol. 2014;157(5):1064–9.CrossRef Zhong J, Tao A, Xu Z, et al. Whole eye axial biometry during accommodation using ultra-long scan depth optical coherence tomography. Am J Ophthalmol. 2014;157(5):1064–9.CrossRef
16.
Zurück zum Zitat Kasthurirangan S, Markwell EL, Atchison DA, et al. MRI study of the changes in crystalline lens shape with accommodation and aging in humans. J Vis. 2011;11(3):19.CrossRef Kasthurirangan S, Markwell EL, Atchison DA, et al. MRI study of the changes in crystalline lens shape with accommodation and aging in humans. J Vis. 2011;11(3):19.CrossRef
17.
Zurück zum Zitat Sheppard AL, Evans CJ, Singh KD, et al. Three-dimensional magnetic resonance imaging of the phakic crystalline lens during accommodation. Investig Ophthalmol Vis Sci. 2011;52(6):3689–97.CrossRef Sheppard AL, Evans CJ, Singh KD, et al. Three-dimensional magnetic resonance imaging of the phakic crystalline lens during accommodation. Investig Ophthalmol Vis Sci. 2011;52(6):3689–97.CrossRef
18.
Zurück zum Zitat Strenk SA, Strenk LM, Guo S. Magnetic resonance imaging of the anteroposterior position and thickness of the aging, accommodating, phakic, and pseudophakic ciliary muscle. J Cataract Refract Surg. 2010;36(2):235–41.CrossRef Strenk SA, Strenk LM, Guo S. Magnetic resonance imaging of the anteroposterior position and thickness of the aging, accommodating, phakic, and pseudophakic ciliary muscle. J Cataract Refract Surg. 2010;36(2):235–41.CrossRef
19.
Zurück zum Zitat Tsorbatzoglou A, Nemeth G, Szell N, et al. Anterior segment changes with age and during accommodation measured with partial coherence interferometry. J Cataract Refract Surg. 2007;33(9):1597–601.CrossRef Tsorbatzoglou A, Nemeth G, Szell N, et al. Anterior segment changes with age and during accommodation measured with partial coherence interferometry. J Cataract Refract Surg. 2007;33(9):1597–601.CrossRef
20.
Zurück zum Zitat Koretz JF, Kaufman PL, Neider MW, et al. Accommodation and presbyopia in the human eye—aging of the anterior segment. Vision Res. 1989;29(12):1685–92.CrossRef Koretz JF, Kaufman PL, Neider MW, et al. Accommodation and presbyopia in the human eye—aging of the anterior segment. Vision Res. 1989;29(12):1685–92.CrossRef
21.
Zurück zum Zitat Brown N. Dating the onset of cataract. Trans Ophthalmol Soc U K. 1976;96(1):18–23.PubMed Brown N. Dating the onset of cataract. Trans Ophthalmol Soc U K. 1976;96(1):18–23.PubMed
22.
Zurück zum Zitat Cook CA, Koretz JF, Pfahnl A, et al. Aging of the human crystalline lens and anterior segment. Vision Res. 1994;34(22):2945–54.CrossRef Cook CA, Koretz JF, Pfahnl A, et al. Aging of the human crystalline lens and anterior segment. Vision Res. 1994;34(22):2945–54.CrossRef
23.
Zurück zum Zitat Helmholtz. Über die Akkommodation. Graefe’s Arch. Ophthalmologie. 1855;1/2:1–74. Helmholtz. Über die Akkommodation. Graefe’s Arch. Ophthalmologie. 1855;1/2:1–74.
24.
Zurück zum Zitat Glasser A, Campbell MC. Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia. Vision Res. 1999;39(11):1991–2015.CrossRef Glasser A, Campbell MC. Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia. Vision Res. 1999;39(11):1991–2015.CrossRef
25.
Zurück zum Zitat Richdale K, Sinnott LT, Bullimore MA, et al. Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye. Investig Ophthalmol Vis Sci. 2013;54(2):1095–105.CrossRef Richdale K, Sinnott LT, Bullimore MA, et al. Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye. Investig Ophthalmol Vis Sci. 2013;54(2):1095–105.CrossRef
26.
Zurück zum Zitat Wolffsohn JS, Sheppard AL, Vakani S, et al. Accommodative amplitude required for sustained near work. Ophthalmic Physiol Opt. 2011;31(5):480–6.CrossRef Wolffsohn JS, Sheppard AL, Vakani S, et al. Accommodative amplitude required for sustained near work. Ophthalmic Physiol Opt. 2011;31(5):480–6.CrossRef
Metadaten
Titel
Biometric changes of the crystalline lens during accommodation
verfasst von
Nino Hirnschall
Prof. Barbara Kiss
Ayfer Guer
Prof. Oliver Findl, MBA, EBO
Publikationsdatum
15.09.2020
Verlag
Springer Vienna
Erschienen in
Spektrum der Augenheilkunde / Ausgabe 6/2021
Print ISSN: 0930-4282
Elektronische ISSN: 1613-7523
DOI
https://doi.org/10.1007/s00717-020-00464-4

Weitere Artikel der Ausgabe 6/2021

Spektrum der Augenheilkunde 6/2021 Zur Ausgabe