skip to main content
10.1145/2939672.2939807acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article
Public Access

Joint Community and Structural Hole Spanner Detection via Harmonic Modularity

Authors Info & Claims
Published:13 August 2016Publication History

ABSTRACT

Detecting communities (or modular structures) and structural hole spanners, the nodes bridging different communities in a network, are two essential tasks in the realm of network analytics. Due to the topological nature of communities and structural hole spanners, these two tasks are naturally tangled with each other, while there has been little synergy between them. In this paper, we propose a novel harmonic modularity method to tackle both tasks simultaneously. Specifically, we apply a harmonic function to measure the smoothness of community structure and to obtain the community indicator. We then investigate the sparsity level of the interactions between communities, with particular emphasis on the nodes connecting to multiple communities, to discriminate the indicator of SH spanners and assist the community guidance. Extensive experiments on real-world networks demonstrate that our proposed method outperforms several state-of-the-art methods in the community detection task and also in the SH spanner identification task (even the methods that require the supervised community information). Furthermore, by removing the SH spanners spotted by our method, we show that the quality of other community detection methods can be further improved.

Skip Supplemental Material Section

Supplemental Material

kdd2016_he_structural_hole_01-acm.mp4

mp4

292.2 MB

References

  1. D. S. Bassett, E. T. Bullmore, A. Meyer-Lindenberg, J. A. Apud, D. R. Weinberger, and R. Coppola. Cognitive fitness of cost-efficient brain functional networks. PNAS, 106(28):11747--11752, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  2. U. Brandes. A faster algorithm for betweenness centrality*. Journal of Mathematical Sociology, 25(2):163--177, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  3. R. S. Burt. Secondhand brokerage: Evidence on the importance of local structure for managers, bankers, and analysts. Academy of Management Journal, 50:119--148, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  4. R. S. Burt. Structural holes: The social structure of competition. Harvard university press, 2009.Google ScholarGoogle Scholar
  5. V. Buskens and A. Van de Rijt. Dynamics of networks if everyone strives for structural holes1. American Journal of Sociology, 114(2):371--407, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  6. K. Ciesielski, D. Czerski, M. Dramiński, M. A. Kłopotek, and S. T. Wierzchoń. Semantic information within the beatca framework. Control and Cybernetics, 39(2):377--400, 2010.Google ScholarGoogle Scholar
  7. A. Clauset, M. E. Newman, and C. Moore. Finding community structure in very large networks. Physical review E, 70(6):066111, 2004.Google ScholarGoogle Scholar
  8. G. Cordasco and L. Gargano. Community detection via semi-synchronous label propagation algorithms. In BASNA, pages 1--8, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  9. I. S. Dhillon, Y. Guan, and B. Kulis. Weighted graph cuts without eigenvectors a multilevel approach. TPAMI, 29(11):1944--1957, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. S. Fortunato. Community detection in graphs. Physics reports, 486(3):75--174, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  11. M. Girvan and M. E. Newman. Community structure in social and biological networks. PNAS, 99(12):7821--7826, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  12. A. Goyal, W. Lu, and L. V. Lakshmanan. Celf: optimizing the greedy algorithm for influence maximization in social networks. In WWW, pages 47--48, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. S. Goyal and F. Vega-Redondo. Structural holes in social networks. Journal of Economic Theory, 137(1):460--492, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  14. A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring network structure, dynamics, and function using NetworkX. In SciPy, pages 11--15, 2008.Google ScholarGoogle Scholar
  15. R. He, T. Tan, L. Wang, and W.-S. Zheng. l2,1 regularized correntropy for robust feature selection. In CVPR, pages 2504--2511, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. U. Kang and C. Faloutsos. Beyond'caveman communities,: Hubs and spokes for graph compression and mining. In ICDM, pages 300--309, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of influence through a social network. In KDD, pages 137--146, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. J. Kleinberg, S. Suri, É. Tardos, and T. Wexler. Strategic network formation with structural holes. In EC, pages 284--293, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. S. Lin, Q. Hu, G. Wang, and S. Y. Philip. Understanding community effects on information diffusion. In PAKDD, pages 82--95, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  20. T. Lou and J. Tang. Mining structural hole spanners through information diffusion in social networks. In WWW, pages 825--836, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. M. E. Newman. Modularity and community structure in networks. PNAS, 103(23):8577--8582, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  22. M. E. Newman and M. Girvan. Finding and evaluating community structure in networks. Physical review E, 69(2):026113, 2004.Google ScholarGoogle Scholar
  23. A. Y. Ng, M. I. Jordan, Y. Weiss, et al. On spectral clustering: Analysis and an algorithm. NIPS, 2:849--856, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. F. Nie, H. Huang, X. Cai, and C. H. Ding. Efficient and robust feature selection via joint l2, 1-norms minimization. In NIPS, pages 1813--1821, 2010.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. M. Nikolova and M. K. Ng. Analysis of half-quadratic minimization methods for signal and image recovery. SISC, 27(3):937--966, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: bringing order to the web. 1999.Google ScholarGoogle Scholar
  27. J. M. Podolny and J. N. Baron. Resources and relationships: Social networks and mobility in the workplace. American Sociological Review, 62(5):673, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  28. M. Rezvani, W. Liang, W. Xu, and C. Liu. Identifying top-k structural hole spanners in large-scale social networks. In CIKM, pages 263--272, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. M. Rosvall and C. T. Bergstrom. Multilevel compression of random walks on networks reveals hierarchical organization in large integrated systems. PloS one, 6(4):e18209, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  30. Y. Ruan and S. Parthasarathy. Simultaneous detection of communities and roles from large networks. In COSN, pages 203--214, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. D. A. Spielman. Algorithms, graph theory, and linear equations in laplacian matrices. In ICM, volume 4, pages 2698--2722, 2010.Google ScholarGoogle Scholar
  32. J. Tang, T. Lou, and J. Kleinberg. Inferring social ties across heterogenous networks. In WSDM, pages 743--752, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. M. P. van den Heuvel and O. Sporns. Rich-club organization of the human connectome. The Journal of neuroscience, 31(44):15775--15786, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  34. L. Wang, T. Lou, J. Tang, and J. E. Hopcroft. Detecting community kernels in large social networks. In ICDM, pages 784--793, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Z. Wang, Z. Chen, Y. Zhao, and S. Chen. A community detection algorithm based on topology potential and spectral clustering. The Scientific World Journal, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  36. W. Winterbach, P. Van Mieghem, M. Reinders, H. Wang, and D. de Ridder. Topology of molecular interaction networks. BMC systems biology, 7(1):90, 2013.Google ScholarGoogle Scholar
  37. J. Yang and J. Leskovec. Defining and evaluating network communities based on ground-truth. KAIS, 42(1):181--213, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. W. W. Zachary. An information flow model for conflict and fission in small groups. Journal of anthropological research, pages 452--473, 1977.Google ScholarGoogle Scholar

Index Terms

  1. Joint Community and Structural Hole Spanner Detection via Harmonic Modularity

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          KDD '16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
          August 2016
          2176 pages
          ISBN:9781450342322
          DOI:10.1145/2939672

          Copyright © 2016 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 13 August 2016

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          KDD '16 Paper Acceptance Rate66of1,115submissions,6%Overall Acceptance Rate1,133of8,635submissions,13%

          Upcoming Conference

          KDD '24

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader