skip to main content
10.1145/2939672.2939760acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article
Public Access

Robust Influence Maximization

Authors Info & Claims
Published:13 August 2016Publication History

ABSTRACT

Uncertainty about models and data is ubiquitous in the computational social sciences, and it creates a need for robust social network algorithms, which can simultaneously provide guarantees across a spectrum of models and parameter settings. We begin an investigation into this broad domain by studying robust algorithms for the Influence Maximization problem, in which the goal is to identify a set of k nodes in a social network whose joint influence on the network is maximized. We define a Robust Influence Maximization framework wherein an algorithm is presented with a set of influence functions, typically derived from different influence models or different parameter settings for the same model. The different parameter settings could be derived from observed cascades on different topics, under different conditions, or at different times. The algorithm's goal is to identify a set of k nodes who are simultaneously influential for all influence functions, compared to the (function-specific) optimum solutions.

We show strong approximation hardness results for this problem unless the algorithm gets to select at least a logarithmic factor more seeds than the optimum solution. However, when enough extra seeds may be selected, we show that techniques of Krause et al. can be used to approximate the optimum robust influence to within a factor of 1-1/e. We evaluate this bicriteria approximation algorithm against natural heuristics on several real-world data sets. Our experiments indicate that the worst-case hardness does not necessarily translate into bad performance on real-world data sets; all algorithms perform fairly well.

Skip Supplemental Material Section

Supplemental Material

kdd2016_he_influence_maximization_01-acm.mp4

mp4

336.4 MB

References

  1. B. Abrahao, F. Chierichetti, R. Kleinberg, and A. Panconesi. Trace complexity of network inference. In Proc. 19th KDD, pages 491--499, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. A. Adiga, C. J. Kuhlman, H. S. Mortveit, and A. K. S. Vullikanti. Sensitivity of diffusion dynamics to network uncertainty. In Proc. 28th AAAI, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. C. Borgs, M. Brautbar, J. Chayes, and B. Lucier. Maximizing social influence in nearly optimal time. In Proc. 25th ACM SODA, pages 946--957, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. K. E. Campbell and B. A. Lee. Name generators in surveys of personal networks. Social Networks, 13(3):203--221, 1991.Google ScholarGoogle ScholarCross RefCross Ref
  5. W. Chen, L. V. Lakshmanan, and C. Castillo. Information and Influence Propagation in Social Networks. Synthesis Lectures on Data Management. Morgan & Claypool, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. W. Chen, T. Lin, Z. Tan, M. Zhao, and X. Zhou. Robust influence maximization. In Proc. 22nd KDD, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. W. Chen, Y. Wang, and S. Yang. Efficient influence maximization in social networks. In Proc. 15th KDD, pages 199--208, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. W. Chen, Y. Wang, Y. Yuan, and Q. Wang. Combinatorial multi-armed bandit and its extension to probabilistically triggered arms. J. Mach. Learn. Res., 17(1):1746--1778, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. W. Chen, Y. Yuan, and L. Zhang. Scalable influence maximization in social networks under the linear threshold model. In Proc. 10th ICDM, pages 88--97, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. X. Chen, G. Song, X. He, and K. Xie. On influential nodes tracking in dynamic social networks. In Proc. 15th SDM, pages 613--621, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  11. H. Daneshmand, M. Gomez-Rodriguez, L. Song, and B. Schölkopf. Estimating diffusion network structures: Recovery conditions, sample complexity & soft-thresholding algorithm. In Proc. 31st ICML, 2014.Google ScholarGoogle Scholar
  12. N. Du, Y. Liang, M.-F. Balcan, and L. Song. Influence function learning in information diffusion networks. In Proc. 31st ICML, 2014.Google ScholarGoogle Scholar
  13. N. Du, L. Song, M. Gomez-Rodriguez, and H. Zha. Scalable influence estimation in continuous-time diffusion networks. In Proc. 25th NIPS, 2013.Google ScholarGoogle Scholar
  14. M. Gomez-Rodriguez, D. Balduzzi, and B. Schölkopf. Uncovering the temporal dynamics of diffusion networks. In Proc. 28th ICML, pages 561--568, 2011.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. M. Gomez-Rodriguez, J. Leskovec, and A. Krause. Inferring networks of diffusion and influence. ACM Transactions on Knowledge Discovery from Data (TKDD), 5(4):21, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. M. Gomez-Rodriguez and B. Schölkopf. Submodular inference of diffusion networks from multiple trees. In Proc. 29th ICML, 2012.Google ScholarGoogle Scholar
  17. A. Goyal, F. Bonchi, and L. V. S. Lakshmanan. A data-based approach to social influence maximization. Proc. VLDB Endowment, 5(1):73--84, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. A. Goyal, F. Bonchi, L. V. S. Lakshmanan, and S. Venkatasubramanian. On minimizing budget and time in influence propagation over social networks. Social Network Analysis and Mining, 3(2):179--192, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  19. X. He and D. Kempe. Stability of influence maximization. Unpublished Manuscript, available at http://arxiv.org/abs/1501.04579, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. X. He and D. Kempe. Robust influence maximization. Technical Report, http://arxiv.org/abs/1602.05240, 2016.Google ScholarGoogle Scholar
  21. D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence in a social network. Theory of Computing, 11(4):105--147, 2015. A preliminary version of the results appeared in KDD 2003 and ICALP 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. S. Khanna and B. Lucier. Influence maximization in undirected networks. In Proc. 25th ACM SODA, pages 1482--1496, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. A. Krause, H. B. McMahan, C. Guestrin, and A. Gupta. Robust submodular observation selection. In Journal of Machine Learning Research, volume 9, pages 2761--2801, 2008.Google ScholarGoogle Scholar
  24. S. Lei, S. Maniu, L. Mo, R. Cheng, and P. Senellart. Online influence maximization. In Proc. 21st KDD, pages 645--654, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. J. Leskovec, L. Backstrom, and J. Kleinberg. Meme-tracking and the dynamics of the news cycle. In Proc. 15th KDD, pages 497--506, 2009. Note: updated data sets at http://www.memetracker.org/. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. S. Glance. Cost-effective outbreak detection in networks. In Proc. 13th KDD, pages 420--429, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. M. Lowalekar, P. Varakantham, and A. Kumar. Robust influence maximization (extended abstract). In Proc. 15th AAMAS, pages 1395--1396, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. E. Mossel and S. Roch. Submodularity of influence in social networks: From local to global. SIAM J. Comput., 39(6):2176--2188, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  29. S. A. Myers and J. Leskovec. On the convexity of latent social network inference. In Proc. 22nd NIPS, pages 1741--1749, 2010.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. H. Narasimhan, D. C. Parkes, and Y. Singer. Learnability of influence in networks. In Proc. 27th NIPS, pages 3168--3176, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of the approximations for maximizing submodular set functions. Mathematical Programming, 14:265--294, 1978.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. P. Netrapalli and S. Sanghavi. Learning the graph of epidemic cascades. In ACM SIGMETRICS Performance Evaluation Review, pages 211--222, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. K. Saito, M. Kimura, K. Ohara, and H. Motoda. Selecting information diffusion models over social networks for behavioral analysis. In Proc. 2010 European Conference on Machine Learning and Knowledge Discovery in Databases: Part III, ECML/PKDD 10, pages 180--195, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. C. Wang, W. Chen, and Y. Wang. Scalable influence maximization for independent cascade model in large-scale social networks. Data Mining and Knowledge Discovery Journal, 25(3):545--576, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  35. Y. Wang, G. Cong, G. Song, and K. Xie. Community-based greedy algorithm for mining top-k influential nodes in mobile social networks. In Proc. 16th KDD, pages 1039--1048, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Robust Influence Maximization

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      KDD '16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
      August 2016
      2176 pages
      ISBN:9781450342322
      DOI:10.1145/2939672

      Copyright © 2016 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 13 August 2016

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      KDD '16 Paper Acceptance Rate66of1,115submissions,6%Overall Acceptance Rate1,133of8,635submissions,13%

      Upcoming Conference

      KDD '24

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader