Skip to main content

Using Nonhuman Primate Models to Reverse-Engineer Prefrontal Circuit Failure Underlying Cognitive Deficits in Schizophrenia

  • Chapter
  • First Online:
Cognitive Functioning in Schizophrenia: Leveraging the RDoC Framework

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 63))

Abstract

In this chapter, I review studies in nonhuman primates that emulate the circuit failure in prefrontal cortex responsible for working memory and cognitive control deficits in schizophrenia. These studies have characterized how synaptic malfunction, typically induced by blockade of NMDAR, disrupts neural function and computation in prefrontal networks to explain errors in cognitive tasks that are seen in schizophrenia. This work is finding causal relationships between pathogenic events of relevance to schizophrenia at vastly different levels of scale, from synapses, to neurons, local, circuits, distributed networks, computation, and behavior. Pharmacological manipulation, the dominant approach in primate models, has limited construct validity for schizophrenia pathogenesis, as the disease results from a complex interplay between environmental, developmental, and genetic factors. Genetic manipulation replicating schizophrenia risk is more advanced in rodent models. Nonetheless, gene manipulation in nonhuman primates is rapidly advancing, and primate developmental models have been established. Integration of large scale neural recording, genetic manipulation, and computational modeling in nonhuman primates holds considerable potential to provide a crucial schizophrenia model moving forward. Data generated by this approach is likely to fill several crucial gaps in our understanding of the causal sequence leading to schizophrenia in humans. This causal chain presents a vexing problem largely because it requires understanding how events at very different levels of scale relate to one another, from genes to circuits to cognition to social interactions. Nonhuman primate models excel here. They optimally enable discovery of causal relationships across levels of scale in the brain that are relevant to cognitive deficits in schizophrenia. The mechanistic understanding of prefrontal circuit failure they promise to provide may point the way to more effective therapeutic interventions to restore function to prefrontal networks in the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abi-Dargham A, van de Giessen E, Slifstein M, Kegeles LS, Laruelle M (2009) Baseline and amphetamine-stimulated dopamine activity are related in drug-naïve schizophrenic subjects. Biol Psychiatry 65:1091–1093

    Article  CAS  PubMed  Google Scholar 

  • Adcock RA, Dale C, Fisher M, Aldebot S, Genevsky A, Simpson GV, Nagarajan S, Vinogradov S (2009) When top-down meets bottom-up: auditory training enhances verbal memory in schizophrenia. Schizophr Bull 35:1132–1141

    Article  PubMed  PubMed Central  Google Scholar 

  • Adrover MF, Shin JH, Quiroz C, Ferré S, Lemos JC, Alvarez VA (2020) Prefrontal cortex-driven dopamine signals in the striatum show unique spatial and pharmacological properties. J Neurosci 40(39):7510–7522. https://doi.org/10.1523/JNEUROSCI.1327-20.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aida T, Feng G (2020) The dawn of non-human primate models for neurodevelopmental disorders. Curr Opin Genet Dev 65:160–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aleman A, Hijman R, de Haan EH, Kahn RS (1999) Memory impairment in schizophrenia: a meta-analysis. Am J Psychiatry 156:1358–1366

    Article  CAS  PubMed  Google Scholar 

  • Allen RM, Young SJ (1978) Phencyclidine-induced psychosis. Am J Psychiatry 135:1081–1084

    Article  CAS  PubMed  Google Scholar 

  • Amit DJ, Brunel N (1997) Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cereb Cortex 7:237–252

    Article  CAS  PubMed  Google Scholar 

  • Anticevic A, Cole MW, Repovs G, Murray JD, Brumbaugh MS, Winkler AM, Savic A, Krystal JH, Pearlson GD, Glahn DC (2014) Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness. Cereb Cortex 24:3116–3130

    Article  PubMed  Google Scholar 

  • Anticevic A et al (2015) Association of thalamic dysconnectivity and conversion to psychosis in youth and young adults at elevated clinical risk. JAMA Psychiatry 72:882–891

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnsten AFT, Woo E, Yang S, Wang M, Datta D (2022) Unusual molecular regulation of dorsolateral prefrontal cortex layer III synapses increases vulnerability to genetic and environmental insults in Schizophrenia. Biol Psychiatry 92:480–490

    Article  CAS  PubMed  Google Scholar 

  • Ash H, Chang A, Ortiz RJ, Kulkarni P, Rauch B, Colman R, Ferris CF, Ziegler TE (2022) Structural and functional variations in the prefrontal cortex are associated with learning in pre-adolescent common marmosets (Callithrix jacchus). Behav Brain Res 430:113920

    Article  PubMed  Google Scholar 

  • Averbeck BB (2022) Pruning recurrent neural networks replicates adolescent changes in working memory and reinforcement learning. Proc Natl Acad Sci U S A 119:e2121331119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axelsson SFA, Horst NK, Horiguchi N, Roberts AC, Robbins TW (2021) Flexible versus fixed spatial self-ordered response sequencing: effects of inactivation and neurochemical modulation of ventrolateral prefrontal cortex. J Neurosci 41:7246–7258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balsters JH, Zerbi V, Sallet J, Wenderoth N, Mars RB (2020) Primate homologs of mouse cortico-striatal circuits. eLife 9 Available at: https://doi.org/10.7554/eLife.53680.

  • Barch DM, Carter CS, MacDonald AW III, Braver TS, Cohen JD (2003) Context-processing deficits in schizophrenia: Diagnostic specificity, 4-week course, and relationships to clinical symptoms. J Abnorm Psychol 112:132–143

    Article  PubMed  Google Scholar 

  • Bauman MD, Iosif A-M, Smith SEP, Bregere C, Amaral DG, Patterson PH (2014) Activation of the maternal immune system during pregnancy alters behavioral development of rhesus monkey offspring. Biol Psychiatry 75:332–341

    Article  CAS  PubMed  Google Scholar 

  • Bauman MD, Lesh TA, Rowland DJ, Schumann CM, Smucny J, Kukis DL, Cherry SR, McAllister AK, Carter CS (2019) Preliminary evidence of increased striatal dopamine in a nonhuman primate model of maternal immune activation. Transl Psychiatry 9:135

    Article  PubMed  PubMed Central  Google Scholar 

  • Benoit LJ, Canetta S, Kellendonk C (2022a) Thalamocortical development: a neurodevelopmental framework for Schizophrenia. Biol Psychiatry 92:491–500

    Article  PubMed  Google Scholar 

  • Benoit LJ, Canetta S, Kellendonk C (2022b) Thalamocortical development: a neurodevelopmental framework for Schizophrenia. Biol Psychiatry 92:491–500

    Article  PubMed  Google Scholar 

  • Benoit LJ, Holt ES, Posani L, Fusi S, Harris AZ, Canetta S, Kellendonk C (2022c) Adolescent thalamic inhibition leads to long-lasting impairments in prefrontal cortex function. Nat Neurosci 25:714–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertolino A (2000) The relationship between dorsolateral prefrontal neuronal N-acetylaspartate and evoked release of striatal dopamine in schizophrenia. Neuropsychopharmacol 22(2):125–132. https://doi.org/10.1016/S0893-133X(99)00096-2

    Article  CAS  Google Scholar 

  • Biagianti B, Fisher M, Neilands TB, Loewy R, Vinogradov S (2016) Engagement with the auditory processing system during targeted auditory cognitive training mediates changes in cognitive outcomes in individuals with schizophrenia. Neuropsychology 30:998–1008

    Article  PubMed  PubMed Central  Google Scholar 

  • Blackman RK, Macdonald AW 3rd, Chafee MV (2013) Effects of ketamine on context-processing performance in monkeys: a new animal model of cognitive deficits in schizophrenia. Neuropsychopharmacology 38:2090–2100. https://doi.org/10.1038/npp.2013.118. Epub 2013 May 10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blackman RK, Crowe DA, DeNicola AL, Sakellaridi S, MacDonald AW 3rd, Chafee MV (2016) Monkey prefrontal neurons reflect logical operations for cognitive control in a variant of the AX continuous performance task (AX-CPT). J Neurosci 36:4067–4079

    Article  PubMed  PubMed Central  Google Scholar 

  • Bora E, Murray RM (2014) Meta-analysis of cognitive deficits in ultra-high risk to psychosis and first-episode psychosis: do the cognitive deficits progress over, or after, the onset of psychosis? Schizophr Bull 40:744–755

    Article  PubMed  Google Scholar 

  • Bourgeois JP, Goldman-Rakic PS, Rakic P (1994) Synaptogenesis in the prefrontal cortex of rhesus monkeys. Cereb Cortex 4:78–96

    Article  CAS  PubMed  Google Scholar 

  • Breukelaar IA, Williams LM, Antees C, Grieve SM, Foster SL, Gomes L, Korgaonkar MS (2018) Cognitive ability is associated with changes in the functional organization of the cognitive control brain network. Hum Brain Mapp 39:5028–5038

    Article  Google Scholar 

  • Brown AS, Derkits EJ (2010) Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry 167:261–280

    Article  PubMed  PubMed Central  Google Scholar 

  • Brunel N, Wang XJ (2001) Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. J Comput Neurosci 11:63–85

    Article  CAS  PubMed  Google Scholar 

  • Brunelin J, Adam O, Mondino M (2022) Recent advances in noninvasive brain stimulation for schizophrenia. Curr Opin Psychiatry 35:338–344

    Article  PubMed  Google Scholar 

  • Callicott JH, Bertolino A, Mattay VS, Langheim FJ, Duyn J, Coppola R, Goldberg TE, Weinberger DR (2000) Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cereb Cortex 10:1078–1092

    Article  CAS  PubMed  Google Scholar 

  • Carter CS, Minzenberg M, West R, Macdonald A 3rd (2012) CNTRICS imaging biomarker selections: Executive control paradigms. Schizophr Bull 38:34–42

    Article  PubMed  Google Scholar 

  • Cavada C, Goldman-Rakic PS (1989) Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J Comp Neurol 287:422–445. https://doi.org/10.1002/cne.902870403

    Article  CAS  PubMed  Google Scholar 

  • Chafee MV, Averbeck BB (2022) Unmasking Schizophrenia: synaptic pruning in adolescence reveals a latent physiological vulnerability in prefrontal recurrent networks. Biol Psychiatry 92:436–439

    Article  PubMed  Google Scholar 

  • Chafee MV, Goldman-Rakic PS (1998) Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. J Neurophysiol 79:2919–2940

    Article  CAS  PubMed  Google Scholar 

  • Chafee MV, Goldman-Rakic PS (2000) Inactivation of parietal and prefrontal cortex reveals interdependence of neural activity during memory-guided saccades. J Neurophysiol 83:1550–1566

    Article  CAS  PubMed  Google Scholar 

  • Cheng W, Palaniyappan L, Li M, Kendrick KM, Zhang J, Luo Q, Liu Z, Yu R, Deng W, Wang Q, Ma X, Guo W, Francis S, Liddle P, Mayer AR, Schumann G, Li T, Feng J (2015) Voxel-based, brain-wide association study of aberrant functional connectivity in schizophrenia implicates thalamocortical circuitry. NPJ Schizophr 1:15016

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi EY, Tanimura Y, Vage PR, Yates EH, Haber SN (2017) Convergence of prefrontal and parietal anatomical projections in a connectional hub in the striatum. Neuroimage 146:821–832

    Article  PubMed  Google Scholar 

  • Choudhury Z, Lennox B (2021) Maternal immune activation and Schizophrenia-evidence for an immune priming disorder. Front Psychiatry 12:585742

    Article  PubMed  PubMed Central  Google Scholar 

  • Clifton NE, Trent S, Thomas KL, Hall J (2019) Regulation and function of activity-dependent homer in synaptic plasticity. Mol Neuropsychiatry 5:147–161

    CAS  PubMed  PubMed Central  Google Scholar 

  • Compte A, Brunel N, Goldman-Rakic PS, Wang XJ (2000) Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb Cortex 10:910–923

    Article  CAS  PubMed  Google Scholar 

  • Constantinidis C, Franowicz MN, Goldman-Rakic PS (2001) The sensory nature of mnemonic representation in the primate prefrontal cortex. Nat Neurosci 4:311–316

    Article  CAS  PubMed  Google Scholar 

  • Constantinidis C, Funahashi S, Lee D, Murray JD, Qi X-L, Wang M, Arnsten AFT (2018) Persistent spiking activity underlies working memory. J Neurosci 38:7020–7028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowe DA, Goodwin SJ, Blackman RK, Sakellaridi S, Sponheim SR, MacDonald AW 3rd, Chafee MV (2013) Prefrontal neurons transmit signals to parietal neurons that reflect executive control of cognition. Nat Neurosci 16:1484–1491. https://doi.org/10.1038/nn.3509. Epub 2013 Sep 1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Ambrosio E, Jauhar S, Kim S, Veronese M, Rogdaki M, Pepper F, Bonoldi I, Kotoula V, Kempton MJ, Turkheimer F, Kwon JS, Kim E, Howes OD (2021) The relationship between grey matter volume and striatal dopamine function in psychosis: a multimodal 18F-DOPA PET and voxel-based morphometry study. Mol Psychiatry 26(4):1332–1345. https://doi.org/10.1038/s41380-019-0570-6

    Article  CAS  PubMed  Google Scholar 

  • Dale CL, Brown EG, Fisher M, Herman AB, Dowling AF, Hinkley LB, Subramaniam K, Nagarajan SS, Vinogradov S (2016) Auditory cortical plasticity drives training-induced cognitive changes in Schizophrenia. Schizophr Bull 42:220–228. https://doi.org/10.1093/schbul/sbv087. Epub 2015 Jul 6

    Article  PubMed  Google Scholar 

  • Dan Y, Poo MM (2004) Spike timing-dependent plasticity of neural circuits. Neuron 44:23–30

    Article  CAS  PubMed  Google Scholar 

  • DeNicola AL, Park M-Y, Crowe DA, MacDonald AW 3rd, Chafee MV (2020) Differential roles of mediodorsal nucleus of the thalamus and prefrontal cortex in decision-making and state representation in a cognitive control task measuring deficits in Schizophrenia. J Neurosci 40:1650–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devaraju P, Yu J, Eddins D, Mellado-Lagarde MM, Earls LR, Westmoreland JJ, Quarato G, Green DR, Zakharenko SS (2017) Haploinsufficiency of the 22q11.2 microdeletion gene Mrpl40 disrupts short-term synaptic plasticity and working memory through dysregulation of mitochondrial calcium. Mol Psychiatry 22:1313–1326

    Article  CAS  PubMed  Google Scholar 

  • Dias EC, McGinnis T, Smiley JF, Foxe JJ, Schroeder CE, Javitt DC (2006) Changing plans: neural correlates of executive control in monkey and human frontal cortex. Exp Brain Res 174:279–291

    Article  PubMed  Google Scholar 

  • Dienel SJ, Lewis DA (2018) Alterations in cortical interneurons and cognitive function in schizophrenia. Neurobiol Dis. https://doi.org/10.1016/j.nbd.2018.06.020

  • Dienel SJ, Schoonover KE, Lewis DA (2022) Cognitive dysfunction and prefrontal cortical circuit alterations in Schizophrenia: developmental trajectories. Biol Psychiatry 92:450–459

    Article  PubMed  Google Scholar 

  • Drew LJ, Stark KL, Fénelon K, Karayiorgou M, Macdermott AB, Gogos JA (2011) Evidence for altered hippocampal function in a mouse model of the human 22q11.2 microdeletion. Mol Cell Neurosci 47:293–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drummer C, Vogt E-J, Heistermann M, Roshani B, Becker T, Mätz-Rensing K, Kues WA, Kügler S, Behr R (2021) Generation and breeding of EGFP-transgenic marmoset monkeys: cell chimerism and implications for disease modeling. Cells 10. Available at: https://doi.org/10.3390/cells10030505

  • Dotson VM, McClintock SM, Verhaeghen P, Kim JU, Draheim AA, Syzmkowicz SM, Gradone AM, Bogoian HR, De Wit L (2020) Depression and cognitive control across the lifespan: a systematic review and meta-analysis. Neuropsychol Rev 30(4):461–476. https://doi.org/10.1007/s11065-020-09436-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Duan LY, Horst NK, Cranmore SAW, Horiguchi N, Cardinal RN, Roberts AC, Robbins TW (2021) Controlling one’s world: identification of sub-regions of primate PFC underlying goal-directed behavior. Neuron 109:2485–2498.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Earls LR, Bayazitov IT, Fricke RG, Berry RB, Illingworth E, Mittleman G, Zakharenko SS (2010) Dysregulation of presynaptic calcium and synaptic plasticity in a mouse model of 22q11 deletion syndrome. J Neurosci 30:15843–15855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Earls LR, Fricke RG, Yu J, Berry RB, Baldwin LT, Zakharenko SS (2012) Age-dependent microRNA control of synaptic plasticity in 22q11 deletion syndrome and schizophrenia. J Neurosci 32:14132–14144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Shamayleh Y, Horwitz GD (2019) Primate optogenetics: progress and prognosis. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1902284116

  • Feizpour A, Majka P, Chaplin TA, Rowley D, Yu H-H, Zavitz E, Price NSC, Rosa MGP, Hagan MA (2021) Visual responses in the dorsolateral frontal cortex of marmoset monkeys. J Neurophysiol 125:296–304

    Article  PubMed  Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    Article  CAS  PubMed  Google Scholar 

  • Fénelon K, Mukai J, Xu B, Hsu P-K, Drew LJ, Karayiorgou M, Fischbach GD, Macdermott AB, Gogos JA (2011) Deficiency of Dgcr8, a gene disrupted by the 22q11.2 microdeletion, results in altered short-term plasticity in the prefrontal cortex. Proc Natl Acad Sci U S A 108:4447–4452

    Article  PubMed  PubMed Central  Google Scholar 

  • Fénelon K, Xu B, Lai CS, Mukai J, Markx S, Stark KL, Hsu P-K, Gan W-B, Fischbach GD, MacDermott AB, Karayiorgou M, Gogos JA (2013) The pattern of cortical dysfunction in a mouse model of a schizophrenia-related microdeletion. J Neurosci 33:14825–14839

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernandez A, Meechan DW, Karpinski BA, Paronett EM, Bryan CA, Rutz HL, Radin EA, Lubin N, Bonner ER, Popratiloff A, Rothblat LA, Maynard TM, LaMantia A-S (2019) Mitochondrial dysfunction leads to cortical under-connectivity and cognitive impairment. Neuron. https://doi.org/10.1016/j.neuron.2019.04.013

  • Fisher M, Loewy R, Hardy K, Schlosser D, Vinogradov S (2013) Cognitive interventions targeting brain plasticity in the prodromal and early phases of schizophrenia. Annu Rev Clin Psychol 9:435–463

    Article  PubMed  PubMed Central  Google Scholar 

  • Forbes NF, Carrick LA, McIntosh AM, Lawrie SM (2009) Working memory in schizophrenia: a meta-analysis. Psychol Med 39:889–905

    Article  CAS  PubMed  Google Scholar 

  • Forsingdal A, Jørgensen TN, Olsen L, Werge T, Didriksen M, Nielsen J (2019) Can animal models of copy number variants that predispose to Schizophrenia elucidate underlying biology? Biol Psychiatry 85:13–24

    Article  CAS  PubMed  Google Scholar 

  • Freedman DJ, Riesenhuber M, Poggio T, Miller EK (2001) Categorical representation of visual stimuli in the primate prefrontal cortex. Science 291:312–316. https://doi.org/10.1126/science.291.5502.312

    Article  CAS  PubMed  Google Scholar 

  • Freedman DJ, Riesenhuber M, Poggio T, Miller EK (2003) A comparison of primate prefrontal and inferior temporal cortices during visual categorization. J Neurosci 23:5235–5246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman HR, Selemon LD (2010) Fetal irradiation interferes with adult cognition in the nonhuman primate. Biol Psychiatry 68:108–111

    Article  PubMed  PubMed Central  Google Scholar 

  • Friston KJ (1999) Schizophrenia and the disconnection hypothesis. Acta Psychiatr Scand Suppl 395:68–79

    Article  CAS  PubMed  Google Scholar 

  • Fromer M et al (2014) De novo mutations in schizophrenia implicate synaptic networks. Nature 506:179–184. https://doi.org/10.1038/nature12929. Epub 2014 Jan 22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 61:331–349

    Article  CAS  PubMed  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1990) Visuospatial coding in primate prefrontal neurons revealed by oculomotor paradigms. J Neurophysiol 63:814–831

    Article  CAS  PubMed  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1991) Neuronal activity related to saccadic eye movements in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 65:1464–1483

    Article  CAS  PubMed  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1993a) Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic “scotomas.”. J Neurosci 13:1479–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funahashi S, Chafee MV, Goldman-Rakic PS (1993b) Prefrontal neuronal activity in rhesus monkeys performing a delayed anti-saccade task. Nature 365:753–756

    Article  CAS  PubMed  Google Scholar 

  • Fusar-Poli P, Howes OD, Allen P, Broome M, Valli I, Asselin M-C, Montgomery AJ, Grasby PM, McGuire P (2011) Abnormal prefrontal activation directly related to pre-synaptic striatal dopamine dysfunction in people at clinical high risk for psychosis. Mol Psychiatry 16(1):67–75. https://doi.org/10.1038/mp.2009.108

    Article  CAS  PubMed  Google Scholar 

  • Galvin VC, Yang ST, Paspalas CD, Yang Y, Jin LE, Datta D, Morozov YM, Lightbourne TC, Lowet AS, Rakic P, Arnsten AFT, Wang M (2020) Muscarinic M1 receptors modulate working memory performance and activity via KCNQ potassium channels in the primate prefrontal cortex. Neuron 106:649–661.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garin CM, Hori Y, Everling S, Whitlow CT, Calabro FJ, Luna B, Froesel M, Gacoin M, Ben Hamed S, Dhenain M, Constantinidis C (2022) An evolutionary gap in primate default mode network organization. Cell Rep 39:110669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garofalo M, Nieus T, Massobrio P, Martinoia S (2009) Evaluation of the performance of information theory-based methods and cross-correlation to estimate the functional connectivity in cortical networks. PLoS One 4:e6482

    Article  PubMed  PubMed Central  Google Scholar 

  • Geana A, Barch DM, Gold JM, Carter CS, MacDonald AW III, Ragland JD, Silverstein SM, Frank MJ (2021) Using computational modeling to capture schizophrenia-specific reinforcement learning differences and their implications on patient classification. Biol Psychiatry Cogn Neurosci Neuroimaging. https://doi.org/10.1016/j.bpsc.2021.03.017

  • Georgopoulos AP, Lurito JT, Petrides M, Schwartz AB, Massey JT (1989) Mental rotation of the neuronal population vector. Science 243:234–236

    Article  CAS  PubMed  Google Scholar 

  • Gil-da-Costa R, Stoner GR, Fung R, Albright TD (2013) Nonhuman primate model of schizophrenia using a noninvasive EEG method. Proc Natl Acad Sci U S A 110:15425–15430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girdhar K, Rahman S, Dong P, Fullard JF, Roussos P (2022) The neuroepigenome: implications of chemical and physical modifications of genomic DNA in schizophrenia. Biol Psychiatry 92:443–449

    Article  CAS  PubMed  Google Scholar 

  • Glahn DC, Ragland JD, Abramoff A, Barrett J, Laird AR, Bearden CE, Velligan DI (2005) Beyond hypofrontality: a quantitative meta-analysis of functional neuroimaging studies of working memory in schizophrenia. Hum Brain Mapp 25:60–69

    Article  PubMed  PubMed Central  Google Scholar 

  • Glantz LA, Lewis DA (2000) Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 57:65–73

    Article  CAS  PubMed  Google Scholar 

  • Glausier JR, Lewis DA (2013) Dendritic spine pathology in schizophrenia. Neuroscience 251:90–107. https://doi.org/10.1016/j.neuroscience.2012.04.044. Epub 2012 Apr 27

    Article  CAS  PubMed  Google Scholar 

  • Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, Nugent TF 3rd, Herman DH, Clasen LS, Toga AW, Rapoport JL, Thompson PM (2004) Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci U S A 101:8174–8179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gold JM (2012) Negative symptoms and the failure to represent the expected reward value of actions. Arch Gen Psychiatry 69(2):129. https://doi.org/10.1001/archgenpsychiatry.2011.1269

    Article  PubMed  PubMed Central  Google Scholar 

  • Gold JM, Carpenter C, Randolph C, Goldberg TE, Weinberger DR (1997) Auditory working memory and Wisconsin card sorting test performance in schizophrenia. Arch Gen Psychiatry 54:159–165

    Article  CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS (1987) Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. Compr Physiol:373–417 Available at: https://onlinelibrary.wiley.com/doi/10.1002/cphy.cp010509

  • Goldman-Rakic PS (1999) The physiological approach: functional architecture of working memory and disordered cognition in schizophrenia. Biol Psychiatry 46:650–661

    Article  CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS, Leranth C, Williams SM, Mons N, Geffard M (1989) Dopamine synaptic complex with pyramidal neurons in primate cerebral cortex. Proc Natl Acad Sci U S A 86:9015–9019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González-Burgos G, Barrionuevo G, Lewis DA (2000) Horizontal synaptic connections in monkey prefrontal cortex: an in vitro electrophysiological study. Cereb Cortex 10:82–92

    Article  PubMed  Google Scholar 

  • Goodwin SJ, Blackman RK, Sakellaridi S, Chafee MV (2012) Executive control over cognition: stronger and earlier rule-based modulation of spatial category signals in prefrontal cortex relative to parietal cortex. J Neurosci 32:3499–3515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo W-T, Wang Y (2019) Dgcr8 knockout approaches to understand microRNA functions in vitro and in vivo. Cell Mol Life Sci 76:1697–1711

    Article  CAS  PubMed  Google Scholar 

  • Hall J, Bray NJ (2022) Schizophrenia genomics: convergence on synaptic development, adult synaptic plasticity, or both? Biol Psychiatry 91:709–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall J, Trent S, Thomas KL, O’Donovan MC, Owen MJ (2015) Genetic risk for schizophrenia: convergence on synaptic pathways involved in plasticity. Biol Psychiatry 77:52–58

    Article  CAS  PubMed  Google Scholar 

  • Hamilton I (2017) Cannabis, psychosis and schizophrenia: unravelling a complex interaction. Addiction 112:1653–1657

    Article  PubMed  Google Scholar 

  • Hamm JP, Peterka DS, Gogos JA, Yuste R (2017) Altered cortical ensembles in mouse models of Schizophrenia. Neuron 94:153–167.e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamm JP, Shymkiv Y, Mukai J, Gogos JA, Yuste R (2020) Aberrant cortical ensembles and Schizophrenia-like sensory phenotypes in Setd1a+/- Mice. Biol Psychiatry 88:215–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanson KL, Grant SE, Funk LH, Schumann CM, Bauman MD (2022) Impact of maternal immune activation on nonhuman primate prefrontal cortex development: insights for Schizophrenia. Biol Psychiatry 92:460–469

    Article  PubMed  PubMed Central  Google Scholar 

  • He K, Huertas M, Hong SZ, Tie X, Hell JW, Shouval H, Kirkwood A (2015) Distinct eligibility traces for LTP and LTD in cortical synapses. Neuron 88:528–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heilbronner SR, Rodriguez-Romaguera J, Quirk GJ, Groenewegen HJ, Haber SN (2016) Circuit-based corticostriatal homologies between rat and primate. Biol Psychiatry 80:509–521

    Article  PubMed  PubMed Central  Google Scholar 

  • Henderson D, Poppe AB, Barch DM, Carter CS, Gold JM, Ragland JD, Silverstein SM, Strauss ME, MacDonald AW 3rd (2012) Optimization of a goal maintenance task for use in clinical applications. Schizophr Bull 38:104–113

    Article  PubMed  PubMed Central  Google Scholar 

  • Hikosaka O, Wurtz RH (1983) Visual and oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccade responses. J Neurophysiol 49:1268–1284

    Article  CAS  PubMed  Google Scholar 

  • Hiroi N, Yamauchi T (2019) Modeling and predicting developmental trajectories of neuropsychiatric dimensions associated with copy number variations. Int J Neuropsychopharmacol. https://doi.org/10.1093/ijnp/pyz026

  • Histed MH, Pasupathy A, Miller EK (2009) Learning substrates in the primate prefrontal cortex and striatum: sustained activity related to successful actions. Neuron 63:244–253. https://doi.org/10.1016/j.neuron.2009.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmes AJ, MacDonald A 3rd, Carter CS, Barch DM, Andrew Stenger V, Cohen JD (2005) Prefrontal functioning during context processing in schizophrenia and major depression: an event-related fMRI study. Schizophr Res 76:199–206

    Article  PubMed  Google Scholar 

  • Horan WP et al (2008) Verbal working memory impairments in individuals with schizophrenia and their first-degree relatives: findings from the consortium on the genetics of Schizophrenia. Schizophr Res 103:218–228

    Article  PubMed  PubMed Central  Google Scholar 

  • Howes O, Bose S, Turkheimer F, Valli I, Egerton A, Stahl D, Valmaggia L, Allen P, Murray R, McGuire P (2011) Progressive increase in striatal dopamine synthesis capacity as patients develop psychosis: a PET study. Mol Psychiatry 16:885–886

    Article  CAS  PubMed  Google Scholar 

  • Howes OD, Shatalina E (2022) Integrating the neurodevelopmental and dopamine hypotheses of Schizophrenia and the role of cortical excitation-inhibition balance. Biol Psychiatry 92:501–513

    Article  PubMed  Google Scholar 

  • Howes OD, Montgomery AJ, Asselin M-C, Murray RM, Valli I, Tabraham P, Bramon-Bosch E, Valmaggia L, Johns L, Broome M, McGuire PK, Grasby PM (2009) Elevated striatal dopamine function linked to prodromal signs of schizophrenia. Arch Gen Psychiatry 66:13–20

    Article  PubMed  Google Scholar 

  • Howes OD, Hird EJ, Adams RA, Corlett PR, McGuire P (2020) Aberrant salience, information processing, and dopaminergic signaling in people at clinical high risk for psychosis. Biol Psychiatry 88:304–314

    Article  PubMed  Google Scholar 

  • Huttenlocher PR (1990) Morphometric study of human cerebral cortex development. Neuropsychologia 28:517–527

    Article  CAS  PubMed  Google Scholar 

  • Huttenlocher PR, Dabholkar AS (1997) Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 387:167–178

    Article  CAS  PubMed  Google Scholar 

  • Hyman SE (2021) Use of mouse models to investigate the contributions of CNVs associated with schizophrenia and autism to disease mechanisms. Curr Opin Genet Dev 68:99–105

    Article  CAS  PubMed  Google Scholar 

  • Insel T (2022) Healing: our path from mental illness to mental health. Penguin Press

    Google Scholar 

  • Insel TR (2010) Rethinking schizophrenia. Nature 468:187–193. https://doi.org/10.1038/nature09552

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Hansen ME, Heiland R, Lumsdaine A, Litke AM, Beggs JM (2011) Extending transfer entropy improves identification of effective connectivity in a spiking cortical network model. PLoS One 6:e27431. https://doi.org/10.1371/journal.pone.0027431. Epub 2011 Nov 15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobsen CF (1935) Functions of frontal association area in primates. Arch NeurPsych 33:558–569

    Article  Google Scholar 

  • Jamali M, Grannan BL, Fedorenko E, Saxe R, Báez-Mendoza R, Williams ZM (2021) Single-neuronal predictions of others’ beliefs in humans. Nature 591:610–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jauhar S, Nour MM, Veronese M, Rogdaki M, Bonoldi I, Azis M, Turkheimer F, McGuire P, Young AH, Howes OD (2017) A test of the transdiagnostic dopamine hypothesis of psychosis using positron emission tomographic imaging in bipolar affective disorder and Schizophrenia. JAMA Psychiatry 74:1206–1213

    Article  PubMed  PubMed Central  Google Scholar 

  • Javitt DC, Zukin SR, Heresco-Levy U, Umbricht D (2012) Has an angel shown the way? Etiological and therapeutic implications of the PCP/NMDA model of schizophrenia. Schizophr Bull 38:958–966

    Article  PubMed  PubMed Central  Google Scholar 

  • Jentsch JD, Redmond DE Jr, Elsworth JD, Taylor JR, Youngren KD, Roth RH (1997) Enduring cognitive deficits and cortical dopamine dysfunction in monkeys after long-term administration of phencyclidine. Science 277:953–955

    Article  CAS  PubMed  Google Scholar 

  • Jentsch JD, Taylor JR, Elsworth JD, Redmond DE Jr, Roth RH (1999) Altered frontal cortical dopaminergic transmission in monkeys after subchronic phencyclidine exposure: involvement in frontostriatal cognitive deficits. Neuroscience 90:823–832

    Article  CAS  PubMed  Google Scholar 

  • Jin LE, Wang M, Yang S-T, Yang Y, Galvin VC, Lightbourne TC, Ottenheimer D, Zhong Q, Stein J, Raja A, Paspalas CD, Arnsten AFT (2017) mGluR2/3 mechanisms in primate dorsolateral prefrontal cortex: evidence for both presynaptic and postsynaptic actions. Mol Psychiatry 22:1615–1625

    Article  CAS  PubMed  Google Scholar 

  • Johnson MB, Hyman SE (2022) A critical perspective on the synaptic pruning hypothesis of Schizophrenia pathogenesis. Biol Psychiatry 92:440–442

    Article  PubMed  Google Scholar 

  • Jones JA, Sponheim SR, MacDonald AW 3rd (2010) The dot pattern expectancy task: reliability and replication of deficits in schizophrenia. Psychol Assess 22:131–141. https://doi.org/10.1037/a0017828

    Article  PubMed  Google Scholar 

  • Jovanovic V, Fishbein AR, de la Mothe L, Lee K-F, Miller CT (2022) Behavioral context affects social signal representations within single primate prefrontal cortex neurons. Neuron 110:1318–1326.e4

    Article  CAS  PubMed  Google Scholar 

  • Kaar SJ, Natesan S, McCutcheon R, Howes OD (2020) Antipsychotics: mechanisms underlying clinical response and side-effects and novel treatment approaches based on pathophysiology. Neuropharmacology 172:107704

    Article  CAS  PubMed  Google Scholar 

  • Kasai H, Ziv NE, Okazaki H, Yagishita S, Toyoizumi T (2021) Spine dynamics in the brain, mental disorders and artificial neural networks. Nat Rev Neurosci 22:407–422

    Article  CAS  PubMed  Google Scholar 

  • Katsuki F, Qi X-L, Meyer T, Kostelic PM, Salinas E, Constantinidis C (2014) Differences in intrinsic functional organization between dorsolateral prefrontal and posterior parietal cortex. Cereb Cortex 24:2334–2349

    Article  PubMed  Google Scholar 

  • Kegeles LS, Abi-Dargham A, Frankle WG, Gil R, Cooper TB, Slifstein M, Hwang D-R, Huang Y, Haber SN, Laruelle M (2010) Increased synaptic dopamine function in associative regions of the striatum in schizophrenia. Arch Gen Psychiatry 67:231–239

    Article  CAS  PubMed  Google Scholar 

  • Kiani R, Shadlen MN (2009) Representation of confidence associated with a decision by neurons in the parietal cortex. Science 324:759–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim T, Thankachan S, McKenna JT, McNally JM, Yang C, Choi JH, Chen L, Kocsis B, Deisseroth K, Strecker RE, Basheer R, Brown RE, McCarley RW (2015) Cortically projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations. Proc Natl Acad Sci U S A 112:3535–3540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirov G et al (2012) De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol Psychiatry 17:142–153. https://doi.org/10.1038/mp.2011.154. Epub 2011 Nov 15

    Article  CAS  PubMed  Google Scholar 

  • Kolk SM, Rakic P (2022) Development of prefrontal cortex. Neuropsychopharmacology 47:41–57

    Article  CAS  PubMed  Google Scholar 

  • Kolluri N, Sun Z, Sampson AR, Lewis DA (2005) Lamina-specific reductions in dendritic spine density in the prefrontal cortex of subjects with schizophrenia. Am J Psychiatry 162:1200–1202

    Article  PubMed  Google Scholar 

  • Korndörfer C, Ullner E, García-Ojalvo J, Pipa G (2017) Cortical spike synchrony as a measure of input familiarity. Neural Comput 29:2491–2510

    Article  PubMed  Google Scholar 

  • Kozak MJ, Cuthbert BN (2016) The NIMH research domain criteria initiative: background issues and pragmatics. Psychophysiol 53(3):286–297. https://doi.org/10.1111/psyp.12518

    Article  Google Scholar 

  • Kritzer MF, Goldman-Rakic PS (1995) Intrinsic circuit organization of the major layers and sublayers of the dorsolateral prefrontal cortex in the rhesus monkey. J Comp Neurol 359:131–143

    Article  CAS  PubMed  Google Scholar 

  • Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MB Jr, Charney DS (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51:199–214

    Article  CAS  PubMed  Google Scholar 

  • Kummerfeld E, Ma S, Blackman RK, DeNicola AL, Redish AD, Vinogradov S, Crowe DA, Chafee MV (2020) Cognitive control errors in nonhuman primates resembling those in Schizophrenia reflect opposing effects of NMDA receptor Blockade on causal interactions between cells and circuits in prefrontal and parietal cortices. Biol Psychiatry Cogn Neurosci Neuroimaging 5:705–714

    PubMed  PubMed Central  Google Scholar 

  • Kupferschmidt DA, Gordon JA (2018) The dynamics of disordered dialogue: prefrontal, hippocampal and thalamic miscommunication underlying working memory deficits in schizophrenia. Brain Neurosci Adv 2 Available at: https://doi.org/10.1177/2398212818771821

  • Lahti AC, Weiler MA, Tamara Michaelidis BA, Parwani A, Tamminga CA (2001) Effects of ketamine in normal and schizophrenic volunteers. Neuropsychopharmacology 25:455–467

    Article  CAS  PubMed  Google Scholar 

  • Lerman-Sinkoff DB, Sui J, Rachakonda S, Kandala S, Calhoun VD, Barch DM (2017) Multimodal neural correlates of cognitive control in the human connectome project. Neuroimage 163:41–54

    Article  PubMed  Google Scholar 

  • Lesh TA, Westphal AJ, Niendam TA, Yoon JH, Minzenberg MJ, Ragland JD, Solomon M, Carter CS (2013) Proactive and reactive cognitive control and dorsolateral prefrontal cortex dysfunction in first episode schizophrenia. Neuroimage Clin 2:590–599

    Article  PubMed  PubMed Central  Google Scholar 

  • Li W, Fan CC, Mäki-Marttunen T, Thompson WK, Schork AJ, Bettella F, Schizophrenia Working Group of the Psychiatric Genomics Consortium, Djurovic S, Dale AM, Andreassen OA, Wang Y (2018) A molecule-based genetic association approach implicates a range of voltage-gated calcium channels associated with schizophrenia. Am J Med Genet B Neuropsychiatr Genet 177:454–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lieberman JA, Stroup TS (2011) The NIMH-CATIE Schizophrenia study: what did we learn? Am J Psychiatry 168:770–775

    Article  PubMed  Google Scholar 

  • Lieberman JA, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, Keefe RSE, Davis SM, Davis CE, Lebowitz BD, Severe J, Hsiao JK, Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) Investigators (2005) Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med 353:1209–1223

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Garcia P, Lesh TA, Salo T, Barch DM, MacDonald AW 3rd, Gold JM, Ragland JD, Strauss M, Silverstein SM, Carter CS (2016) The neural circuitry supporting goal maintenance during cognitive control: a comparison of expectancy AX-CPT and dot probe expectancy paradigms. Cogn Affect Behav Neurosci 16:164–175

    Article  PubMed  PubMed Central  Google Scholar 

  • Luby ED, Cohen BD, Rosenbaum G, Gottlieb JS, Kelley R (1959) Study of a new schizophrenomimetic drug; sernyl. AMA Arch Neurol Psychiatry 81:363–369

    Article  CAS  PubMed  Google Scholar 

  • Lundqvist M, Rose J, Herman P, Brincat SL, Buschman TJ, Miller EK (2016) Gamma and beta bursts underlie working memory. Neuron 90:152–164. https://doi.org/10.1016/j.neuron.2016.02.028. Epub 2016 Mar 17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lundqvist M, Herman P, Miller EK (2018) Working memory: delay activity, Yes! persistent activity? Maybe not. J Neurosci 38:7013–7019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma L, Skoblenick K, Seamans JK, Everling S (2015) Ketamine-induced changes in the signal and noise of rule representation in working memory by lateral prefrontal neurons. J Neurosci 35:11612–11622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma L, Skoblenick K, Johnston K, Everling S (2018) Ketamine alters lateral prefrontal oscillations in a rule-based working memory task. J Neurosci 38:2482–2494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacCabe JH, Wicks S, Löfving S, David AS, Berndtsson Å, Gustafsson J-E, Allebeck P, Dalman C (2013) Decline in cognitive performance between ages 13 and 18 years and the risk for psychosis in adulthood: a Swedish longitudinal cohort study in males. JAMA Psychiatry 70:261–270

    Article  PubMed  Google Scholar 

  • MacDonald AW 3rd (2008) Building a clinically relevant cognitive task: case study of the AX paradigm. Schizophr Bull 34:619–628

    Article  PubMed  PubMed Central  Google Scholar 

  • MacDonald AW 3rd, Pogue-Geile MF, Johnson MK, Carter CS (2003) A specific deficit in context processing in the unaffected siblings of patients with schizophrenia. Arch Gen Psychiatry 60:57–65

    Article  PubMed  Google Scholar 

  • MacDonald AW 3rd, Carter CS, Kerns JG, Ursu S, Barch DM, Holmes AJ, Stenger VA, Cohen JD (2005) Specificity of prefrontal dysfunction and context processing deficits to schizophrenia in never-medicated patients with first-episode psychosis. Am J Psychiatry 162:475–484

    Article  PubMed  Google Scholar 

  • Machado CJ, Whitaker AM, Smith SEP, Patterson PH, Bauman MD (2015) Maternal immune activation in nonhuman primates alters social attention in juvenile offspring. Biol Psychiatry 77:823–832

    Article  CAS  PubMed  Google Scholar 

  • Malhotra AK, Pinals DA, Adler CM, Elman I, Clifton A, Pickar D, Breier A (1997) Ketamine-induced exacerbation of psychotic symptoms and cognitive impairment in neuroleptic-free schizophrenics. Neuropsychopharmacology 17:141–150

    Article  CAS  PubMed  Google Scholar 

  • Masse NY, Yang GR, Song HF, Wang X-J, Freedman DJ (2019) Circuit mechanisms for the maintenance and manipulation of information in working memory. Nat Neurosci 22:1159–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCutcheon R, Beck K, Jauhar S, Howes OD (2018) Defining the locus of dopaminergic dysfunction in Schizophrenia: a meta-analysis and test of the mesolimbic hypothesis. Schizophr Bull 44:1301–1311

    Article  PubMed  Google Scholar 

  • McDowell JE, Brown GG, Paulus M, Martinez A, Stewart SE, Dubowitz DJ, Braff DL (2002) Neural correlates of refixation saccades and antisaccades in normal and schizophrenia subjects. Biol Psychiatry 51:216–223

    Article  PubMed  Google Scholar 

  • McKee JL, Riesenhuber M, Miller EK, Freedman DJ (2014) Task dependence of visual and category representations in prefrontal and inferior temporal cortices. J Neurosci 34:16065–16075. https://doi.org/10.1523/JNEUROSCI.1660-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNally JM, Aguilar DD, Katsuki F, Radzik LK, Schiffino FL, Uygun DS, McKenna JT, Strecker RE, Deisseroth K, Spencer KM, Brown RE (2021) Optogenetic manipulation of an ascending arousal system tunes cortical broadband gamma power and reveals functional deficits relevant to schizophrenia. Mol Psychiatry 26:3461–3475

    Article  PubMed  Google Scholar 

  • Meechan DW, Rutz HLH, Fralish MS, Maynard TM, Rothblat LA, LaMantia A-S (2015) Cognitive ability is associated with altered medial frontal cortical circuits in the LgDel mouse model of 22q11.2DS. Cereb Cortex 25:1143–1151

    Article  CAS  PubMed  Google Scholar 

  • Melchitzky DS, González-Burgos G, Barrionuevo G, Lewis DA (2001) Synaptic targets of the intrinsic axon collaterals of supragranular pyramidal neurons in monkey prefrontal cortex. J Comp Neurol 430:209–221

    Article  CAS  PubMed  Google Scholar 

  • Merico D, Costain G, Butcher NJ, Warnica W, Ogura L, Alfred SE, Brzustowicz LM, Bassett AS (2014) MicroRNA dysregulation, gene networks, and risk for Schizophrenia in 22q11.2 deletion syndrome. Front Neurol 5:238

    Article  PubMed  PubMed Central  Google Scholar 

  • Merico D, Zarrei M, Costain G, Ogura L, Alipanahi B, Gazzellone MJ, Butcher NJ, Thiruvahindrapuram B, Nalpathamkalam T, Chow EWC, Andrade DM, Frey BJ, Marshall CR, Scherer SW, Bassett AS (2015) Whole-genome sequencing suggests Schizophrenia risk mechanisms in humans with 22q11.2 deletion syndrome. G3 5:2453–2461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mesholam-Gately RI, Giuliano AJ, Goff KP, Faraone SV, Seidman LJ (2009) Neurocognition in first-episode schizophrenia: a meta-analytic review. Neuropsychology 23:315–336

    Article  PubMed  Google Scholar 

  • Meyer T, Qi X-L, Constantinidis C (2007) Persistent discharges in the prefrontal cortex of monkeys naive to working memory tasks. Cereb Cortex 17(Suppl 1):i70–i76

    Article  PubMed  Google Scholar 

  • Meyers EM, Freedman DJ, Kreiman G, Miller EK, Poggio T (2008) Dynamic population coding of category information in inferior temporal and prefrontal cortex. J Neurophysiol 100:1407–1419. https://doi.org/10.1152/jn.90248.2008. Epub 2008 June 18

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyers EM, Qi X-L, Constantinidis C (2012) Incorporation of new information into prefrontal cortical activity after learning working memory tasks. Proc Natl Acad Sci U S A 109:4651–4656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller CT, Thomas AW, Nummela SU, de la Mothe LA (2015) Responses of primate frontal cortex neurons during natural vocal communication. J Neurophysiol 114:1158–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202. https://doi.org/10.1146/annurev.neuro.24.1.167

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki K, Funahashi S (2016) Prefrontal spatial working memory network predicts animal’s decision making in a free choice saccade task. J Neurophysiol 115:127–142

    Article  PubMed  Google Scholar 

  • Mongillo G, Barak O, Tsodyks M (2008) Synaptic theory of working memory. Science 319:1543–1546

    Article  CAS  PubMed  Google Scholar 

  • Moran EK, Gold JM, Carter CS, MacDonald AW, Ragland JD, Silverstein SM, Luck SJ, Barch DM (2020) Both unmedicated and medicated individuals with schizophrenia show impairments across a wide array of cognitive and reinforcement learning tasks. Psychol Med:1–11.

    Google Scholar 

  • Muhammad R, Wallis JD, Miller EK (2006) A comparison of abstract rules in the prefrontal cortex, premotor cortex, inferior temporal cortex, and striatum. J Cogn Neurosci 18:974–989. https://doi.org/10.1162/jocn.2006.18.6.974

    Article  PubMed  Google Scholar 

  • Murray JD, Anticevic A, Gancsos M, Ichinose M, Corlett PR, Krystal JH, Wang X-J (2014) Linking microcircuit dysfunction to cognitive impairment: effects of disinhibition associated with schizophrenia in a cortical working memory model. Cereb Cortex 24:859–872

    Article  PubMed  Google Scholar 

  • Nieder A, Miller EK (2003) Coding of cognitive magnitude: compressed scaling of numerical information in the primate prefrontal cortex. Neuron 37:149–157

    Article  CAS  PubMed  Google Scholar 

  • Nieder A, Miller EK (2004a) A parieto-frontal network for visual numerical information in the monkey. Proc Natl Acad Sci U S A 101:7457–7462. https://doi.org/10.1073/pnas.0402239101. Epub 2004 May 3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nieder A, Miller EK (2004b) Analog numerical representations in rhesus monkeys: evidence for parallel processing. J Cogn Neurosci 16:889–901. https://doi.org/10.1162/089892904970807

    Article  PubMed  Google Scholar 

  • Nieder A, Freedman DJ, Miller EK (2002) Representation of the quantity of visual items in the primate prefrontal cortex. Science 297:1708–1711. https://doi.org/10.1126/science.1072493

    Article  CAS  PubMed  Google Scholar 

  • Niendam TA, Ray KL, Iosif A-M, Lesh TA, Ashby SR, Patel PK, Smucny J, Ferrer E, Solomon M, Ragland JD, Carter CS (2018) Association of age at onset and longitudinal course of prefrontal function in youth with Schizophrenia. JAMA Psychiatry 75:1252–1260

    Article  PubMed  PubMed Central  Google Scholar 

  • Nieuwenstein MR, Aleman A, de Haan EHF (2001) Relationship between symptom dimensions and neurocognitive functioning in schizophrenia: a meta-analysis of WCST and CPT studies. J Psychiatr Res 35(2):119–125. https://doi.org/10.1016/S0022-3956(01)00014-0

    Article  CAS  PubMed  Google Scholar 

  • Niki H, Watanabe M (1976) Prefrontal unit activity and delayed response: relation to cue location versus direction of response. Brain Res 105:79–88

    Article  CAS  PubMed  Google Scholar 

  • Okano H, Kishi N (2018) Investigation of brain science and neurological/psychiatric disorders using genetically modified non-human primates. Curr Opin Neurobiol 50:1–6

    Article  CAS  PubMed  Google Scholar 

  • Ouchi Y, Banno Y, Shimizu Y, Ando S, Hasegawa H, Adachi K, Iwamoto T (2013) Reduced adult hippocampal neurogenesis and working memory deficits in the Dgcr8-deficient mouse model of 22q11.2 deletion-associated schizophrenia can be rescued by IGF2. J Neurosci 33:9408–9419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JE, Zhang XF, Choi S-H, Okahara J, Sasaki E, Silva AC (2016) Generation of transgenic marmosets expressing genetically encoded calcium indicators. Sci Rep 6:34931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park S, Holzman PS (1992) Schizophrenics show spatial working memory deficits. Arch Gen Psychiatry 49:975–982

    Article  CAS  PubMed  Google Scholar 

  • Park S, Holzman PS, Goldman-Rakic PS (1995) Spatial working memory deficits in the relatives of schizophrenic patients. Arch Gen Psychiatry 52:821–828

    Article  CAS  PubMed  Google Scholar 

  • Paspalas CD, Wang M, Arnsten AFT (2013) Constellation of HCN channels and cAMP regulating proteins in dendritic spines of the primate prefrontal cortex: potential substrate for working memory deficits in schizophrenia. Cereb Cortex 23:1643–1654

    Article  PubMed  Google Scholar 

  • Pasupathy A, Miller EK (2005) Different time courses of learning-related activity in the prefrontal cortex and striatum. Nature 433:873–876. https://doi.org/10.1038/nature03287

    Article  CAS  PubMed  Google Scholar 

  • Peng X-J, Hei G-R, Yang Y, Liu C-C, Xiao J-M, Long Y-J, Huang J, Zhao J-P, Ren-Rong W (2021) The association between cognitive deficits and clinical characteristic in first-episode drug naïve patients with schizophrenia. Front Psychiatry 12:638773. https://doi.org/10.3389/fpsyt.2021.638773

    Article  PubMed  PubMed Central  Google Scholar 

  • Perlstein WM, Dixit NK, Carter CS, Noll DC, Cohen JD (2003) Prefrontal cortex dysfunction mediates deficits in working memory and prepotent responding in schizophrenia. Biol Psychiatry 53:25–38

    Article  PubMed  Google Scholar 

  • Petanjek Z, Judaš M, Šimic G, Rasin MR, Uylings HBM, Rakic P, Kostovic I (2011) Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc Natl Acad Sci U S A 108:13281–13286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pipa G, Munk MH (2011) Higher order spike synchrony in prefrontal cortex during visual memory. Front Comput Neurosci 5:23. https://doi.org/10.3389/fncom.2011.00023. eCollection 2011

    Article  PubMed  PubMed Central  Google Scholar 

  • Potkin SG, Kane JM, Correll CU, Lindenmayer J-P, Agid O, Marder SR, Olfson M, Howes OD (2020) The neurobiology of treatment-resistant schizophrenia: paths to antipsychotic resistance and a roadmap for future research. NPJ Schizophr 6:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Preuss TM (1995) Do rats have prefrontal cortex? The Rose-Woolsey-Akert program reconsidered. J Cogn Neurosci 7:1–24

    Article  CAS  PubMed  Google Scholar 

  • Preuss TM, Wise SP (2022) Evolution of prefrontal cortex. Neuropsychopharmacology 47:3–19

    Article  PubMed  Google Scholar 

  • Qi X-L, Constantinidis C (2012) Variability of prefrontal neuronal discharges before and after training in a working memory task. PLoS One 7:e41053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi X-L, Constantinidis C (2013) Neural changes after training to perform cognitive tasks. Behav Brain Res 241:235–243

    Article  PubMed  Google Scholar 

  • Qi X-L, Constantinidis C (2015) Lower neuronal variability in the monkey dorsolateral prefrontal than posterior parietal cortex. J Neurophysiol 114:2194–2203

    Article  PubMed  PubMed Central  Google Scholar 

  • Qi X-L, Katsuki F, Meyer T, Rawley JB, Zhou X, Douglas KL, Constantinidis C (2010) Comparison of neural activity related to working memory in primate dorsolateral prefrontal and posterior parietal cortex. Front Syst Neurosci 4:12

    PubMed  PubMed Central  Google Scholar 

  • Qi X-L, Liu R, Singh B, Bestue D, Compte A, Vazdarjanova AI, Blake DT, Constantinidis C (2021) Nucleus basalis stimulation enhances working memory by stabilizing stimulus representations in primate prefrontal cortical activity. Cell Rep 36:109469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quintana J, Fuster JM (1992) Mnemonic and predictive functions of cortical neurons in a memory task. Neuroreport 3:721–724

    Article  CAS  PubMed  Google Scholar 

  • Quiroz C, Orrú M, Rea W, Ciudad-Roberts A, Yepes G, Britt JP, Ferré S (2016) Local control of extracellular dopamine levels in the medial nucleus accumbens by a glutamatergic projection from the infralimbic cortex. J Neurosci 36(3):851–859. https://doi.org/10.1523/JNEUROSCI.2850-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rees E, Walters JT, Georgieva L, Isles AR, Chambert KD, Richards AL, Mahoney-Davies G, Legge SE, Moran JL, McCarroll SA, O’Donovan MC, Owen MJ, Kirov G (2014) Analysis of copy number variations at 15 schizophrenia-associated loci. Br J Psychiatry 204:108–114. https://doi.org/10.1192/bjp.bp.113.131052. Epub 2013 Dec 5

    Article  PubMed  PubMed Central  Google Scholar 

  • Reichenberg A, Caspi A, Harrington H, Houts R, Keefe RSE, Murray RM, Poulton R, Moffitt TE (2010) Static and dynamic cognitive deficits in childhood preceding adult schizophrenia: a 30-year study. Am J Psychiatry 167:160–169

    Article  PubMed  PubMed Central  Google Scholar 

  • Russchen FT, Amaral DG, Price JL (1987) The afferent input to the magnocellular division of the mediodorsal thalamic nucleus in the monkey, Macaca fascicularis. J Comp Neurol 256:175–210

    Article  CAS  PubMed  Google Scholar 

  • Samandra R, Haque ZZ, Rosa MGP, Mansouri FA (2022) The marmoset as a model for investigating the neural basis of social cognition in health and disease. Neurosci Biobehav Rev 138:104692

    Article  PubMed  Google Scholar 

  • Sasaki E et al (2009) Generation of transgenic non-human primates with germline transmission. Nature 459:523–527

    Article  CAS  PubMed  Google Scholar 

  • Sawaguchi T, Goldman-Rakic PS (1991) D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science 251:947–950

    Article  CAS  PubMed  Google Scholar 

  • Schaeffer DJ, Gilbert KM, Gati JS, Menon RS, Everling S (2019) Intrinsic functional boundaries of lateral frontal cortex in the common marmoset monkey. J Neurosci 39:1020–1029

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaeffer DJ, Selvanayagam J, Johnston KD, Menon RS, Freiwald WA, Everling S (2020) Face selective patches in marmoset frontal cortex. Nat Commun 11:4856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schizophrenia_Working_Group_of_the_Psychiatric_Genomics_Consortium (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511:421–427. https://doi.org/10.1038/nature13595. Epub 2014 July 22

    Article  CAS  PubMed Central  Google Scholar 

  • Schreiber T (2000) Measuring information transfer. Phys Rev Lett 85:461–464

    Article  CAS  PubMed  Google Scholar 

  • Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR, Kamitaki N, Tooley K, Presumey J, Baum M, Van Doren V, Genovese G, Rose SA, Handsaker RE, Daly MJ, Carroll MC, Stevens B, McCarroll SA (2016) Schizophrenia risk from complex variation of complement component 4. Nature 530:177–183. https://doi.org/10.1038/nature16549. Epub 2016 Jan 27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selemon LD, Friedman HR (2013) Motor stereotypies and cognitive perseveration in non-human primates exposed to early gestational irradiation. Neuroscience 248:213–224

    Article  CAS  PubMed  Google Scholar 

  • Selemon LD, Goldman-Rakic PS (1988) Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior. J Neurosci 8:4049–4068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selemon LD, Begović A, Rakic P (2009) Selective reduction of neuron number and volume of the mediodorsal nucleus of the thalamus in macaques following irradiation at early gestational ages. J Comp Neurol 515:454–464

    Article  PubMed  PubMed Central  Google Scholar 

  • Selemon LD, Ceritoglu C, Ratnanather JT, Wang L, Harms MP, Aldridge K, Begović A, Csernansky JG, Miller MI, Rakic P (2013) Distinct abnormalities of the primate prefrontal cortex caused by ionizing radiation in early or midgestation. J Comp Neurol 521:1040–1053

    Article  PubMed  PubMed Central  Google Scholar 

  • Sellgren CM, Gracias J, Watmuff B, Biag JD, Thanos JM, Whittredge PB, Fu T, Worringer K, Brown HE, Wang J, Kaykas A, Karmacharya R, Goold CP, Sheridan SD, Perlis RH (2019) Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nat Neurosci 22:374–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sellier C, Hwang VJ, Dandekar R, Durbin-Johnson B, Charlet-Berguerand N, Ander BP, Sharp FR, Angkustsiri K, Simon TJ, Tassone F (2014) Decreased DGCR8 expression and miRNA dysregulation in individuals with 22q11.2 deletion syndrome. PLoS One 9:e103884

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheridan SD, Horng JE, Perlis RH (2022) Patient-derived in vitro models of microglial function and synaptic engulfment in Schizophrenia. Biol Psychiatry Available at: https://doi.org/10.1016/j.biopsych.2022.01.004.

  • Sheu Y-S, Courtney SM (2016) A neural mechanism of cognitive control for resolving conflict between abstract task rules. Cortex 85:13–24

    Article  PubMed  PubMed Central  Google Scholar 

  • Sigurdsson T, Stark KL, Karayiorgou M, Gogos JA, Gordon JA (2010) Impaired hippocampal-prefrontal synchrony in a genetic mouse model of schizophrenia. Nature 464:763–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh B, Wang Z, Qi X-L, Constantinidis C (2022) Plasticity after cognitive training reflected in prefrontal local field potentials. iScience 25:104929

    Article  PubMed  PubMed Central  Google Scholar 

  • Skoblenick K, Everling S (2012) NMDA antagonist ketamine reduces task selectivity in macaque dorsolateral prefrontal neurons and impairs performance of randomly interleaved prosaccades and antisaccades. J Neurosci 32:12018–12027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skoblenick K, Everling S (2014) N-methyl-d-aspartate receptor antagonist ketamine impairs action-monitoring activity in the prefrontal cortex. J Cogn Neurosci 26:577–592. https://doi.org/10.1162/jocn_a_00519. Epub 2013 Nov 4

    Article  PubMed  Google Scholar 

  • Skoblenick KJ, Womelsdorf T, Everling S (2016) Ketamine alters outcome-related local field potentials in monkey prefrontal cortex. Cereb Cortex 26:2743–2752

    Article  PubMed  Google Scholar 

  • Smiley JF, Goldman-Rakic PS (1993) Heterogeneous targets of dopamine synapses in monkey prefrontal cortex demonstrated by serial section electron microscopy: a laminar analysis using the silver-enhanced diaminobenzidine sulfide (SEDS) immunolabeling technique. Cereb Cortex 3:223–238

    Article  CAS  PubMed  Google Scholar 

  • Smucny J, Lesh TA, Newton K, Niendam TA, Ragland JD, Carter CS (2018) Levels of cognitive control: a functional magnetic resonance imaging-based test of an RDoC domain across bipolar disorder and Schizophrenia. Neuropsychopharmacology 43:598–606

    Article  PubMed  Google Scholar 

  • Smucny J, Iosif A-M, Eaton NR, Lesh TA, Ragland JD, Barch DM, Gold JM, Strauss ME, MacDonald AW, Silverstein SM, Carter CS (2020a) Latent profiles of cognitive control, episodic memory, and visual perception across psychiatric disorders reveal a dimensional structure. Schizophr Bull 46:154–162

    Article  PubMed  Google Scholar 

  • Smucny J, Lesh TA, Zarubin VC, Niendam TA, Ragland JD, Tully LM, Carter CS (2020b) One-year stability of frontoparietal cognitive control network connectivity in recent onset Schizophrenia: a task-related 3T fMRI study. Schizophr Bull. https://doi.org/10.1093/schbul/sbz122

  • Smucny J, Dienel SJ, Lewis DA, Carter CS (2022) Mechanisms underlying dorsolateral prefrontal cortex contributions to cognitive dysfunction in schizophrenia. Neuropsychopharmacology 47:292–308

    Article  PubMed  Google Scholar 

  • Snitz BE, Macdonald AW 3rd, Carter CS (2006) Cognitive deficits in unaffected first-degree relatives of schizophrenia patients: a meta-analytic review of putative endophenotypes. Schizophr Bull 32:179–194. Epub 2005 Sep 15

    Article  PubMed  PubMed Central  Google Scholar 

  • Sohal VS, Zhang F, Yizhar O, Deisseroth K (2009) Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459:698–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stark KL, Xu B, Bagchi A, Lai W-S, Liu H, Hsu R, Wan X, Pavlidis P, Mills AA, Karayiorgou M, Gogos JA (2008) Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat Genet 40:751–760

    Article  CAS  PubMed  Google Scholar 

  • Stawicka ZM, Massoudi R, Oikonomidis L, McIver L, Mulvihill K, Quah SKL, Cockcroft GJ, Clarke HF, Horst NK, Wood CM, Roberts AC (2022) Differential effects of the inactivation of anterior and posterior orbitofrontal cortex on affective responses to proximal and distal threat, and reward anticipation in the common marmoset. Cereb Cortex 32:1319–1336

    Article  PubMed  Google Scholar 

  • Stephan KE, Friston KJ, Frith CD (2009) Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr Bull 35:509–527

    Article  PubMed  PubMed Central  Google Scholar 

  • Stoet G, Snyder LH (2003) Executive control and task-switching in monkeys. Neuropsychologia 41:1357–1364

    Article  PubMed  Google Scholar 

  • Stokes MG (2015) “Activity-silent” working memory in prefrontal cortex: a dynamic coding framework. Trends Cogn Sci 19:394–405

    Article  PubMed  PubMed Central  Google Scholar 

  • Stone JM, Howes OD, Egerton A, Kambeitz J, Allen P, Lythgoe DJ, O’Gorman RL, McLean MA, Barker GJ, McGuire P (2010) Altered relationship between hippocampal glutamate levels and striatal dopamine function in subjects at ultra high risk of psychosis. Biol Psychiatry 68:599–602

    Article  CAS  PubMed  Google Scholar 

  • Swaminathan SK, Freedman DJ (2012) Preferential encoding of visual categories in parietal cortex compared with prefrontal cortex. Nat Neurosci 15:315–320. https://doi.org/10.1038/nn.3016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sweis BM, Thomas MJ, Redish AD (2018) Beyond simple tests of value: measuring addiction as a heterogeneous disease of computation-specific valuation processes. Learn Mem 25:501–512

    Article  PubMed  PubMed Central  Google Scholar 

  • Takeda K, Funahashi S (2004) Population vector analysis of primate prefrontal activity during spatial working memory. Cereb Cortex 14:1328–1339

    Article  PubMed  Google Scholar 

  • Tamura M, Mukai J, Gordon JA, Gogos JA (2016) Developmental inhibition of Gsk3 rescues behavioral and neurophysiological deficits in a mouse model of Schizophrenia predisposition. Neuron 89:1100–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang H, Qi X-L, Riley MR, Constantinidis C (2019) Working memory capacity is enhanced by distributed prefrontal activation and invariant temporal dynamics. Proc Natl Acad Sci U S A 116:7095–7100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang H, Riley MR, Singh B, Qi X-L, Blake DT, Constantinidis C (2022) Prefrontal cortical plasticity during learning of cognitive tasks. Nat Commun 13:90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang W, Choi EY, Heilbronner SR, Haber SN (2021) Nonhuman primate meso-circuitry data: a translational tool to understand brain networks across species. Brain Struct Funct 226:1–11

    Article  PubMed  Google Scholar 

  • Timms AE, Dorschner MO, Wechsler J, Choi KY, Kirkwood R, Girirajan S, Baker C, Eichler EE, Korvatska O, Roche KW, Horwitz MS, Tsuang DW (2013) Support for the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia from exome sequencing in multiplex families. JAMA Psychiatry 70:582–590

    Article  CAS  PubMed  Google Scholar 

  • Trubetskoy V et al (2022) Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 604:502–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu P-C, Lee Y-C, Chen Y-S, Li C-T, Su T-P (2013) Schizophrenia and the brain’s control network: aberrant within- and between-network connectivity of the frontoparietal network in schizophrenia. Schizophr Res 147:339–347

    Article  PubMed  Google Scholar 

  • van der Stelt O, Belger A (2007) Application of electroencephalography to the study of cognitive and brain functions in schizophrenia. Schizophr Bull 33:955–970

    Article  PubMed  PubMed Central  Google Scholar 

  • van Os J, Krabbendam L, Myin-Germeys I, Delespaul P (2005) The schizophrenia envirome. Curr Opin Psychiatry 18:141–145

    Article  PubMed  Google Scholar 

  • Vijayraghavan S, Wang M, Birnbaum SG, Williams GV, Arnsten AFT (2007) Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nat Neurosci 10:376–384

    Article  CAS  PubMed  Google Scholar 

  • Vinogradov S, Hamid AA, Redish AD (2022) Etiopathogenic models of psychosis spectrum illnesses must resolve four key features. Biol Psychiatry 92:514–522

    Article  PubMed  Google Scholar 

  • Vlasova RM et al (2021) Maternal immune activation during pregnancy alters postnatal brain growth and cognitive development in nonhuman primate offspring. J Neurosci 41:9971–9987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallis JD, Miller EK (2003) From rule to response: neuronal processes in the premotor and prefrontal cortex. J Neurophysiol 90:1790–1806. https://doi.org/10.1152/jn.00086.2003. Epub 2003 May 7

    Article  PubMed  Google Scholar 

  • Wallis JD, Anderson KC, Miller EK (2001) Single neurons in prefrontal cortex encode abstract rules. Nature 411:953–956. https://doi.org/10.1038/35082081

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Yang Y, Wang C-J, Gamo NJ, Jin LE, Mazer JA, Morrison JH, Wang X-J, Arnsten AFT (2013) NMDA receptors subserve persistent neuronal firing during working memory in dorsolateral prefrontal cortex. Neuron 77:736–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Datta D, Enwright J, Galvin V, Yang S-T, Paspalas C, Kozak R, Gray DL, Lewis DA, Arnsten AFT (2019a) A novel dopamine D1 receptor agonist excites delay-dependent working memory-related neuronal firing in primate dorsolateral prefrontal cortex. Neuropharmacology 150:46–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Zhang L, Chi X-S, He L, Zhou D, Li J-M (2019b) Psychiatric symptoms of patients with anti-NMDA receptor encephalitis. Front Neurol 10:1330

    Article  PubMed  Google Scholar 

  • Wang XJ (1999) Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. J Neurosci 19:9587–9603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Singh B, Zhou X, Constantinidis C (2022) Strong gamma frequency oscillations in the adolescent prefrontal cortex. J Neurosci 42:2917–2929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner S, Doering B, Helmreich I, Lieb K, Tadić A (2012) A meta-analysis of executive dysfunctions in unipolar major depressive disorder without psychotic symptoms and their changes during antidepressant treatment. Acta Psychiatr Scand 125(4):281–292. https://doi.org/10.1111/j.1600-0447.2011.01762.x

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K, Funahashi S (2014) Neural mechanisms of dual-task interference and cognitive capacity limitation in the prefrontal cortex. Nat Neurosci 17:601–611

    Article  CAS  PubMed  Google Scholar 

  • Weir RK, Forghany R, Smith SEP, Patterson PH, McAllister AK, Schumann CM, Bauman MD (2015) Preliminary evidence of neuropathology in nonhuman primates prenatally exposed to maternal immune activation. Brain Behav Immun 48:139–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wibral M, Pampu N, Priesemann V, Siebenhuhner F, Seiwert H, Lindner M, Lizier JT, Vicente R (2013) Measuring information-transfer delays. PLoS One 8:e55809. https://doi.org/10.1371/journal.pone.0055809. Epub 2013 Feb 28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams GV, Goldman-Rakic PS (1995) Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 376:572–575

    Article  CAS  PubMed  Google Scholar 

  • Wong RK, Selvanayagam J, Johnston KD, Everling S (2022) Delay-related activity in marmoset prefrontal cortex. Cereb Cortex. https://doi.org/10.1093/cercor/bhac289

  • Woolgar A, Afshar S, Williams MA, Rich AN (2015) Flexible coding of task rules in frontoparietal cortex: an adaptive system for flexible cognitive control. J Cogn Neurosci 27:1895–1911. https://doi.org/10.1162/jocn_a_00827. Epub 2015 May 26

    Article  PubMed  Google Scholar 

  • Wynn JK, Sugar C, Horan WP, Kern R, Green MF (2010) Mismatch negativity, social cognition, and functioning in schizophrenia patients. Biol Psychiatry 67:940–947

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Paspalas CD, Jin LE, Picciotto MR, Arnsten AFT, Wang M (2013) Nicotinic α7 receptors enhance NMDA cognitive circuits in dorsolateral prefrontal cortex. Proc Natl Acad Sci USA 110:12078–12083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yilmaz M, Yalcin E, Presumey J, Aw E, Ma M, Whelan CW, Stevens B, McCarroll SA, Carroll MC (2021) Overexpression of schizophrenia susceptibility factor human complement C4A promotes excessive synaptic loss and behavioral changes in mice. Nat Neurosci 24:214–224

    Article  CAS  PubMed  Google Scholar 

  • Yoon JH, Minzenberg MJ, Ursu S, Ryan Walter BS, Wendelken C, Ragland JD, Carter CS (2008) Association of dorsolateral prefrontal cortex dysfunction with disrupted coordinated brain activity in schizophrenia: relationship with impaired cognition, behavioral disorganization, and global function. Am J Psychiatry 165:1006–1014

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Palaniyappan L, Deng M, Zhang W, Pan Y, Fan Z, Tan W, Wu G, Liu Z, Pu W (2021) Abnormal thalamocortical circuit in adolescents with early-onset Schizophrenia. J Am Acad Child Adolesc Psychiatry 60:479–489

    Article  PubMed  Google Scholar 

  • Zhou X, Zhu D, Qi X-L, Lees CJ, Bennett AJ, Salinas E, Stanford TR, Constantinidis C (2013) Working memory performance and neural activity in prefrontal cortex of peripubertal monkeys. J Neurophysiol 110:2648–2660

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Zhu D, Qi X-L, Li S, King SG, Salinas E, Stanford TR, Constantinidis C (2016) Neural correlates of working memory development in adolescent primates. Nat Commun 7:13423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu D, Yin J, Liang C, Luo X, Lv D, Dai Z, Xiong S, Fu J, Li Y, Lin J, Lin Z, Wang Y, Ma G (2019) CACNA1C (rs1006737) may be a susceptibility gene for schizophrenia: An updated meta-analysis. Brain Behav 9:e01292

    Article  PubMed  PubMed Central  Google Scholar 

  • Zick JL, Blackman RK, Crowe DA, Amirikian B, DeNicola AL, Netoff TI, Chafee MV (2018) Blocking NMDAR disrupts spike timing and decouples monkey prefrontal circuits: implications for activity-dependent disconnection in Schizophrenia. Neuron 98:1243–1255.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zick JL, Crowe DA, Blackman RK, Schultz K, Bergstrand DW, DeNicola AL, Carter RE, Ebner TJ, Lanier LM, Netoff TI, Chafee MV (2021) Disparate insults relevant to schizophrenia converge on impaired spike synchrony and weaker synaptic interactions in prefrontal local circuits. Curr Biol. https://doi.org/10.1016/j.cub.2021.10.009

  • Zikopoulos B, Barbas H (2007) Parallel driving and modulatory pathways link the prefrontal cortex and thalamus. PLoS One 2:e848

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathew V. Chafee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chafee, M.V. (2022). Using Nonhuman Primate Models to Reverse-Engineer Prefrontal Circuit Failure Underlying Cognitive Deficits in Schizophrenia. In: Barch, D.M., Young, J.W. (eds) Cognitive Functioning in Schizophrenia: Leveraging the RDoC Framework. Current Topics in Behavioral Neurosciences, vol 63. Springer, Cham. https://doi.org/10.1007/7854_2022_407

Download citation

Publish with us

Policies and ethics