Skip to main content

Rethinking Immunity and Cognition in Clinical High Risk for Psychosis

  • Chapter
  • First Online:
Cognitive Functioning in Schizophrenia: Leveraging the RDoC Framework

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 63))

Abstract

It is well known that schizophrenia is associated with cognitive impairment, reduced cortical grey matter and increased circulating concentrations of inflammatory cytokines. However, the relationship between these findings is not clear. We outline the influential neuroinflammatory hypotheses that raised cytokines provoke a damaging immune response in microglia that results in reduced grey matter and associated cognitive performance. We investigated whether such an interaction might be detectable in the prodromal period as illness emerges from the Clinical High Risk for Psychosis (CHR-P). Meta-analyses suggest that compared with controls, impaired cognition and reduced grey matter are already present by the prodrome and that greater decrements are present in those who later develop symptoms. In contrast, the few cytokine studies report no abnormalities in CHR-P except that interleukin-6 (IL-6) levels were raised versus controls and to a greater extent in the future patients, in one study. We noted that cognitive impairment and less cortical grey matter are more severe in schizophrenia than in affective disorders, but that increased cytokine levels are similarly prevalent across disorders. We found no studies correlating cytokine levels with cognitive impairment in CHR-P but such correlations seem unlikely given the minimal relationship reported in a recent meta-analysis of the many cytokine-cognition studies in established illness. From this and other evidence, we conclude that neuroinflammation is not a core feature of schizophrenia nor a substrate for reduced grey matter volume or cognitive function. We draw attention instead to the emerging evidence that brain-resident immune cells and signalling molecules such as Tregs and IL-6, which are influenced by schizophrenia risk genes, regulate and are necessary for the development and function of neuron–glia interaction. We suggest that cognitive impairment in schizophrenia can be seen as a convergence of genetic and immune-neurodevelopmental dysregulation whereas raised cytokines are a consequence of impaired Tregs control of systemic inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Addington J, Liu L, Perkins DO, Carrion RE, Keefe RS, Woods SW (2017) The role of cognition and social functioning as predictors in the transition to psychosis for youth with attenuated psychotic symptoms. Schizophr Bull 43(1):57–63. https://doi.org/10.1093/schbul/sbw152

    Article  PubMed  Google Scholar 

  • Baumeister D, Akhtar R, Ciufolini S, Pariante CM, Mondelli V (2016) Childhood trauma and adulthood inflammation: a meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-α. Mol Psychiatry 21(5):642–649. https://doi.org/10.1038/mp.2015.67

    Article  CAS  PubMed  Google Scholar 

  • Bora E, Lin A, Wood SJ, Yung AR, McGorry PD, Pantelis C (2014) Cognitive deficits in youth with familial and clinical high risk to psychosis: a systematic review and meta-analysis. Acta Psychiatr Scand 130(1):1–15. https://doi.org/10.1111/acps.12261

    Article  CAS  PubMed  Google Scholar 

  • Cannon M, Clarke MC, Cotter DR (2014) Priming the brain for psychosis: maternal inflammation during fetal development and the risk of later psychiatric disorder. Am J Psychiatry 171(9):901–905. https://doi.org/10.1176/appi.ajp.2014.14060749

    Article  PubMed  Google Scholar 

  • Cannon TD, Chung Y, He G, Sun D, Jacobson A, van Erp TG, McEwen S, Addington J, Bearden CE, Cadenhead K, Cornblatt B, Mathalon DH, McGlashan T, Perkins D, Jeffries C, Seidman LJ, Tsuang M, Walker E, Woods SW, Heinssen R (2015) Progressive reduction in cortical thickness as psychosis develops: a multisite longitudinal neuroimaging study of youth at elevated clinical risk. Biol Psychiatry 77(2):147–157. https://doi.org/10.1016/j.biopsych.2014.05.023

    Article  PubMed  Google Scholar 

  • Capuzzi E, Bartoli F, Crocamo C, Clerici M, Carrà G (2017) Acute variations of cytokine levels after antipsychotic treatment in drug-naïve subjects with a first-episode psychosis: a meta-analysis. Neurosci Biobehav Rev 77:122–128. https://doi.org/10.1016/j.neubiorev.2017.03.003

    Article  CAS  PubMed  Google Scholar 

  • Carrión RE, Walder DJ, Auther AM, McLaughlin D, Zyla HO, Adelsheim S, Calkins R, Carter CS, McFarland B, Melton R, Niendam T, Ragland JD, Sale TG, Taylor SF, McFarlane WR, Cornblatt BA (2018) From the psychosis prodrome to the first-episode of psychosis: no evidence of a cognitive decline. J Psychiatr Res 96:231–238. https://doi.org/10.1016/j.jpsychires.2017.10.014

    Article  PubMed  Google Scholar 

  • Catalan A, Salazar de Pablo G, Aymerich C, Damiani S, Sordi V, Radua J, Oliver D, McGuire P, Giuliano AJ, Stone WS, Fusar-Poli P (2021) Neurocognitive functioning in individuals at clinical high risk for psychosis: a systematic review and meta-analysis. JAMA Psychiat. https://doi.org/10.1001/jamapsychiatry.2021.1290

  • Clarke MC, Tanskanen A, Huttunen M, Whittaker JC, Cannon M (2009) Evidence for an interaction between familial liability and prenatal exposure to infection in the causation of schizophrenia. Am J Psychiatry 166(9):1025–1030. https://doi.org/10.1176/appi.ajp.2009.08010031

    Article  PubMed  Google Scholar 

  • Comer AL, Carrier M, Tremblay M-È, Cruz-Martín A (2020) The inflamed brain in schizophrenia: the convergence of genetic and environmental risk factors that lead to uncontrolled Neuroinflammation. Front Cell Neurosci 14. https://doi.org/10.3389/fncel.2020.00274

  • Conen S, Gregory CJ, Hinz R, Smallman R, Corsi-Zuelli F, Deakin B, Talbot PS (2021) Neuroinflammation as measured by positron emission tomography in patients with recent onset and established schizophrenia: implications for immune pathogenesis. Mol Psychiatry 26(9):5398–5406. https://doi.org/10.1038/s41380-020-0829-y

    Article  CAS  PubMed  Google Scholar 

  • Corley E, Holleran L, Fahey L, Corvin A, Morris DW, Donohoe G (2021) Microglial-expressed genetic risk variants, cognitive function and brain volume in patients with schizophrenia and healthy controls. Transl Psychiatry 11(1):490. https://doi.org/10.1038/s41398-021-01616-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corsi-Zuelli F, Deakin B (2021) Impaired regulatory T cell control of astroglial overdrive and microglial pruning in schizophrenia. Neurosci Biobehav Rev 125:637–653. https://doi.org/10.1016/j.neubiorev.2021.03.004

    Article  CAS  PubMed  Google Scholar 

  • Corsi-Zuelli F, Loureiro CM, Shuhama R, Fachim HA, Menezes PR, Louzada-Junior P, Mondelli V, Del-Ben CM (2020) Cytokine profile in first-episode psychosis, unaffected siblings and community-based controls: the effects of familial liability and childhood maltreatment. Psychol Med 50(7):1139–1147. https://doi.org/10.1017/s0033291719001016

    Article  PubMed  Google Scholar 

  • Corsi-Zuelli F, Deakin B, de Lima MHF, Qureshi O, Barnes NM, Upthegrove R, Louzada-Junior P, Del-Ben CM (2021) T regulatory cells as a potential therapeutic target in psychosis? Current challenges and future perspectives. Brain Behav Immun Health 17:100330. https://doi.org/10.1016/j.bbih.2021.100330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies C, Segre G, Estradé A, Radua J, De Micheli A, Provenzani U, Oliver D, Salazar de Pablo G, Ramella-Cravaro V, Besozzi M, Dazzan P, Miele M, Caputo G, Spallarossa C, Crossland G, Ilyas A, Spada G, Politi P, Murray RM, McGuire P, Fusar-Poli P (2020) Prenatal and perinatal risk and protective factors for psychosis: a systematic review and meta-analysis. Lancet Psychiatry 7(5):399–410. https://doi.org/10.1016/s2215-0366(20)30057-2

    Article  PubMed  Google Scholar 

  • Deakin B, Suckling J, Barnes TRE, Byrne K, Chaudhry IB, Dazzan P, Drake RJ, Giordano A, Husain N, Jones PB, Joyce E, Knox E, Krynicki C, Lawrie SM, Lewis S, Lisiecka-Ford DM, Nikkheslat N, Pariante CM, Smallman R, Watson A, Williams SCR, Upthegrove R, Dunn G (2018) The benefit of minocycline on negative symptoms of schizophrenia in patients with recent-onset psychosis (BeneMin): a randomised, double-blind, placebo-controlled trial. Lancet Psychiatry 5(11):885–894. https://doi.org/10.1016/S2215-0366(18)30345-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Dunleavy C, Elsworthy RJ, Upthegrove R, Wood SJ, Aldred S (2022) Inflammation in first-episode psychosis: the contribution of inflammatory biomarkers to the emergence of negative symptoms, a systematic review and meta-analysis. Acta Psychiatr Scand. https://doi.org/10.1111/acps.13416

  • Ermakov EA, Melamud MM, Buneva VN, Ivanova SA (2022) Immune system abnormalities in schizophrenia: an integrative view and translational perspectives. Front Psych 13:880568. https://doi.org/10.3389/fpsyt.2022.880568

    Article  Google Scholar 

  • Fillman SG, Weickert TW, Lenroot RK, Catts SV, Bruggemann JM, Catts VS, Weickert CS (2016) Elevated peripheral cytokines characterize a subgroup of people with schizophrenia displaying poor verbal fluency and reduced Broca's area volume. Mol Psychiatry 21(8):1090–1098. https://doi.org/10.1038/mp.2015.90

    Article  CAS  PubMed  Google Scholar 

  • Föcking M, Dicker P, Lopez LM, Cannon M, Schäfer MR, McGorry PD, Smesny S, Cotter DR, Amminger GP (2016) Differential expression of the inflammation marker IL12p40 in the at-risk mental state for psychosis: a predictor of transition to psychotic disorder? BMC Psychiatry 16(1):326. https://doi.org/10.1186/s12888-016-1039-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fusar-Poli P, Bonoldi I, Yung AR, Borgwardt S, Kempton MJ, Valmaggia L, Barale F, Caverzasi E, McGuire P (2012) Predicting psychosis: meta-analysis of transition outcomes in individuals at high clinical risk. Arch Gen Psychiatry 69(3):220–229. https://doi.org/10.1001/archgenpsychiatry.2011.1472

    Article  PubMed  Google Scholar 

  • Fusar-Poli P, Salazar de Pablo G, Correll CU, Meyer-Lindenberg A, Millan MJ, Borgwardt S, Galderisi S, Bechdolf A, Pfennig A, Kessing LV, van Amelsvoort T, Nieman DH, Domschke K, Krebs M-O, Koutsouleris N, McGuire P, Do KQ, Arango C (2020) Prevention of psychosis: advances in detection, prognosis, and intervention. JAMA Psychiat 77(7):755–765. https://doi.org/10.1001/jamapsychiatry.2019.4779

    Article  Google Scholar 

  • Giovanoli S, Engler H, Engler A, Richetto J, Voget M, Willi R, Winter C, Riva MA, Mortensen PB, Feldon J, Schedlowski M, Meyer U (2013) Stress in puberty unmasks latent neuropathological consequences of prenatal immune activation in mice. Science 339(6123):1095–1099. https://doi.org/10.1126/science.1228261

    Article  CAS  PubMed  Google Scholar 

  • Goldsmith DR, Rapaport MH, Miller BJ (2016) A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry 21(12):1696–1709. https://doi.org/10.1038/mp.2016.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green MF (1996) What are the functional consequences of neurocognitive deficits in schizophrenia? Am J Psychiatry

    Google Scholar 

  • Green MF, Kern RS, Braff DL, Mintz J (2000) Neurocognitive deficits and functional outcome in schizophrenia: are we measuring the “Right Stuff”? Schizophr Bull 26(1):119–136. https://doi.org/10.1093/oxfordjournals.schbul.a033430

    Article  CAS  PubMed  Google Scholar 

  • Green MF, Kern RS, Heaton RK (2004) Longitudinal studies of cognition and functional outcome in schizophrenia: implications for MATRICS. Schizophr Res 72(1):41–51. https://doi.org/10.1016/j.schres.2004.09.009

    Article  PubMed  Google Scholar 

  • Green MF, Penn DL, Bentall R, Carpenter WT, Gaebel W, Gur RC, Kring AM, Park S, Silverstein SM, Heinssen R (2008) Social cognition in schizophrenia: an NIMH workshop on definitions, assessment, and research opportunities. Schizophr Bull 34(6):1211–1220. https://doi.org/10.1093/schbul/sbm145

    Article  PubMed  PubMed Central  Google Scholar 

  • Haining K, Gajwani R, Gross J, Gumley AI, Ince RAA, Lawrie SM, Schultze-Lutter F, Schwannauer M, Uhlhaas PJ (2022) Characterising cognitive heterogeneity in individuals at clinical high-risk for psychosis: a cluster analysis with clinical and functional outcome prediction. Eur Arch Psychiatry Clin Neurosci 272(3):437–448. https://doi.org/10.1007/s00406-021-01315-2

    Article  PubMed  Google Scholar 

  • Jalbrzikowski M, Hayes RA, Wood SJ, Nordholm D, Zhou JH, Fusar-Poli P, Uhlhaas PJ, Takahashi T, Sugranyes G, Kwak YB, Mathalon DH, Katagiri N, Hooker CI, Smigielski L, Colibazzi T, Via E, Tang J, Koike S, Rasser PE, Michel C, Lebedeva I, Hegelstad WTV, de la Fuente-Sandoval C, Waltz JA, Mizrahi R, Corcoran CM, Resch F, Tamnes CK, Haas SS, Lemmers-Jansen ILJ, Agartz I, Allen P, Amminger GP, Andreassen OA, Atkinson K, Bachman P, Baeza I, Baldwin H, Bartholomeusz CF, Borgwardt S, Catalano S, Chee MWL, Chen X, Cho KIK, Cooper RE, Cropley VL, Dolz M, Ebdrup BH, Fortea A, Glenthøj LB, Glenthøj BY, de Haan L, Hamilton HK, Harris MA, Haut KM, He Y, Heekeren K, Heinz A, Hubl D, Hwang WJ, Kaess M, Kasai K, Kim M, Kindler J, Klaunig MJ, Koppel A, Kristensen TD, Kwon JS, Lawrie SM, Lee J, León-Ortiz P, Lin A, Loewy RL, Ma X, McGorry P, McGuire P, Mizuno M, Møller P, Moncada-Habib T, Muñoz-Samons D, Nelson B, Nemoto T, Nordentoft M, Omelchenko MA, Oppedal K, Ouyang L, Pantelis C, Pariente JC, Raghava JM, Reyes-Madrigal F, Roach BJ, Røssberg JI, Rössler W, Salisbury DF, Sasabayashi D, Schall U, Schiffman J, Schlagenhauf F, Schmidt A, Sørensen ME, Suzuki M, Theodoridou A, Tomyshev AS, Tor J, Værnes TG, Velakoulis D, Venegoni GD, Vinogradov S, Wenneberg C, Westlye LT, Yamasue H, Yuan L, Yung AR, van Amelsvoort T, Turner JA, van Erp TGM, Thompson PM, Hernaus D (2021) Association of structural magnetic resonance imaging measures with psychosis onset in individuals at clinical high risk for developing psychosis: an ENIGMA working group mega-analysis. JAMA Psychiat 78(7):753–766. https://doi.org/10.1001/jamapsychiatry.2021.0638

    Article  Google Scholar 

  • Kambeitz-Ilankovic L, Koutsouleris N, Upthegrove R (2022) The potential of precision psychiatry: what is in reach? Br J Psychiatry 220(4):175–178. https://doi.org/10.1192/bjp.2022.23

    Article  PubMed  Google Scholar 

  • Kerr DM, McDonald J, Minnis H (2021) The association of child maltreatment and systemic inflammation in adulthood: a systematic review. PLoS One 16(4):e0243685. https://doi.org/10.1371/journal.pone.0243685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khandaker GM, Dantzer R (2016) Is there a role for immune-to-brain communication in schizophrenia? Psychopharmacology (Berl) 233(9):1559–1573. https://doi.org/10.1007/s00213-015-3975-1

    Article  CAS  PubMed  Google Scholar 

  • Khandaker GM, Barnett JH, White IR, Jones PB (2011) A quantitative meta-analysis of population-based studies of premorbid intelligence and schizophrenia. Schizophr Res 132(2):220–227. https://doi.org/10.1016/j.schres.2011.06.017

    Article  PubMed  PubMed Central  Google Scholar 

  • Khandaker GM, Cousins L, Deakin J, Lennox BR, Yolken R, Jones PB (2015) Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment. Lancet Psychiatry 2(3):258–270. https://doi.org/10.1016/s2215-0366(14)00122-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim H, Shin N, Jang J, Kim E, Shim G, Park H, Hong K, Kwon JS (2011) Social cognition and neurocognition as predictors of conversion to psychosis in individuals at ultra-high risk. Schizophr Res 130:170–175. https://doi.org/10.1016/j.schres.2011.04.023

    Article  PubMed  Google Scholar 

  • Kim M, Haney JR, Zhang P, Hernandez LM, Wang L-K, Perez-Cano L, Loohuis LMO, de la Torre-Ubieta L, Gandal MJ (2021) Brain gene co-expression networks link complement signaling with convergent synaptic pathology in schizophrenia. Nat Neurosci 24(6):799–809. https://doi.org/10.1038/s41593-021-00847-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kogan S, Ospina LH, Mittal VA, Kimhy D (2020) The impact of inflammation on neurocognition and risk for psychosis: a critical review. Eur Arch Psychiatry Clin Neurosci 270:793–802. https://doi.org/10.1007/s00406-019-01073-2

    Article  PubMed  Google Scholar 

  • Lawrie SM, Whalley H, Kestelman JN, Abukmeil SS, Byrne M, Hodges A, Rimmington JE, Best JJ, Owens DG, Johnstone EC (1999) Magnetic resonance imaging of brain in people at high risk of developing schizophrenia. Lancet 353(9146):30–33

    Article  CAS  PubMed  Google Scholar 

  • Merritt K, Luque Laguna P, Irfan A, David AS (2021) Longitudinal structural MRI findings in individuals at genetic and clinical high risk for psychosis: a systematic review. Front Psych 12. https://doi.org/10.3389/fpsyt.2021.620401

  • Metcalf SA, Jones PB, Nordstrom T, Timonen M, Mäki P, Miettunen J, Jääskeläinen E, Järvelin M-R, Stochl J, Murray GK, Veijola J, Khandaker GM (2017) Serum C-reactive protein in adolescence and risk of schizophrenia in adulthood: a prospective birth cohort study. Brain Behav Immun 59:253–259. https://doi.org/10.1016/j.bbi.2016.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer JH, Cervenka S, Kim M-J, Kreisl WC, Henter ID, Innis RB (2020) Neuroinflammation in psychiatric disorders: PET imaging and promising new targets. Lancet Psychiatry 7(12):1064–1074. https://doi.org/10.1016/S2215-0366(20)30255-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B (2011) Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry 70(7):663–671. https://doi.org/10.1016/j.biopsych.2011.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millett CE, Perez-Rodriguez M, Shanahan M, Larsen E, Yamamoto HS, Bukowski C, Fichorova R, Burdick KE (2021) C-reactive protein is associated with cognitive performance in a large cohort of euthymic patients with bipolar disorder. Mol Psychiatry 26(8):4096–4105. https://doi.org/10.1038/s41380-019-0591-1

    Article  CAS  PubMed  Google Scholar 

  • Momtazmanesh S, Zare-Shahabadi A, Rezaei N (2019) Cytokine alterations in schizophrenia: an updated review. Front Psych 10. https://doi.org/10.3389/fpsyt.2019.00892

  • Monji A, Kato T, Kanba S (2009) Cytokines and schizophrenia: microglia hypothesis of schizophrenia. Psychiatry Clin Neurosci 63(3):257–265. https://doi.org/10.1111/j.1440-1819.2009.01945.x

    Article  CAS  PubMed  Google Scholar 

  • Morrens M, Overloop C, Coppens V, Loots E, Van Den Noortgate M, Vandenameele S, Leboyer M, De Picker L (2022) The relationship between immune and cognitive dysfunction in mood and psychotic disorder: a systematic review and a meta-analysis. Mol Psychiatry. https://doi.org/10.1038/s41380-022-01582-y

  • Ntouros E, Karanikas E, Floros G, Andreou C, Tsoura A, Garyfallos G, Bozikas VP (2018) Social cognition in the course of psychosis and its correlation with biomarkers in a male cohort. Cogn Neuropsychiatry 23(2):103–115. https://doi.org/10.1080/13546805.2018.1440201

    Article  PubMed  Google Scholar 

  • Nuechterlein KPD, Green MFPD, Kern RS, Baade LE, Barch DM, Cohen JD, Essock S, Fenton WS, Frese FJ, Gold JM, Goldberg T, Heaton RK, Keefe RSE, Kraemer H, Mesholam-Gately R, Seidman LJ, Stover E, Weinberger DR, Young AS, Zalcman S, Marder SR (2008) The MATRICS consensus cognitive battery, part 1: test selection, reliability, and validity. Am J Psychiatry 165(2):203–213. https://doi.org/10.1176/appi.ajp.2007.07010042

    Article  PubMed  Google Scholar 

  • Onwordi EC, Halff EF, Whitehurst T, Mansur A, Cotel MC, Wells L, Creeney H, Bonsall D, Rogdaki M, Shatalina E, Reis Marques T, Rabiner EA, Gunn RN, Natesan S, Vernon AC, Howes OD (2020) Synaptic density marker SV2A is reduced in schizophrenia patients and unaffected by antipsychotics in rats. Nat Commun 11(1):246. https://doi.org/10.1038/s41467-019-14122-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osimo EF, Beck K, Reis Marques T, Howes OD (2019) Synaptic loss in schizophrenia: a meta-analysis and systematic review of synaptic protein and mRNA measures. Mol Psychiatry 24(4):549–561. https://doi.org/10.1038/s41380-018-0041-5

    Article  CAS  PubMed  Google Scholar 

  • Pantelis C, Velakoulis D, McGorry PD, Wood SJ, Suckling J, Phillips LJ, Yung AR, Bullmore ET, Brewer W, Soulsby B, Desmond P, McGuire PK (2003) Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet 361(9354):281–288. https://doi.org/10.1016/S0140-6736(03)12323-9

    Article  PubMed  Google Scholar 

  • Park S, Miller BJ (2020) Meta-analysis of cytokine and C-reactive protein levels in high-risk psychosis. Schizophr Res 226:5–12. https://doi.org/10.1016/j.schres.2019.03.012

    Article  PubMed  Google Scholar 

  • Pasciuto E, Burton OT, Roca CP, Lagou V, Rajan WD, Theys T, Mancuso R, Tito RY, Kouser L, Callaerts-Vegh Z, de la Fuente AG, Prezzemolo T, Mascali LG, Brajic A, Whyte CE, Yshii L, Martinez-Muriana A, Naughton M, Young A, Moudra A, Lemaitre P, Poovathingal S, Raes J, De Strooper B, Fitzgerald DC, Dooley J, Liston A (2020) Microglia require CD4T cells to complete the fetal-to-adult transition. Cell 182(3):625–640.e624. https://doi.org/10.1016/j.cell.2020.06.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perkins DO, Jeffries CD, Addington J, Bearden CE, Cadenhead KS, Cannon TD, Cornblatt BA, Mathalon DH, McGlashan TH, Seidman LJ, Tsuang MT, Walker EF, Woods SW, Heinssen R (2015) Towards a psychosis risk blood diagnostic for persons experiencing high-risk symptoms: preliminary results from the NAPLS project. Schizophr Bull 41(2):419–428. https://doi.org/10.1093/schbul/sbu099

    Article  PubMed  Google Scholar 

  • Perkins DO, Jeffries CD, Do KQ (2020) Potential roles of redox dysregulation in the development of schizophrenia. Biol Psychiatry 88(4):326–336. https://doi.org/10.1016/j.biopsych.2020.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry BI, Upthegrove R, Kappelmann N, Jones PB, Burgess S, Khandaker GM (2021) Associations of immunological proteins/traits with schizophrenia, major depression and bipolar disorder: a bi-directional two-sample mendelian randomization study. Brain Behav Immun 97:176–185. https://doi.org/10.1016/j.bbi.2021.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pillinger T, Osimo EF, Brugger S, Mondelli V, McCutcheon RA, Howes OD (2018) A meta-analysis of immune parameters, variability, and assessment of modal distribution in psychosis and test of the immune subgroup hypothesis. Schizophr Bull 45(5):1120–1133. https://doi.org/10.1093/schbul/sby160

    Article  PubMed Central  Google Scholar 

  • Potvin S, Stip E, Sepehry AA, Gendron A, Bah R, Kouassi E (2008) Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review. Biol Psychiatry 63(8):801–808. https://doi.org/10.1016/j.biopsych.2007.09.024

    Article  CAS  PubMed  Google Scholar 

  • Richards AL, Pardiñas AF, Frizzati A, Tansey KE, Lynham AJ, Holmans P, Legge SE, Savage JE, Agartz I, Andreassen OA, Blokland GAM, Corvin A, Cosgrove D, Degenhardt F, Djurovic S, Espeseth T, Ferraro L, Gayer-Anderson C, Giegling I, van Haren NE, Hartmann AM, Hubert JJ, Jönsson EG, Konte B, Lennertz L, Olde Loohuis LM, Melle I, Morgan C, Morris DW, Murray RM, Nyman H, Ophoff RA, Investigators G, van Os J, EUGEI WP2 Group, Schizophrenia Working Group of the Psychiatric Genomics Consortium, Petryshen TL, Quattrone D, Rietschel M, Rujescu D, Rutten BPF, Streit F, Strohmaier J, Sullivan PF, Sundet K, Wagner M, Escott-Price V, Owen MJ, Donohoe G, O'Donovan MC, Walters JTR (2020) The relationship between polygenic risk scores and cognition in schizophrenia. Schizophr Bull 46(2):336–344. https://doi.org/10.1093/schbul/sbz061

    Article  PubMed  Google Scholar 

  • Riecher-Rössler A, Pflueger MO, Aston J, Borgwardt SJ, Brewer WJ, Gschwandtner U, Stieglitz R-D (2009) Efficacy of using cognitive status in predicting psychosis: a 7-year follow-up. Biol Psychiatry 66(11):1023–1030. https://doi.org/10.1016/j.biopsych.2009.07.020

    Article  PubMed  Google Scholar 

  • Rudolph MD, Graham AM, Feczko E, Miranda-Dominguez O, Rasmussen JM, Nardos R, Entringer S, Wadhwa PD, Buss C, Fair DA (2018) Maternal IL-6 during pregnancy can be estimated from newborn brain connectivity and predicts future working memory in offspring. Nat Neurosci 21(5):765–772. https://doi.org/10.1038/s41593-018-0128-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seidman LJ, Shapiro DI, Stone WS, Woodberry KA, Ronzio A, Cornblatt BA, Addington J, Bearden CE, Cadenhead KS, Cannon TD, Mathalon DH, McGlashan TH, Perkins DO, Tsuang MT, Walker EF, Woods SW (2016) Association of neurocognition with transition to psychosis: baseline functioning in the second phase of the North American Prodrome Longitudinal Study. JAMA Psychiat 73(12):1239–1248. https://doi.org/10.1001/jamapsychiatry.2016.2479

    Article  Google Scholar 

  • Sellgren CM, Gracias J, Watmuff B, Biag JD, Thanos JM, Whittredge PB, Fu T, Worringer K, Brown HE, Wang J, Kaykas A, Karmacharya R, Goold CP, Sheridan SD, Perlis RH (2019) Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nat Neurosci 22(3):374–385. https://doi.org/10.1038/s41593-018-0334-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson A, Papas A, Bartholomeusz C, Allott K, Amminger GP, Nelson B, Wood S, Yung A (2012) Social cognition in clinical “at risk” for psychosis and first episode psychosis populations. Schizophr Res 141(2):204–209. https://doi.org/10.1016/j.schres.2012.08.007

    Article  PubMed  Google Scholar 

  • Trubetskoy V, Pardiñas AF, Qi T, Panagiotaropoulou G, Awasthi S, Bigdeli TB, Bryois J, Chen C-Y, Dennison CA, Hall LS, Lam M, Watanabe K, Frei O, Ge T, Harwood JC, Koopmans F, Magnusson S, Richards AL, Sidorenko J, Wu Y, Zeng J, Grove J, Kim M, Li Z, Voloudakis G, Zhang W, Adams M, Agartz I, Atkinson EG, Agerbo E, Al Eissa M, Albus M, Alexander M, Alizadeh BZ, Alptekin K, Als TD, Amin F, Arolt V, Arrojo M, Athanasiu L, Azevedo MH, Bacanu SA, Bass NJ, Begemann M, Belliveau RA, Bene J, Benyamin B, Bergen SE, Blasi G, Bobes J, Bonassi S, Braun A, Bressan RA, Bromet EJ, Bruggeman R, Buckley PF, Buckner RL, Bybjerg-Grauholm J, Cahn W, Cairns MJ, Calkins ME, Carr VJ, Castle D, Catts SV, Chambert KD, Chan RCK, Chaumette B, Cheng W, Cheung EFC, Chong SA, Cohen D, Consoli A, Cordeiro Q, Costas J, Curtis C, Davidson M, Davis KL, de Haan L, Degenhardt F, DeLisi LE, Demontis D, Dickerson F, Dikeos D, Dinan T, Djurovic S, Duan J, Ducci G, Dudbridge F, Eriksson JG, Fañanás L, Faraone SV, Fiorentino A, Forstner A, Frank J, Freimer NB, Fromer M, Frustaci A, Gadelha A, Genovese G, Gershon ES, Giannitelli M, Giegling I, Giusti-Rodríguez P, Godard S, Goldstein JI, González Peñas J, González-Pinto A, Gopal S, Gratten J, Green MF, Greenwood TA, Guillin O, Gülöksüz S, Gur RE, Gur RC, Gutiérrez B, Hahn E, Hakonarson H, Haroutunian V, Hartmann AM, Harvey C, Hayward C, Henskens FA, Herms S, Hoffmann P, Howrigan DP, Ikeda M, Iyegbe C, Joa I, Julià A, Kähler AK, Kam-Thong T, Kamatani Y, Karachanak-Yankova S, Kebir O, Keller MC, Kelly BJ, Khrunin A, Kim S-W, Klovins J, Kondratiev N, Konte B, Kraft J, Kubo M, Kučinskas V, Kučinskiene ZA, Kusumawardhani A, Kuzelova-Ptackova H, Landi S, Lazzeroni LC, Lee PH, Legge SE, Lehrer DS, Lencer R, Lerer B, Li M, Lieberman J, Light GA, Limborska S, Liu C-M, Lönnqvist J, Loughland CM, Lubinski J, Luykx JJ, Lynham A, Macek M, Mackinnon A, Magnusson PKE, Maher BS, Maier W, Malaspina D, Mallet J, Marder SR, Marsal S, Martin AR, Martorell L, Mattheisen M, McCarley RW, McDonald C, McGrath JJ, Medeiros H, Meier S, Melegh B, Melle I, Mesholam-Gately RI, Metspalu A, Michie PT, Milani L, Milanova V, Mitjans M, Molden E, Molina E, Molto MD, Mondelli V, Moreno C, Morley CP, Muntané G, Murphy KC, Myin-Germeys I, Nenadić I, Nestadt G, Nikitina-Zake L, Noto C, Nuechterlein KH, O’Brien NL, O’Neill FA, Oh S-Y, Olincy A, Ota VK, Pantelis C, Papadimitriou GN, Parellada M, Paunio T, Pellegrino R, Periyasamy S, Perkins DO, Pfuhlmann B, Pietiläinen O, Pimm J, Porteous D, Powell J, Quattrone D, Quested D, Radant AD, Rampino A, Rapaport MH, Rautanen A, Reichenberg A, Roe C, Roffman JL, Roth J, Rothermundt M, Rutten BPF, Saker-Delye S, Salomaa V, Sanjuan J, Santoro ML, Savitz A, Schall U, Scott RJ, Seidman LJ, Sharp SI, Shi J, Siever LJ, Sigurdsson E, Sim K, Skarabis N, Slominsky P, So H-C, Sobell JL, Söderman E, Stain HJ, Steen NE, Steixner-Kumar AA, Stögmann E, Stone WS, Straub RE, Streit F, Strengman E, Stroup TS, Subramaniam M, Sugar CA, Suvisaari J, Svrakic DM, Swerdlow NR, Szatkiewicz JP, Ta TMT, Takahashi A, Terao C, Thibaut F, Toncheva D, Tooney PA, Torretta S, Tosato S, Tura GB, Turetsky BI, Üçok A, Vaaler A, van Amelsvoort T, van Winkel R, Veijola J, Waddington J, Walter H, Waterreus A, Webb BT, Weiser M, Williams NM, Witt SH, Wormley BK, Wu JQ, Xu Z, Yolken R, Zai CC, Zhou W, Zhu F, Zimprich F, Atbaşoğlu EC, Ayub M, Benner C, Bertolino A (2022) Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 604(7906):502–508. https://doi.org/10.1038/s41586-022-04434-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upthegrove R, Manzanares-Teson N, Barnes NM (2014) Cytokine function in medication-naive first episode psychosis: a systematic review and meta-analysis. Schizophr Res 155(1):101–108. https://doi.org/10.1016/j.schres.2014.03.005

    Article  PubMed  Google Scholar 

  • Velthorst E, Meyer EC, Giuliano AJ, Addington J, Cadenhead KS, Cannon TD, Cornblatt BA, McGlashan TH, Perkins DO, Tsuang MT (2019) Neurocognitive profiles in the prodrome to psychosis in NAPLS-1. Schizophr Res 204:311–319

    Article  PubMed  Google Scholar 

  • Wang AK, Miller BJ (2018) Meta-analysis of cerebrospinal fluid cytokine and tryptophan catabolite alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder, and depression. Schizophr Bull 44(1):75–83. https://doi.org/10.1093/schbul/sbx035

    Article  PubMed  Google Scholar 

  • Watson AJ, Harrison L, Preti A, Wykes T, Cella M (2022) Cognitive trajectories following onset of psychosis: a meta-analysis. Br J Psychiatry:1–8. https://doi.org/10.1192/bjp.2022.131

  • Williams JA, Burgess S, Suckling J, Lalousis PA, Batool F, Griffiths SL, Palmer E, Karwath A, Barsky A, Gkoutos GV, Wood S, Barnes NM, David AS, Donohoe G, Neill JC, Deakin B, Khandaker GM, Upthegrove R, Collaboration P (2022) Inflammation and brain structure in schizophrenia and other neuropsychiatric disorders: a Mendelian randomization study. JAMA Psychiat 79:498. https://doi.org/10.1001/jamapsychiatry.2022.0407

    Article  Google Scholar 

  • Yung AR, Pan Yuen H, Mcgorry PD, Phillips LJ, Kelly D, Dell'Olio M, Francey SM, Cosgrave EM, Killackey E (2005) Mapping the onset of psychosis: the comprehensive assessment of at-risk mental states. Aust N Z J Psychiatry 39(11–12):964–971

    Article  PubMed  Google Scholar 

  • Yung AR, McGorry PD, Francey SM, Nelson B, Baker K, Phillips LJ, Berger G, Amminger GP (2007) PACE: a specialised service for young people at risk of psychotic disorders. Med J Aust 187(S7):S43–S46. https://doi.org/10.5694/j.1326-5377.2007.tb01336.x

    Article  PubMed  Google Scholar 

  • Zhou X, Tian B, Han H-B (2021) Serum interleukin-6 in schizophrenia: a system review and meta-analysis. Cytokine 141:155441. https://doi.org/10.1016/j.cyto.2021.155441

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The graphics in this chapter were created in BioRender.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bill Deakin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Griffiths, S.L., Upthegrove, R., Corsi-Zuelli, F., Deakin, B. (2022). Rethinking Immunity and Cognition in Clinical High Risk for Psychosis. In: Barch, D.M., Young, J.W. (eds) Cognitive Functioning in Schizophrenia: Leveraging the RDoC Framework. Current Topics in Behavioral Neurosciences, vol 63. Springer, Cham. https://doi.org/10.1007/7854_2022_399

Download citation

Publish with us

Policies and ethics