Skip to main content

Cognitive [Computational] Neuroscience Test Reliability and Clinical Applications for Serious Mental Illness (CNTRaCS) Consortium: Progress and Future Directions

  • Chapter
  • First Online:
Cognitive Functioning in Schizophrenia: Leveraging the RDoC Framework

Abstract

The development of treatments for impaired cognition in schizophrenia has been characterized as the most important challenge facing psychiatry at the beginning of the twenty-first century. The Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) project was designed to build on the potential benefits of using tasks and tools from cognitive neuroscience to better understanding and treat cognitive impairments in psychosis. These benefits include: (1) the use of fine-grained tasks that measure discrete cognitive processes; (2) the ability to design tasks that distinguish between specific cognitive domain deficits and poor performance due to generalized deficits resulting from sedation, low motivation, poor test taking skills, etc.; and (3) the ability to link cognitive deficits to specific neural systems, using animal models, neuropsychology, and functional imaging. CNTRICS convened a series of meetings to identify paradigms from cognitive neuroscience that maximize these benefits and identified the steps need for translation into use in clinical populations. The Cognitive Neuroscience Test Reliability and Clinical Applications for Schizophrenia (CNTRaCS) Consortium was developed to help carry out these steps. CNTRaCS consists of investigators at five different sites across the country with diverse expertise relevant to a wide range of the cognitive systems identified as critical as part of CNTRICs. This work reports on the progress and current directions in the evaluation and optimization carried out by CNTRaCS of the tasks identified as part of the original CNTRICs process, as well as subsequent extensions into the Positive Valence systems domain of Research Domain Criteria (RDoC). We also describe the current focus of CNTRaCS, which involves taking a computational psychiatry approach to measuring cognitive and motivational function across the spectrum of psychosis. Specifically, the current iteration of CNTRaCS is using computational modeling to isolate parameters reflecting potentially more specific cognitive and visual processes that may provide greater interpretability in understanding shared and distinct impairments across psychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abler B, Walter H et al (2006) Prediction error as a linear function of reward probability is coded in human nucleus accumbens. Neuroimage 31(2):790–795

    Article  PubMed  Google Scholar 

  • Abohamza E, Weickert T et al (2020) Reward and punishment learning in schizophrenia and bipolar disorder. Behav Brain Res 381:112298

    Article  CAS  PubMed  Google Scholar 

  • Aleman A, Hij R et al (1999) Memory impairment in schizophrenia: a meta-analysis. Am J Psychiatry 156(9):1358–1366

    Article  CAS  PubMed  Google Scholar 

  • Altmann CF, Bulthoff HH et al (2003) Perceptual organization of local elements into global shapes in the human visual cortex. Curr Biol 13(4):342–349

    Article  CAS  PubMed  Google Scholar 

  • Amitai N, Young JW, Higa K, Sharp RF, Geyer MA, Powell SB (2014) Isolation rearing effects on probabilistic learning and cognitive flexibility in rats. Cogn Affect Behav Neurosci 14(1):388–406

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson JR, Reder LM et al (1996) Working memory: activation limiations on retrieval. Cogn Psychol 30(3):221–256

    Article  CAS  PubMed  Google Scholar 

  • Arnsten AF (2004) Adrenergic targets for the treatment of cognitive deficits in schizophrenia. Psychopharmacology (Berl) 174(1):25–31

    Article  CAS  PubMed  Google Scholar 

  • Awh E, Barton B et al (2007) Visual working memory represents a fixed number of items regardless of complexity. Psychol Sci 18(7):622–628

    Article  PubMed  Google Scholar 

  • Baddeley AD (2000) The episodic buffer: a new component of working memory? Trends Cogn Sci 4:417–423

    Article  CAS  PubMed  Google Scholar 

  • Bagner DM, Melinder MR et al (2003) Language comprehension and working memory language comprehension and working memory deficits in patients with schizophrenia. Schizophr Res 60(2-3):299–309

    Article  PubMed  Google Scholar 

  • Barch DM, Carter CS (2008) Measurement issues in the use of cognitive neuroscience tasks in drug development for impaired cognition in schizophrenia: a report of the second consensus building conference of the CNTRICS initiative. Schizophr Bull 34(4):613–618

    Article  PubMed  PubMed Central  Google Scholar 

  • Barch DM, Braver TS et al (1997) Dissociating working memory from task difficulty in human prefrontal cortex. Neuropsychologia 35(10):1373–1380

    Article  CAS  PubMed  Google Scholar 

  • Barch DM, Carter CS et al (1999) Prefrontal cortex and context processing in medication-naive first-episode patients with schizophrenia. Schizophr Res 36(1-3):217–218

    Google Scholar 

  • Barch DM, Carter CS et al (2001) Selective deficits in prefrontal cortex regions in medication naive schizophrenia patients. Arch Gen Psychiatry 50:280–288

    Article  Google Scholar 

  • Barch DM, Carter CS et al (2004a) Factors influencing Stroop performance in schizophrenia. Neuropsychology 18(3):477–484

    Article  PubMed  Google Scholar 

  • Barch DM, Mitropoulou V et al (2004b) Context-processing deficits in schizotypal personality disorder. J Abnorm Psychol 113(4):556–568

    Article  PubMed  Google Scholar 

  • Barch DM, Braver TS et al (2009a) CNTRICS final task selection: executive control. Schizophr Bull 35(1):115–135

    Article  PubMed  Google Scholar 

  • Barch DM, Carter CS et al (2009b) Selecting paradigms from cognitive neuroscience for translation into use in clinical trials: proceedings of the third CNTRICS meeting. Schizophr Bull 35(1):109–114

    Article  PubMed  Google Scholar 

  • Barch DM, Carter CS et al (2012) The clinical translation of a measure of gain control: the contrast-contrast effect task. Schizophr Bull 38(1):135–143

    Article  PubMed  Google Scholar 

  • Barch DM, Pagliaccio D et al (2016) Mechanisms underlying motivational deficits in psychopathology: similarities and differences in depression and schizophrenia. Curr Top Behav Neurosci 27:411–449

    Article  PubMed  Google Scholar 

  • Barch DM, Carter CS et al (2017) Explicit and implicit reinforcement learning across the psychosis spectrum. J Abnorm Psychol 126(5):694–711

    Article  PubMed  PubMed Central  Google Scholar 

  • Bari A, Theobald DE et al (2010) Serotonin modulates sensitivity to reward and negative feedback in a probabilistic reversal learning task in rats. Neuropsychopharmacology 35(6):1290–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benes FM (2015) Building models for postmortem abnormalities in hippocampus of schizophrenics. Schizophr Res 167(1-3):73–83

    Article  PubMed  Google Scholar 

  • Beninger RJ, Wasserman J et al (2003) Typical and atypical antipsychotic medications differentially affect two nondeclarative memory tasks in schizophrenic patients: a double dissociation. Schizophr Res 61(2-3):281–292

    Article  PubMed  Google Scholar 

  • Berna F, Potheegadoo J et al (2016) A meta-analysis of autobiographical memory studies in schizophrenia spectrum disorder. Schizophr Bull 42(1):56–66

    PubMed  Google Scholar 

  • Berridge KC (2004) Motivation concepts in behavioral neuroscience. Physiol Behav 81(2):179–209

    Article  CAS  PubMed  Google Scholar 

  • Blackman RK, Crowe DA et al (2016) Monkey prefrontal neurons reflect logical operations for cognitive control in a variant of the AX continuous performance task (AX-CPT). J Neurosci 36(14):4067–4079

    Article  PubMed  PubMed Central  Google Scholar 

  • Blumenfeld RS, Ranganath C (2006) Dorsolateral prefrontal cortex promotes long-term memory formation through its role in working memory organization. J Neurosci 26(3):916–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blumenfeld RS, Ranganath C (2007) Prefrontal cortex and long-term memory encoding: an integrative review of findings from neuropsychology and neuroimaging. Neuroscientist 13(3):280–291

    Article  PubMed  Google Scholar 

  • Bogdan R, Pizzagalli DA (2006) Acute stress reduces reward responsiveness: implications for depression. Biol Psychiatry 60(10):1147–1154

    Article  PubMed  PubMed Central  Google Scholar 

  • Bogdan R, Pizzagalli DA (2009) The heritability of hedonic capacity and perceived stress: a twin study evaluation of candidate depressive phenotypes. Psychol Med 39(2):211–218

    Article  CAS  PubMed  Google Scholar 

  • Bogdan R, Perlis RH et al (2010) The impact of mineralocorticoid receptor ISO/VAL genotype (rs5522) and stress on reward learning. Genes Brain Behav 9(6):658–667

    CAS  PubMed  Google Scholar 

  • Bonds AB (1989) Role of inhibition in the specification of orientation selectivity of cells in the cat striate cortex. Vis Neurosci 2(1):41–55

    Article  CAS  PubMed  Google Scholar 

  • Bonds AB (1991) Temporal dynamics of contrast gain in single cells of the cat striate cortex. Vis Neurosci 6(3):239–255

    Article  CAS  PubMed  Google Scholar 

  • Bonner-Jackson A, Haut K et al (2005) The influence of encoding strategy on episodic memory and cortical activity in schizophrenia. Biol Psychiatry 58:47–55

    Article  PubMed  PubMed Central  Google Scholar 

  • Bora E (2018) Neurocognitive features in clinical subgroups of bipolar disorder: a meta-analysis. J Affect Disord 229:125–134

    Article  PubMed  Google Scholar 

  • Boudewyn MA, Carter CS (2018) Electrophysiological correlates of adaptive control and attentional engagement in patients with first episode schizophrenia and healthy young adults. Psychophysiology 55(3)

    Google Scholar 

  • Bower BH (1970a) Imagery as a relational organizer in associative learing. J Verb Learning Verb Behav 9:529–533

    Article  Google Scholar 

  • Bower GH (1970b) Organizational factors in memory. Cogn Psychol 1:18–46

    Article  Google Scholar 

  • Braver TS, Bongiolatti SR (2002) The role of the frontopolar prefrontal cortex in subgoal processing during working memory. Neuroimage 15:523–536

    Article  PubMed  Google Scholar 

  • Braver TS, Cohen JD (2000) On the control of control: the role of dopamine in regulating prefrontal function and working memory. In: Monsell S, Driver J (eds) Attention and performance XVIII. MIT Press, Cambridge, pp 713–738

    Google Scholar 

  • Braver TS, Cohen JD et al (1995) A computational model of prefrontal cortex function. Advances in neural information processing systems. In: Touretzky DS, Tesauro G, Leen TK (eds) , vol 7. MIT Press, Cambridge, pp 141–148

    Google Scholar 

  • Brebion G, Amador X et al (1997) Mechanisms underlying memory impairment in schizophrenia. Psychol Med 27:383–393

    Article  CAS  PubMed  Google Scholar 

  • Brewin CR, Beaton A (2002) Thought suppression, intelligence, and working memory capacity. Behav Res Ther 40(8):923–930

    Article  CAS  PubMed  Google Scholar 

  • Bubl E, Kern E et al (2015) Retinal dysfunction of contrast processing in major depression also apparent in cortical activity. Eur Arch Psychiatry Clin Neurosci 265(4):343–350

    Article  PubMed  Google Scholar 

  • Butler PD, Zemon V et al (2005) Early-stage visual processing and cortical amplification deficits in schizophrenia. Arch Gen Psychiatry 62(5):495–504

    Article  PubMed  PubMed Central  Google Scholar 

  • Butler PD, Martinez A et al (2007) Subcortical visual dysfunction in schizophrenia drives secondary cortical impairments. Brain 130(Pt 2):417–430

    Article  PubMed  Google Scholar 

  • Cadenhead KS, Serper Y et al (1998) Transient versus sustained visual channels in the visual backward masking deficits of schizophrenia patients. Biol Psychiatry 43(2):132–138

    Article  CAS  PubMed  Google Scholar 

  • Calkins ME, Curtis CE et al (2004) Antisaccade performance is impaired in medically and psychiatrically healthy biological relatives of schizophrenia patients. Schizophr Res 71(1):167–178

    Article  PubMed  Google Scholar 

  • Carter CS, Barch DM (2007) Cognitive neuroscience-based approaches to measuring and improving treatment effects on cognition in schizophrenia: the CNTRICS initiative. Schizophr Bull 33(5):1131–1137

    Article  PubMed  PubMed Central  Google Scholar 

  • Carter CS, Barch DM et al (2008) Identifying cognitive mechanisms targeted for treatment development in schizophrenia: an overview of the first meeting of the cognitive neuroscience treatment research to improve cognition in schizophrenia initiative. Biol Psychiatry 64(1):4–10

    Article  PubMed  PubMed Central  Google Scholar 

  • Cavanagh JF, Gregg D, Light GA, Olguin SL, Sharp RF, Bismark AW, Bhakta SG, Swerdlow NR, Brigman JL, Young JW (2021) Electrophysiological biomarkers of behavioral dimensions from cross-species paradigms. Transl Psychiatry 11(1):482

    Article  PubMed  PubMed Central  Google Scholar 

  • Ceaser AE, Goldberg TE et al (2008) Set-shifting ability and schizophrenia: a marker of clinical illness or an intermediate phenotype? Biol Psychiatry 64(9):782–788

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandna A, Pennefather PM et al (2001) Contour integration deficits in anisometropic amblyopia. Invest Ophthalmol Vis Sci 42(3):875–878

    CAS  PubMed  Google Scholar 

  • Chen EYH, Wong AWS et al (2001) Stroop interference and facilitation effects in first-episode schizophrenia patients. Schizophr Res 48:29–44

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Bidwell LC et al (2005) Visual motion integration in schizophrenia patients, their first-degree relatives, and patients with bipolar disorder. Schizophr Res 74(2-3):271–281

    Article  PubMed  Google Scholar 

  • Chubb C, Sperling G et al (1989) Texture interactions determine perceived contrast. Proc Natl Acad Sci U S A 86(23):9631–9635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark L, Cools R et al (2004) The neuropsychology of ventral prefrontal cortex: decision-making and reversal learning. Brain Cogn 55(1):41–53

    Article  CAS  PubMed  Google Scholar 

  • Clarke HF, Robbins TW et al (2008) Lesions of the medial striatum in monkeys produce perseverative impairments during reversal learning similar to those produced by lesions of the orbitofrontal cortex. J Neurosci 28(43):10972–10982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clatworthy PL, Lewis SJ et al (2009) Dopamine release in dissociable striatal subregions predicts the different effects of oral methylphenidate on reversal learning and spatial working memory. J Neurosci 29(15):4690–4696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen JD, Servan-Schreiber D (1992) Context, cortex and dopamine: a connectionist approach to behavior and biology in schizophrenia. Psychol Rev 99(1):45–77

    Article  CAS  PubMed  Google Scholar 

  • Cohen JD, Barch DM et al (1999) Context-processing deficits in schizophrenia: converging evidence from three theoretically motivated cognitive tasks. J Abnorm Psychol 108:120–133

    Article  CAS  PubMed  Google Scholar 

  • Collins AG, Frank MJ (2013) Cognitive control over learning: creating, clustering, and generalizing task-set structure. Psychol Rev 120(1):190–229

    Article  PubMed  PubMed Central  Google Scholar 

  • Collins AGE, Frank MJ (2016) Neural signature of hierarchically structured expectations predicts clustering and transfer of rule sets in reinforcement learning. Cognition 152:160–169

    Article  PubMed  PubMed Central  Google Scholar 

  • Collins AG, Brown JK et al (2014) Working memory contributions to reinforcement learning impairments in schizophrenia. J Neurosci 34(41):13747–13756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins AGE, Albrecht MA et al (2017) Interactions among working memory, reinforcement learning, and effort in value-based choice: a new paradigm and selective deficits in schizophrenia. Biol Psychiatry 82(6):431–439

    Article  PubMed  PubMed Central  Google Scholar 

  • Cools R, Clark L et al (2002) Defining the neural mechanisms of probabilistic reversal learning using event-related functional magnetic resonance imaging. J Neurosci 22(11):4563–4567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cools R, Lewis SJ et al (2007) L-DOPA disrupts activity in the nucleus accumbens during reversal learning in Parkinson's disease. Neuropsychopharmacology 32(1):180–189

    Article  CAS  PubMed  Google Scholar 

  • Cowan N (1988) Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information-processing system. Psychol Bull 104:163–191

    Article  CAS  PubMed  Google Scholar 

  • Cowan N (2010) The magical mystery four: how is working memory capacity limited, and why? Curr Dir Psychol Sci 19(1):51–57

    Article  PubMed  PubMed Central  Google Scholar 

  • Crockett MJ, Clark L et al (2009) Reconciling the role of serotonin in behavioral inhibition and aversion: acute tryptophan depletion abolishes punishment-induced inhibition in humans. J Neurosci Off J Soc Neurosci 29(38):11993–11999

    Article  CAS  Google Scholar 

  • Cuthbert BN, Kozak MJ (2013) Constructing constructs for psychopathology: the NIMH research domain criteria. J Abnorm Psychol 122(3):928–937

    Article  PubMed  Google Scholar 

  • Dakin SC, Hess RF (1998) Spatial-frequency tuning of visual contour integration. J Opt Soc Am A Opt Image Sci Vis 15(6):1486–1499

    Article  CAS  PubMed  Google Scholar 

  • Dakin S, Carlin P et al (2005) Weak suppression of visual context in chronic schizophrenia. Curr Biol 15(20):R822–R824

    Article  CAS  PubMed  Google Scholar 

  • Davachi L (2006) Item, context and relational episodic encoding in humans. Curr Opin Neurobiol 16(6):693–700

    Article  CAS  PubMed  Google Scholar 

  • Daw ND, Gershman SJ et al (2011) Model-based influences on humans' choices and striatal prediction errors. Neuron 69(6):1204–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dayan P, Balleine BW (2002) Reward, motivation, and reinforcement learning. Neuron 36:285–298

    Article  CAS  PubMed  Google Scholar 

  • Delawalla Z, Csernansky JG et al (2007) Prefrontal cortex function in nonpsychotic siblings of individuals with schizophrenia. Biol Psychiatry

    Google Scholar 

  • Derrington A (1996) Vision: filling in and pop out. Curr Biol 6(2):141–143

    Article  CAS  PubMed  Google Scholar 

  • Dias R, Robbins TW et al (1996) Dissociation in prefrontal cortex of affective and attentional shifts. Nature 380:69–72

    Article  CAS  PubMed  Google Scholar 

  • Dias EC, Butler PD et al (2011) Early sensory contributions to contextual encoding deficits in schizophrenia. Arch Gen Psychiatry 68(7):654–664

    Article  PubMed  PubMed Central  Google Scholar 

  • Dillon DG, Pizzagalli DA (2018) Mechanisms of memory disruption in depression. Trends Neurosci

    Google Scholar 

  • Durstewitz D, Gabriel T (2007) Dynamical basis of irregular spiking in NMDA-driven prefrontal cortex neurons. Cereb Cortex 17(4):894–908

    Article  PubMed  Google Scholar 

  • Durstewitz D, Seamans JK (2008) The dual-state theory of prefrontal cortex dopamine function with relevance to catechol-o-methyltransferase genotypes and schizophrenia. Biol Psychiatry 64(9):739–749

    Article  CAS  PubMed  Google Scholar 

  • Edden RA, Muthukumaraswamy SD et al (2009) Orientation discrimination performance is predicted by GABA concentration and gamma oscillation frequency in human primary visual cortex. J Neurosci 29(50):15721–15726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eichenbaum H, Yonelinas AP et al (2007) The medial temporal lobe and recognition memory. Annu Rev Neurosci 30:123–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elliott R, McKenna PJ et al (1995) Neuropsychological evidence for frontostriatal dysfunction in schizophrenia. Psychol Med 25(3):619–630

    Article  CAS  PubMed  Google Scholar 

  • Engle RW, Kane MJ (2004) Executive attention, working memory capacity and a two-factor theory of cognitive control. In: Ross B (ed) The psychology of learning and motivation. Elsevier, New York, p 44

    Google Scholar 

  • Erickson MA, Albrecht MA et al (2016) Impaired suppression of delay-period alpha and beta is associated with impaired working memory in schizophrenia. Biol Psychiatry Cogn Neurosci Neuroimaging 2(3):272–279

    Google Scholar 

  • Ettinger U, Picchioni M et al (2006) Antisaccade performance in monozygotic twins discordant for schizophrenia: the Maudsley twin study. Am J Psychiatry 163(3):543–545

    Article  PubMed  Google Scholar 

  • Evers EA, Cools R et al (2005) Serotonergic modulation of prefrontal cortex during negative feedback in probabilistic reversal learning. Neuropsychopharmacology 30(6):1138–1147

    Article  CAS  PubMed  Google Scholar 

  • Farkas M, Polgar P et al (2008) Associative learning in deficit and nondeficit schizophrenia. Neuroreport 19(1):55–58

    Article  PubMed  Google Scholar 

  • Fassbender C, Foxe JJ et al (2006) Mapping the functional anatomy of task preparation: priming task-appropriate brain networks. Hum Brain Mapp 27(10):819–827

    Article  PubMed  PubMed Central  Google Scholar 

  • Fellows LK, Farah MJ (2003) Ventromedial frontal cortex mediates affective shifting in humans: evidence from a reversal learning paradigm. Brain 126(Pt 8):1830–1837

    Article  PubMed  Google Scholar 

  • Fellows LK, Farah MJ (2005) Different underlying impairments in decision-making following ventromedial and dorsolateral frontal lobe damage in humans. Cereb Cortex 15(1):58–63

    Article  PubMed  Google Scholar 

  • Foerde K, Poldrack RA et al (2008) Selective corticostriatal dysfunction in schizophrenia: examination of motor and cognitive skill learning. Neuropsychology 22(1):100–109

    Article  PubMed  Google Scholar 

  • Foley JM (1994) Human luminance pattern-vision mechanisms: masking experiments require a new model. J Opt Soc Am A Opt Image Sci Vis 11(6):1710–1719

    Article  CAS  PubMed  Google Scholar 

  • Forbes NF, Carrick LA et al (2009) Working memory in schizophrenia: a meta-analysis. Psychol Med 39(6):889–905

    Article  CAS  PubMed  Google Scholar 

  • Frank MJ, Hutchison K (2009) Genetic contributions to avoidance-based decisions: striatal D2 receptor polymorphisms. Neuroscience 164(1):131–140

    Article  CAS  PubMed  Google Scholar 

  • Frank MJ, O'Reilly RC (2006) A mechanistic account of striatal dopamine function in human cognition: psychopharmacological studies with cabergoline and haloperidol. Behav Neurosci 120(3):497–517

    Article  CAS  PubMed  Google Scholar 

  • Frank MJ, Seeberger LC et al (2004) By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science 306(5703):1940–1943

    Article  CAS  PubMed  Google Scholar 

  • Frank MJ, Gagne C et al (2015) fMRI and EEG predictors of dynamic decision parameters during human reinforcement learning. J Neurosci 35(2):485–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman JI (2004) Cholinergic targets for cognitive enhancement in schizophrenia: focus on cholinesterase inhibitors and muscarinic agonists. Psychopharmacology (Berl) 174(1):45–53

    Article  CAS  PubMed  Google Scholar 

  • Fromer R, Sturmer B et al (2016) The better, the bigger: the effect of graded positive performance feedback on the reward positivity. Biol Psychol 114:61–68

    Article  PubMed  Google Scholar 

  • Fukuda K, Awh E et al (2010) Discrete capacity limits in visual working memory. Curr Opin Neurobiol 20(2):177–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funkiewiez A, Ardouin C et al (2006) Effects of levodopa and subthalamic nucleus stimulation on cognitive and affective functioning in Parkinson's disease. Mov Disord 21(10):1656–1662

    Article  PubMed  Google Scholar 

  • Gibson B, Wasserman E et al (2011) Qualitative similarities in the visual short-term memory of pigeons and people. Psychon Bull Rev 18:979–984

    Article  PubMed  PubMed Central  Google Scholar 

  • Gluck MA, Shohamy D et al (2002) How do people solve the "weather prediction" task?: individual variability in strategies for probabilistic category learning. Learn Mem 9(6):408–418

    Article  PubMed  PubMed Central  Google Scholar 

  • Gold JM, Randolph C et al (1992) Forms of memory failure in schizophrenia. J Abnorm Psychol 101(3):487–494

    Article  CAS  PubMed  Google Scholar 

  • Gold JM, Goldberg RW et al (2002) Cognitive correlates of job tenure among patients with severe mental illness. Am J Psychiatry 159(8):1395–1402

    Article  PubMed  Google Scholar 

  • Gold JM, Wilk CM et al (2003) Working memory for visual features and conjunctions in schizophrenia. J Abnorm Psychol 112(1):61–71

    Article  PubMed  Google Scholar 

  • Gold JM, Fuller RL et al (2006) Intact attentional control of working memory encoding in schizophrenia. J Abnorm Psychol 115(4):658–673

    Article  PubMed  Google Scholar 

  • Gold JM, Waltz JA et al (2008) Reward processing in schizophrenia: a deficit in the representation of value. Schizophr Bull 34(5):835–847

    Article  PubMed  PubMed Central  Google Scholar 

  • Gold JM, Hahn B et al (2010) Reduced capacity but spared precision and maintenance of working memory representations in schizophrenia. Arch Gen Psychiatry 67(6):570–577

    Article  PubMed  PubMed Central  Google Scholar 

  • Gold JM, Barch DM et al (2012a) Clinical, functional, and intertask correlations of measures developed by the cognitive neuroscience test reliability and clinical applications for schizophrenia consortium. Schizophr Bull 38(1):144–152

    Article  PubMed  Google Scholar 

  • Gold JM, Waltz JA et al (2012b) Negative symptoms and the failure to represent the expected reward value of actions: behavioral and computational modeling evidence. Arch Gen Psychiatry 69(2):129–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Gold JM, Strauss GP et al (2013) Negative symptoms of schizophrenia are associated with abnormal effort-cost computations. Biol Psychiatry

    Google Scholar 

  • Gold JM, Barch DM et al (2018) Working memory impairment across psychotic disorders. Schizophr Bull

    Google Scholar 

  • Gold JM, Barch DM et al (in submission) Modelling of working memory across the spectrum of psychotic disorders: dissociation capacity from attention lapsing

    Google Scholar 

  • Goldman-Rakic (1995) Cellular basis of working memory. Neuron 14:477–485

    Article  CAS  PubMed  Google Scholar 

  • Green M, Walker E (1984) Susceptibility to backward masking in schizophrenic patients with positive or negative symptoms. Am J Psychiatry 141(10):1273–1275

    Article  CAS  PubMed  Google Scholar 

  • Green MF, Nuechterlein KH et al (2004) Approaching a consensus cognitive battery for clinical trials in schizophrenia: the NIMH-MATRICS conference to select cognitive domains and test criteria. Biol Psychiatry 56(5):301–307

    Article  PubMed  Google Scholar 

  • Green MF, Hellemann G et al (2012) From perception to functional outcome in schizophrenia: modeling the role of ability and motivation. Arch Gen Psychiatry 69(12):1216–1224

    Article  PubMed  PubMed Central  Google Scholar 

  • Grot S, Potvin S et al (2014) Is there a binding deficit in working memory in patients with schizophrenia? A meta-analysis. Schizophr Res 158(1-3):142–145

    Article  PubMed  Google Scholar 

  • Haenschel C, Bittner RA et al (2007) Contribution of impaired early-stage visual processing to working memory dysfunction in adolescents with schizophrenia: a study with event-related potentials and functional magnetic resonance imaging. Arch Gen Psychiatry 64(11):1229–1240

    Article  PubMed  Google Scholar 

  • Han S, Song Y et al (2001) Neural substrates for visual perceptual grouping in humans. Psychophysiology 38(6):926–935

    Article  CAS  PubMed  Google Scholar 

  • Han S, Ding Y et al (2002) Neural mechanisms of perceptual grouping in humans as revealed by high density event related potentials. Neurosci Lett 319(1):29–32

    Article  CAS  PubMed  Google Scholar 

  • Harrison BJ, Yucel M et al (2006) Dysfunction of dorsolateral prefrontal cortex in antipsychotic-naive schizophreniform psychosis. Psychiatry Res 148(1):23–31

    Article  PubMed  Google Scholar 

  • Hazy TE, Frank MJ et al (2007) Towards an executive without a homunculus: computational models of the prefrontal cortex/basal ganglia system. Philo Trans R Soc Lond B Biol Sci 362(1485):1601–1613

    Article  Google Scholar 

  • Heckers S (2004) The hippocampus in schizophrenia. Am J Psychiatry 161(11):2138–2139

    Article  PubMed  Google Scholar 

  • Heckers S, Konradi C (2010) Hippocampal pathology in schizophrenia. Curr Top Behav Neurosci 4:529–553

    Article  PubMed  Google Scholar 

  • Heckers S, Rauch SL et al (1998) Impaired recruitment of the hippocampus during conscious recollection in schizophrenia. Nat Neurosci 1(4):318–323

    Article  CAS  PubMed  Google Scholar 

  • Heeger DJ (1992) Normalization of cell responses in cat striate cortex. Vis Neurosci 9(2):181–197

    Article  CAS  PubMed  Google Scholar 

  • Heerey EA, Bell-Warren KR et al (2008) Decision-making impairments in the context of intact reward sensitivity in schizophrenia. Biol Psychiatry 64(1):62–69

    Article  PubMed  PubMed Central  Google Scholar 

  • Heinrichs RW, Zakzanis KK (1998) Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology 12(3):426–445

    Article  CAS  PubMed  Google Scholar 

  • Henderson D, Poppe AB et al (2012) Optimization of a goal maintenance task for use in clinical applications. Schizophr Bull 38(1):104–113

    Article  PubMed  PubMed Central  Google Scholar 

  • Henik A, Salo R (2004) Schizophrenia and the stroop effect. Behav Cogn Neurosci Rev 3(1):42–59

    Article  PubMed  Google Scholar 

  • Henik A, Carter CS et al (2002) Attentional control and word inhibition in schizophrenia. Psychiatry Res 110(2):137–149

    Article  PubMed  Google Scholar 

  • Heydari S, Holroyd CB (2016) Reward positivity: reward prediction error or salience prediction error? Psychophysiology 53(8):1185–1192

    Article  PubMed  Google Scholar 

  • Holmes AJ, MacDonald A 3rd et al (2005) Prefrontal functioning during context processing in schizophrenia and major depression: an event-related fMRI study. Schizophr Res 76(2-3):199–206

    Article  PubMed  Google Scholar 

  • Horan WP, Green MF et al (2008) Impaired implicit learning in schizophrenia. Neuropsychology 22(5):606–617

    Article  PubMed  PubMed Central  Google Scholar 

  • Hornak J, O'Doherty J et al (2004) Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans. J Cogn Neurosci 16(3):463–478

    Article  CAS  PubMed  Google Scholar 

  • Hunt RR, Einsten GO (1981) Relational and item-specific information in memory. J Verbal Learn Verbal Behav 920:497–514

    Article  Google Scholar 

  • Hunt RR, McDaniel MA (1993) The enigma of organization and distinctiveness. J Mem Lang 32:421–445

    Article  Google Scholar 

  • Hutton SB, Puri BK et al (1998) Executive function in first-epsiode schizophrenia. Psychol Med 28(2):463–473

    Article  CAS  PubMed  Google Scholar 

  • Iddon JL, McKenna PJ et al (1998) Impaired generation and use of strategy in schizophrenia: evidence from visuospatial and verbal tasks. Psychol Med 28(5):1049–1062

    Article  CAS  PubMed  Google Scholar 

  • Insel T, Cuthbert B et al (2010) Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry 167(7):748–751

    Article  PubMed  Google Scholar 

  • Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148(10):1301–1308

    Article  CAS  PubMed  Google Scholar 

  • Javitt DC, Strous RD et al (1997) Impaired precision, but normal retention, of auditory sensory ("echoic") memory information in schizophrenia. J Abnorm Psychol 106:315–324

    Article  CAS  PubMed  Google Scholar 

  • Javitt DC, Shelley A et al (2000) Deficits in auditory and visual context-dependent processing in schizophrenia. Arch Gen Psychiatry 57:1131–1137

    Article  CAS  PubMed  Google Scholar 

  • Jazbec S, Pantelis C et al (2007) Intra-dimensional/extra-dimensional set-shifting performance in schizophrenia: impact of distractors. Schizophr Res 89(1-3):339–349

    Article  PubMed  Google Scholar 

  • Joyce E, Hutton S et al (2002) Executive dysfunction in first-episode schizophrenia and relationship to duration of untreated psychosis: the West London study. Br J Psychiatry Suppl 43:s38–s44

    Article  PubMed  Google Scholar 

  • Just MA, Carpenter PA et al (1996) The capacity theory of comprehension: new frontiers of evidence and arguments. Psychol Rev 103:773–780

    Article  CAS  PubMed  Google Scholar 

  • Kane MJ, Engle RW (2000) Working-memory capacity, proactive interference, and divided attention: limits on long-term memory retrieval. J Exp Psychol Learn Mem Cogn 26(2):336–358

    Article  CAS  PubMed  Google Scholar 

  • Kane MJ, Engle RW (2002) The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: an individual-differences perspective. Psychon Bull Rev 9(4):637–671

    Article  PubMed  Google Scholar 

  • Kane MJ, Engle RW (2003) Working-memory capacity and the control of attention: the contributions of goal neglect, response competition, and task set to Stroop interference. J Exp Psychol Gen 132(1):47–70

    Article  PubMed  Google Scholar 

  • Kane MJ, Bleckley MK et al (2001a) A controlled-attention view of working-memory capacity. J Exp Psychol Gen 130(2):169–183

    Article  CAS  PubMed  Google Scholar 

  • Kane MJ, Bleckley MK et al (2001b) A controlled-attention view of working memory capacity. J Exp Psychol Gen 130:169–183

    Article  CAS  PubMed  Google Scholar 

  • Kane MJ, Gross GM et al (2017) For whom the mind wanders, and when, varies across laboratory and daily-life settings. Psychol Sci 28(9):1271–1289

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanwisher N (2004) The ventral visual object pathway in humans: evidence from fMRI. In: Chalupa LM, Werner JS (eds) The visual neurosciences. MIT Pres, Cambridge, pp 1179–1189

    Google Scholar 

  • Kapadia MK, Ito M et al (1995) Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys. Neuron 15(4):843–856

    Article  CAS  PubMed  Google Scholar 

  • Katzner S, Busse L et al (2011) GABAA inhibition controls response gain in visual cortex. J Neurosci 31(16):5931–5941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keane BP, Paterno D et al (2016) Visual integration dysfunction in schizophrenia arises by the first psychotic episode and worsens with illness duration. J Abnorm Psychol 125(4):543–549

    Article  PubMed  PubMed Central  Google Scholar 

  • Keane BP, Barch DM et al (2021) Brain network mechanisms of visual shape completion. Neuroimage 236:118069

    Article  PubMed  Google Scholar 

  • Keri S, Kelemen O et al (2000) Schizophrenics know more than they can tell: probabilistic classification learning in schizophrenia. Psychol Med 30(1):149–155

    Article  CAS  PubMed  Google Scholar 

  • Keri S, Kelemen O et al (2004) Vernier threshold in patients with schizophrenia and in their unaffected siblings. Neuropsychology 18(3):537–542

    Article  PubMed  Google Scholar 

  • Keri S, Juhasz A et al (2005) Habit learning and the genetics of the dopamine D3 receptor: evidence from patients with schizophrenia and healthy controls. Behav Neurosci 119(3):687–693

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Zemon V et al (2005) Dysfunction of early-stage visual processing in schizophrenia: harmonic analysis. Schizophr Res 76(1):55–65

    Article  PubMed  Google Scholar 

  • Kim D, Wylie G et al (2006a) Magnocellular contributions to impaired motion processing in schizophrenia. Schizophr Res 82(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Shimojo S et al (2006b) Is avoiding an aversive outcome rewarding? Neural substrates of avoidance learning in the human brain. PLoS Biol 4(8):e233

    Article  PubMed  PubMed Central  Google Scholar 

  • Knight RA, Silverstein SM (2001) A process-oriented approach for averting confounds resulting from general performance deficiencies in schizophrenia. J Abnorm Psychol 110(1):15–30

    Article  CAS  PubMed  Google Scholar 

  • Knutson B, Westdorp A et al (2000) FMRI visualization of brain activity during a monetary incentive delay task. Neuroimage 12:20–27

    Article  CAS  PubMed  Google Scholar 

  • Knutson B, Adams CM et al (2001) Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci 21

    Google Scholar 

  • Koch K, Schachtzabel C et al (2009) Altered activation in association with reward-related trial-and-error learning in patients with schizophrenia. Neuroimage 50(1):223–232

    Article  PubMed  Google Scholar 

  • Koen JD, Borders AA et al (2017) Visual short-term memory for high resolution associations is impaired in patients with medial temporal lobe damage. Hippocampus 27(2):184–193

    Article  PubMed  Google Scholar 

  • Kolarik BS, Baer T et al (2018) Close but no cigar: spatial precision deficits following medial temporal lobe lesions provide novel insight into theoretical models of navigation and memory. Hippocampus 28(1):31–41

    Article  PubMed  Google Scholar 

  • Kourtzi Z, Tolias AS et al (2003) Integration of local features into global shapes: monkey and human FMRI studies. Neuron 37(2):333–346

    Article  CAS  PubMed  Google Scholar 

  • Kovacs I (1996) Gestalten of today: early processing of visual contours and surfaces. Behav Brain Res 82(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Kovacs I, Polat U et al (2000) A new test of contour integration deficits in patients with a history of disrupted binocular experience during visual development. Vision Res 40(13):1775–1783

    Article  CAS  PubMed  Google Scholar 

  • Kozma-Wiebe P, Silverstein S et al (2006) Development of a word-wide web based contour integration test: reliablity and validity. Comput Hum Behav 22:971–980

    Article  Google Scholar 

  • Krystal JH, Anticevic A et al (2017) Impaired tuning of neural ensembles and the pathophysiology of schizophrenia: a translational and computational neuroscience perspective. Biol Psychiatry 81(10):874–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamme VA (1995) The neurophysiology of figure-ground segregation in primary visual cortex. J Neurosci 15(2):1605–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Park S (2005) Working memory impairments in schizophrenia: a meta-analysis. J Abnorm Psychol 114(4):599–611

    Article  PubMed  Google Scholar 

  • Lee J, Park S (2006) The role of stimulus salience in CPT-AX performance of schizophrenia patients. Schizophr Res 81(2-3):191–197

    Article  PubMed  Google Scholar 

  • Leeson VC, Robbins TW et al (2009) Discrimination learning, reversal, and set-shifting in first-episode schizophrenia: stability over six years and specific associations with medication type and disorganization syndrome. Biol Psychiatry 66(6):586–593

    Article  PubMed  PubMed Central  Google Scholar 

  • Lennie P (1980) Parallel visual pathways: a review. Vision Res 20(7):561–594

    Article  CAS  PubMed  Google Scholar 

  • Lewis DA, Volk DW et al (2004) Selective alterations in prefrontal cortical GABA neurotransmission in schizophrenia: a novel target for the treatment of working memory dysfunction. Psychopharmacology (Berl) 174(1):143–150

    Article  CAS  PubMed  Google Scholar 

  • Linares D, Amoretti S et al (2020) Spatial suppression and sensitivity for motion in schizophrenia. Schizophrenia Bull Open 1(1):sgaa045

    Article  Google Scholar 

  • Liu Y, Gu N et al (2021) Effects of transcranial electrical stimulation on working memory in patients with schizophrenia: a systematic review and meta-analysis. Psychiatry Res 296:113656

    Article  PubMed  Google Scholar 

  • Lopez-Garcia P, Lesh TA et al (2016) The neural circuitry supporting goal maintenance during cognitive control: a comparison of expectancy AX-CPT and dot probe expectancy paradigms. Cogn Affect Behav Neurosci 16(1):164–175

    Article  PubMed  PubMed Central  Google Scholar 

  • Luck SJ, Vogel EK (1997) The capacity of visual working memory for features and conjunctions. Nature 390(6657):279–281

    Article  CAS  PubMed  Google Scholar 

  • MacDonald AW 3rd, Carter CS (2003) Event-related FMRI study of context processing in dorsolateral prefrontal cortex of patients with schizophrenia. J Abnorm Psychol 112(4):689–697

    Article  PubMed  Google Scholar 

  • MacDonald AW 3rd, Cohen JD et al (2000) Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288(5472):1835–1838

    Article  CAS  PubMed  Google Scholar 

  • MacDonald AW 3rd, Becker TM et al (2006) Functional magnetic resonance imaging study of cognitive control in the healthy relatives of schizophrenia patients. Biol Psychiatry 60(11):1241–1249

    Article  PubMed  Google Scholar 

  • MacDonald AW III, Patzelt E et al (in submission) Shared reversal learning impairments in schizophrenia and bipolar disorder reflect a failure to exploit rewards in computational model

    Google Scholar 

  • MacDonald AW, Pogue-Geile MF et al (2003) A specific deficit in context processing in the unaffected siblings of patients with schizophrenia. Arch Gen Psychiatry 60:57–65

    Article  PubMed  Google Scholar 

  • MacDonald A, Carter CS et al (2005a) Specificity of prefrontal dysfunction and context processing deficts to schizophrenia in a never medicated first-episode psychotic sample. Am J Psychiatry 162:475–484

    Google Scholar 

  • MacDonald AW, 3rd, Goghari VM et al (2005b) A convergent-divergent approach to context processing, general intellectual functioning, and the genetic liability to schizophrenia. Neuropsychology 19(6):814–821

    Google Scholar 

  • MacQueen GM, Memedovich KA (2017) Cognitive dysfunction in major depression and bipolar disorder: assessment and treatment options. Psychiatry Clin Neurosci 71(1):18–27

    Article  PubMed  Google Scholar 

  • Maia TV, Frank MJ (2011) From reinforcement learning models to psychiatric and neurological disorders. Nat Neurosci 14(2):154–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maia TV, Frank MJ (2017) An integrative perspective on the role of dopamine in schizophrenia. Biol Psychiatry 81(1):52–66

    Article  CAS  PubMed  Google Scholar 

  • Man MS, Clarke HF et al (2009) The role of the orbitofrontal cortex and medial striatum in the regulation of prepotent responses to food rewards. Cereb Cortex 19(4):899–906

    Article  CAS  PubMed  Google Scholar 

  • Marder SR, Fenton W (2004) Measurement and treatment research to improve cognition in schizophrenia: NIMH MATRICS initiative to support the development of agents for improving cognition in schizophrenia. Schizophr Res 72(1):5–9

    Article  PubMed  Google Scholar 

  • Martin LF, Kem WR et al (2004) Alpha-7 nicotinic receptor agonists: potential new candidates for the treatment of schizophrenia. Psychopharmacology (Berl) 174(1):54–64

    Article  CAS  PubMed  Google Scholar 

  • McAlonan K, Brown VJ (2003) Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat. Behav Brain Res 146(1-2):97–103

    Article  PubMed  Google Scholar 

  • McClain L (1983) Encoding and retrieval in schizophrenic's free recall. J Nerv Ment Dis 171:471–479

    Article  CAS  PubMed  Google Scholar 

  • McClure SM, Berns GS et al (2003) Temporal prediction errors in a passive learning task activate human striatum. Neuron 38(2):339–346

    Article  CAS  PubMed  Google Scholar 

  • McKirdy J, Sussmann JE et al (2009) Set shifting and reversal learning in patients with bipolar disorder or schizophrenia. Psychol Med 39(8):1289–1293

    Article  CAS  PubMed  Google Scholar 

  • Milienne-Petiot M, Higa KK, Grim A, Deben D, Groenink L, Twamley EW, Geyer MA, Young JW (2018) Nicotine improves probabilistic reward learning in wildtype but not alpha7 nAChR null mutants, yet alpha7 nAChR agonists do not improve probabilistic learning. Eur Neuropsychopharmacol 28(11):1217–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 21:167–202

    Article  Google Scholar 

  • Moghaddam B (2004) Targeting metabotropic glutamate receptors for treatment of the cognitive symptoms of schizophrenia. Psychopharmacology (Berl) 174(1):39–44

    Article  CAS  PubMed  Google Scholar 

  • Montague PR, Sejnowski TJ (1994) The predictive brain: temporal coincidence and temporal order in synaptic learning mechanisms. Learn Mem 1:1–33

    Article  CAS  PubMed  Google Scholar 

  • Montague PR, Dayan P et al (1996) A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J Neurosci 16:1936–1947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore H, Geyer MA et al (2013) Harnessing cognitive neuroscience to develop new treatments for improving cognition in schizophrenia: CNTRICS selected cognitive paradigms for animal models. Neurosci Biobehav Rev 37(9 Pt B):2087–2091

    Article  PubMed  PubMed Central  Google Scholar 

  • Morris SE, Cuthbert BN (2012) Research domain criteria: cognitive systems, neural circuits, and dimensions of behavior. Dialogues Clin Neurosci 14(1):29–37

    Article  PubMed  PubMed Central  Google Scholar 

  • Morris SE, Heerey EA et al (2008) Learning-related changes in brain activity following errors and performance feedback in schizophrenia. Schizophr Res 99(1-3):274–285

    Article  PubMed  Google Scholar 

  • Murray LJ, Ranganath C (2007) The dorsolateral prefrontal cortex contributes to successful relational memory encoding. J Neurosci 27(20):5515–5522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray GK, Cheng F et al (2008) Reinforcement and reversal learning in first-episode psychosis. Schizophr Bull 34(5):848–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nothdurft HC, Gallant JL et al (2000) Response profiles to texture border patterns in area V1. Vis Neurosci 17(3):421–436

    Article  CAS  PubMed  Google Scholar 

  • Oades RD (1997) Stimulus dimension shifts in patients with schizophrenia, with and without paranoid hallucinatory symptoms, or obsessive compulsive disorder: strategies, blocking and monoamine status. Behav Brain Res 88(1):115–131

    Article  CAS  PubMed  Google Scholar 

  • O'Doherty JP (2007) Lights, camembert, action! The role of human orbitofrontal cortex in encoding stimuli, rewards and choices. Ann N Y Acad Sci 1121:254–272

    Article  PubMed  Google Scholar 

  • O'Doherty J, Critchley H et al (2003) Dissociating valence of outcome from behavioral control in human orbital and ventral prefrontal cortices. J Neurosci 23(21):7931–7939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ongur D, Cullen TJ et al (2006) The neural basis of relational memory deficits in schizophrenia. Arch Gen Psychiatry 63(4):356–365

    Article  PubMed  Google Scholar 

  • Padoa-Schioppa C (2007) Orbitofrontal cortex and the computation of economic value. Ann N Y Acad Sci 441(7090):223–226

    Google Scholar 

  • Padoa-Schioppa C, Assad JA (2006) Neurons in the orbitofrontal cortex encode economic value. Nature 441(7090):223–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pantelis C, Barber FZ et al (1999) Comparison of set-shifting ability in patients with chronic schizophrenia and frontal lobe damage. Schizophr Res 37(3):251–270

    Article  CAS  PubMed  Google Scholar 

  • Park S, Gooding DC (2014) Working memory impairment as an endophenotypic marker of a schizophrenia diathesis. Schizophr Res Cogn 1(3):127–136

    Article  PubMed  PubMed Central  Google Scholar 

  • Passingham D, Sakai K (2004) The prefrontal cortex and working memory: physiology and brain imaging. Curr Opin Neurobiol 14(2):163–168

    Article  PubMed  Google Scholar 

  • Paulsen JS, Heaton RK et al (1995) The nature of learning and memory impairments in schizophrenia. J Int Neuropsychol Soc 1(1):88–99

    Article  CAS  PubMed  Google Scholar 

  • Pelletier M, Achim AM et al (2005) Cognitive and clinical moderators of recognition memory in schizophrenia: a meta-analysis. Schizophr Res 74(2–3, 233):–252

    Google Scholar 

  • Pessiglione M, Seymour B et al (2006) Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature 442(7106):1042–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips RC, Salo T et al (2015) Distinct neural correlates for attention lapses in patients with schizophrenia and healthy participants. Front Hum Neurosci 9:502

    Article  PubMed  PubMed Central  Google Scholar 

  • Pizzagalli DA, Jahn AL et al (2005) Toward an objective characterization of an anhedonic phenotype: a signal-detection approach. Biol Psychiatry 57(4):319–327

    Article  PubMed  PubMed Central  Google Scholar 

  • Pizzagalli DA, Bogdan R et al (2007) Increased perceived stress is associated with blunted hedonic capacity: potential implications for depression research. Behav Res Ther 45(11):2742–2753

    Article  PubMed  PubMed Central  Google Scholar 

  • Polgar P, Farkas M et al (2008) How to find the way out from four rooms? The learning of "chaining" associations may shed light on the neuropsychology of the deficit syndrome of schizophrenia. Schizophr Res 99(1-3):200–207

    Article  PubMed  Google Scholar 

  • Pomerantz JR, Pristach EA (1989) Emergent features, attention, and perceptual glue in visual form perception. J Exp Psychol Hum Percept Perform 15(4):635–649

    Article  CAS  PubMed  Google Scholar 

  • Poppe AB, Barch DM et al (2016) Reduced frontoparietal activity in schizophrenia is linked to a specific deficit in goal maintenance: a multisite functional imaging study. Schizophr Bull 42(5):1149–1157

    Article  PubMed  PubMed Central  Google Scholar 

  • Postle BR, Berger JS et al (1999) Functional neuroanatomical double dissociation of mnemonic and executive control processes contributing to working memory performance. Proc Natl Acad Sci 96:12959–12964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pratt DN, Barch DM et al (2021) Reliability and replicability of implicit and explicit reinforcement learning paradigms in people with psychotic disorders. Schizophr Bull 47(3):731–739

    Article  PubMed  Google Scholar 

  • Radant AD, Dobie DJ et al (2007) Successful multi-site measurement of antisaccade performance deficits in schizophrenia. Schizophr Res 89(1–3):320–329

    Article  PubMed  Google Scholar 

  • Ragland JD, Moelter ST et al (2003) Levels-of-processing effect on word recognition in schizophrenia. Biol Psychiatry 54:1154–1161

    Article  PubMed  PubMed Central  Google Scholar 

  • Ragland JD, Yoon J et al (2007) Neuroimaging of cognitive disability in schizophrenia: search for a pathophysiological mechanism. Int Rev Psychiatry 19(4):417–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ragland JD, Ranganath C et al (2012) Relational and item-specific encoding (RISE): task development and psychometric characteristics. Schizophr Bull 38(1):114–124

    Article  PubMed  Google Scholar 

  • Ragland JD, Ranganath C et al (2015) Functional and neuroanatomic specificity of episodic memory dysfunction in schizophrenia: a functional magnetic resonance imaging study of the relational and item-specific encoding task. JAMA Psychiat 72(9):909–916

    Article  Google Scholar 

  • Ranganath C (2010) A unified framework for the functional organization of the medial temporal lobes and the phenomenology of episodic memory. Hippocampus 20(11):1263–1290

    Article  PubMed  Google Scholar 

  • Redish AD, Gordon JA (2016) Breakdowns and failure modes: an engineer’s view. In: Redish AD, Gordon JA (eds) Computational psychiatry: new perspectives on mental illness. MIT Press, Cambridge, pp 15–29

    Chapter  Google Scholar 

  • Robinson OJ, Frank MJ et al (2010) Dissociable responses to punishment in distinct striatal regions during reversal learning. Neuroimage 51(4):1459–1467

    Article  PubMed  Google Scholar 

  • Roesch MR, Olson CR (2005) Neuronal activity in primate orbitofrontal cortex reflects the value of time. J Neurophysiol 94(4):2457–2471

    Article  PubMed  Google Scholar 

  • Roeske MJ, Konradi C et al (2021) Hippocampal volume and hippocampal neuron density, number and size in schizophrenia: a systematic review and meta-analysis of postmortem studies. Mol Psychiatry 26(7):3524–3535

    Article  PubMed  Google Scholar 

  • Rokem A, Yoon JH et al (2011) Broader visual orientation tuning in patients with schizophrenia. Front Hum Neurosci 5:127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolls ET, Sienkiewicz ZJ et al (1989) Hunger modulates the responses to gustatory stimuli of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. Eur J Neurosci 1(1):53–60

    Article  PubMed  Google Scholar 

  • Roth BL, Hanizavareh SM et al (2004) Serotonin receptors represent highly favorable molecular targets for cognitive enhancement in schizophrenia and other disorders. Psychopharmacology (Berl) 174(1):17–24

    Article  CAS  PubMed  Google Scholar 

  • Rouder JN, Speckman PL et al (2009) Bayesian t tests for accepting and rejecting the null hypothesis. Psychon Bull Rev 16(2):225–237

    Article  PubMed  Google Scholar 

  • Rudebeck PH, Walton ME et al (2006) Separate neural pathways process different decision costs. Nat Neurosci 9(9):1161–1168

    Article  CAS  PubMed  Google Scholar 

  • Saccuzzo DP, Schubert DL (1981) Backward masking as a measure of slow processing in schizophrenia spectrum disorders. J Abnorm Psychol 90(4):305–312

    Article  CAS  PubMed  Google Scholar 

  • Schallmo MP, Sponheim SR et al (2013) Abnormal contextual modulation of visual contour detection in patients with schizophrenia. PLoS One 8(6):e68090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schechter I, Butler PD et al (2005) Impairments in generation of early-stage transient visual evoked potentials to magno- and parvocellular-selective stimuli in schizophrenia. Clin Neurophysiol 116(9):2204–2215

    Article  PubMed  PubMed Central  Google Scholar 

  • Schoenbaum G, Roesch M (2005) Orbitofrontal cortex, associative learning, and expectancies. Neuron 47(5):633–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schooler C, Neumann E et al (1997) A time course analysis of Stroop interference and facilitation: comparing normal and schizophrenic individuals. J Exp Psychol Gen 126:19–36

    Article  CAS  PubMed  Google Scholar 

  • Schultz W (1992) Activity of dopamine neurons in the behaving primate. Semin Neurosci 4:129–138

    Article  Google Scholar 

  • Schultz W (2004) Neural coding of basic reward terms of animal learning theory, game theory, microeconomics, and behavioral ecology. Curr Opin Neurobiol 14:139–147

    Article  CAS  PubMed  Google Scholar 

  • Schultz W (2007) Multiple dopamine functions at different time courses. Annu Rev Neurosci 30:259–288

    Article  CAS  PubMed  Google Scholar 

  • Schultz W (2016) Dopamine reward prediction-error signalling: a two-component response. Nat Rev Neurosci 17(3):183–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz W, Apicella P et al (1993) Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J Neurosci 13(3):900–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz W, Dayan P et al (1997) A neural substrate of prediction and reward. Science 275:1593–1599

    Article  CAS  PubMed  Google Scholar 

  • Servan-Schreiber D, Cohen J et al (1996a) Schizophrenic deficits in the processing of context: a test of a theoretical model. Arch Gen Psychiatry 53:1105–1112

    Article  CAS  PubMed  Google Scholar 

  • Servan-Schreiber D, Cohen JD et al (1996b) Schizophrenic deficits in the processing of context: a test of a theoretical model. Arch Gen Psychiatry 53(Dec):1105–1113

    Article  CAS  PubMed  Google Scholar 

  • Sheffield JM, Gold JM et al (2014) Common and specific cognitive deficits in schizophrenia: relationships to function. Cogn Affect Behav Neurosci 14(1):161–174

    Article  PubMed  PubMed Central  Google Scholar 

  • Silverstein SM (2016) Visual perception disturbances in schizophrenia: a unified model. Nebr Symp Motiv 63:77–132

    Article  PubMed  Google Scholar 

  • Silverstein SM, Kovacs I et al (2000) Perceptual organization, the disorganization syndrome, and context processing in chronic schizophrenia. Schizophr Res 43(1):11–20

    Article  CAS  PubMed  Google Scholar 

  • Silverstein SM, Berten S et al (2009) An fMRI examination of visual integration in schizophrenia. J Integr Neurosci 8(2):175–202

    Article  PubMed  Google Scholar 

  • Silverstein SM, Keane BP et al (2012) Optimization and validation of a visual integration test for schizophrenia research. Schizophr Bull 38(1):125–134

    Article  PubMed  Google Scholar 

  • Silverstein S, Keane BP et al (2015a) Vision in schizophrenia: why it matters. Front Psychol 6:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Silverstein SM, Harms MP et al (2015b) Cortical contributions to impaired contour integration in schizophrenia. Neuropsychologia 75:469–480

    Article  PubMed  PubMed Central  Google Scholar 

  • Silverstein SM, Demmin DL et al (2017) Computational Modeling of contrast sensitivity and orientation tuning in first-episode and chronic schizophrenia. Comput Psychiatr 1:102–131

    Article  PubMed  PubMed Central  Google Scholar 

  • Silverstein SM, Keane BP et al (2020) Visual impairments in schizophrenia: their significance and unrealized clinical potential. Psychiatr Danub 32(1):72–73

    PubMed  Google Scholar 

  • Slaghuis WL (1998) Contrast sensitivity for stationary and drifting spatial frequency gratings in positive- and negative-symptom schizophrenia. J Abnorm Psychol 107(1):49–62

    Article  CAS  PubMed  Google Scholar 

  • Slaghuis WL, Thompson AK (2003) The effect of peripheral visual motion on focal contrast sensitivity in positive- and negative-symptom schizophrenia. Neuropsychologia 41(8):968–980

    Article  PubMed  Google Scholar 

  • Smeekens BA, Kane MJ (2016) Working memory capacity, mind wandering, and creative cognition: an individual-differences investigation into the benefits of controlled versus spontaneous thought. Psychol Aesthet Creat Arts 10(4):389–415

    Article  PubMed  PubMed Central  Google Scholar 

  • Somlai Z, Moustafa AA et al (2011) General functioning predicts reward and punishment learning in schizophrenia. Schizophr Res 127(1-3):131–136

    Article  PubMed  Google Scholar 

  • Soni A, Singh P et al (2017) Impact of cognition and clinical factors on functional outcome in patients with bipolar disorder. East Asian Arch Psychiatry 27(1):26–34

    CAS  PubMed  Google Scholar 

  • Spencer KM, Nestor PG et al (2003) Abnormal neural synchrony in schizophrenia. J Neurosci 23(19):7407–7411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer KM, Nestor PG et al (2004) Neural synchrony indexes disordered perception and cognition in schizophrenia. Proc Natl Acad Sci U S A 101(49):17288–17293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starc M, Murray JD et al (2017) Schizophrenia is associated with a pattern of spatial working memory deficits consistent with cortical disinhibition. Schizophr Res 181:107–116

    Article  PubMed  Google Scholar 

  • Stone M, Gabrieli JD et al (1998) Working and strategic memory deficits in schizophrenia. Neuropsychology 12:278–288

    Article  CAS  PubMed  Google Scholar 

  • Stratta P, Daneluzzo E et al (1998) Schizophrenic deficits in the processing of context. Arch Gen Psychiatry 55:186–187

    Article  CAS  PubMed  Google Scholar 

  • Stratta P, Daneluzzo E et al (2000) Processing of context information in schizophrenia: relation to clinical symptoms and WCST performance. Schizophr Res 44:57–67

    Article  CAS  PubMed  Google Scholar 

  • Strauss GP, Frank MJ et al (2011) Deficits in positive reinforcement learning and uncertainty-driven exploration are associated with distinct aspects of negative symptoms in schizophrenia. Biol Psychiatry 69(5):424–431

    Article  PubMed  Google Scholar 

  • Strauss ME, McLouth CJ et al (2013) Temporal stability and moderating effects of age and sex on CNTRaCS task performance. Schizophr Bull

    Google Scholar 

  • Strauss ME, McLouth CJ et al (2014) Temporal stability and moderating effects of age and sex on CNTRaCS task performance. Schizophr Bull 40(4):835–844

    Article  PubMed  Google Scholar 

  • Tamminga CA (2006) The neurobiology of cognition in schizophrenia. J Clin Psychiatry 67(9):e11

    Article  PubMed  Google Scholar 

  • Titone D, Ditman T et al (2004) Transitive inference in schizophrenia: impairments in relational memory organization. Schizophr Res 68(2-3):235–247

    Article  PubMed  Google Scholar 

  • Tu PC, Yang TH et al (2006) Neural correlates of antisaccade deficits in schizophrenia, an fMRI study. J Psychiatr Res 40(7):606–612

    Article  CAS  PubMed  Google Scholar 

  • Turner DC, Aitken MR et al (2004) The role of the lateral frontal cortex in causal associative learning: exploring preventative and super-learning. Cereb Cortex 14(8):872–880

    Article  PubMed  Google Scholar 

  • Tyson PJ, Laws KR et al (2004) Stability of set-shifting and planning abilities in patients with schizophrenia. Psychiatry Res 129(3):229–239

    Article  PubMed  Google Scholar 

  • Uhlhaas PJ, Silverstein SM (2005) Perceptual organization in schizophrenia spectrum disorders: empirical research and theoretical implications. Psychol Bull 131(4):618–632

    Article  PubMed  Google Scholar 

  • Uhlhaas PJ, Phillips WA et al (2005) The course and clinical correlates of dysfunctions in visual perceptual organization in schizophrenia during the remission of psychotic symptoms. Schizophr Res 75(2-3):183–192

    Article  PubMed  Google Scholar 

  • Uhlhaas PJ, Phillips WA et al (2006) Perceptual grouping in disorganized schizophrenia. Psychiatry Res 145(2-3):105–117

    Article  PubMed  Google Scholar 

  • Unsworth N, Redick TS et al (2009) Complex working memory span tasks and higher-order cognition: a latent-variable analysis of the relationship between processing and storage. Memory 17(6):635–654

    Article  PubMed  Google Scholar 

  • van den Berg R, Shin H et al (2012) Variability in encoding precision accounts for visual short-term memory limitations. Proc Natl Acad Sci U S A 109(22):8780–8785

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Snellenberg JX, Torres IJ et al (2006) Functional neuroimaging of working memory in schizophrenia: task performance as a moderating variable. Neuropsychology 20(5):497–510

    Article  PubMed  Google Scholar 

  • Wagenmakers EJ, Love J et al (2017a) Bayesian inference for psychology. Part II: example applications with JASP. Psychon Bull Rev

    Google Scholar 

  • Wagenmakers EJ, Marsman M et al (2017b) Bayesian inference for psychology. Part I: theoretical advantages and practical ramifications. Psychon Bull Rev

    Google Scholar 

  • Wallis JD (2007) Orbitofrontal cortex and its contribution to decision-making. Annu Rev Neurosci 30:31–56

    Article  CAS  PubMed  Google Scholar 

  • Waltz JA, Gold JM (2007) Probabilistic reversal learning impairments in schizophrenia: further evidence of orbitofrontal dysfunction. Schizophr Res 93(1-3):296–303

    Article  PubMed  PubMed Central  Google Scholar 

  • Waltz JA, Frank MJ et al (2007) Selective reinforcement learning deficits in schizophrenia support predictions from computational models of striatal-cortical dysfunction. Biol Psychiatry

    Google Scholar 

  • Waltz JA, Frank MJ et al (2011) Altered probabilistic learning and response biases in schizophrenia: behavioral evidence and neurocomputational modeling. Neuropsychology 25(1):86–97

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei Z, Wang XJ et al (2012) From distributed resources to limited slots in multiple-item working memory: a spiking network model with normalization. J Neurosci 32(33):11228–11240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weickert TW, Terrazas A et al (2002) Habit and skill learning in schizophrenia: evidence of normal striatal processing with abnormal cortical input. Learn Mem 9(6):430–442

    Article  PubMed  PubMed Central  Google Scholar 

  • Weickert TW, Goldberg TE et al (2009) Neural correlates of probabilistic category learning in patients with schizophrenia. J Neurosci 29(4):1244–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiler JA, Bellebaum C et al (2009) Impairment of probabilistic reward-based learning in schizophrenia. Neuropsychology 23(5):571–580

    Article  PubMed  Google Scholar 

  • Weiss AP, Schacter DL et al (2003) Impaired hippocampal recruitment during normal modulation of memory performance in schizophrenia. Biol Psychiatry 53:48–55

    Article  PubMed  Google Scholar 

  • Weiss EM, Hofer A et al (2004) Brain activation patterns during a verbal fluency test-a functional MRI study in healthy volunteers and patients with schizophrenia. Schizophr Res 70(2-3):287–291

    Article  PubMed  Google Scholar 

  • Wilde OM, Bour L et al (2007) Antisaccade deficit is present in young first-episode patients with schizophrenia but not in their healthy young siblings. Psychol Med:1–5

    Google Scholar 

  • Yeap S, Kelly SP et al (2006) Early visual sensory deficits as endophenotypes for schizophrenia: high-density electrical mapping in clinically unaffected first-degree relatives. Arch Gen Psychiatry 63(11):1180–1188

    Article  PubMed  Google Scholar 

  • Yoon JH, Maddock RJ et al (2010) GABA concentration is reduced in visual cortex in schizophrenia and correlates with orientation-specific surround suppression. J Neurosci 30(10):3777–3781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaragoza Domingo S, Bobes J et al (2015) Cognitive performance associated to functional outcomes in stable outpatients with schizophrenia. Schizophr Res Cogn 2(3):146–158

    Article  PubMed  PubMed Central  Google Scholar 

  • Zenger-Landolt B, Heeger DJ (2003) Response suppression in v1 agrees with psychophysics of surround masking. J Neurosci 23(17):6884–6893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Luck SJ (2008) Discrete fixed-resolution representations in visual working memory. Nature 453(7192):233–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang WN, Chang SH et al (2013) The neural correlates of reward-related processing in major depressive disorder: a meta-analysis of functional magnetic resonance imaging studies. J Affect Disord 151(2):531–539

    Article  PubMed  Google Scholar 

  • Zhang R, Picchioni M et al (2016) Working memory in unaffected relatives of patients with schizophrenia: a meta-analysis of functional magnetic resonance imaging studies. Schizophr Bull 42(4):1068–1077

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deanna M. Barch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barch, D.M. et al. (2022). Cognitive [Computational] Neuroscience Test Reliability and Clinical Applications for Serious Mental Illness (CNTRaCS) Consortium: Progress and Future Directions. In: Barch, D.M., Young, J.W. (eds) Cognitive Functioning in Schizophrenia: Leveraging the RDoC Framework. Current Topics in Behavioral Neurosciences, vol 63. Springer, Cham. https://doi.org/10.1007/7854_2022_391

Download citation

Publish with us

Policies and ethics