Skip to main content

Isolation of Primary Avian Osteocytes

  • Protocol
  • First Online:
Bone Research Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 816))

Abstract

Osteocytes can be isolated from chicken calvaria using mild EDTA treatment alternating with collagenase treatment. The cell population obtained contains both osteoblasts and osteocytes. A pure population of osteocytes is obtained following immunomagnetic separation with the osteocyte-specific monoclonal antibody MAb OB7.3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Doty, S. B. (1981) Morphological evidence of gap junctions between bone cells. Calcif. Tissue Int. 33, 509–512.

    Article  PubMed  CAS  Google Scholar 

  2. Klein-Nulend, J., and Bonewald, L. F. (2008) The osteocyte, in Principles of Bone Biology (Bilezikian, J. P., Raisz, L. G., and Martin, T. J., eds.), Academic Press, San Diego, California, pp. 153–174.

    Chapter  Google Scholar 

  3. Westbroek, I., De Rooij, K. E., and Nijweide, P. J. (2002) Osteocyte-specific monoclonal antibody MAb OB7.3 is directed against Phex protein. J. Bone Miner. Res. 17, 845–853.

    Google Scholar 

  4. Inoue, K., Mikuni-Takagaki, Y., Oikawa, K., Itoh, T., Inada, M., Noguchi, T., Park, J. S., Onodera, T., Krane, S. M., Noda, M., and Itohara, S. (2006) A crucial role for matrix metalloproteinase 2 in osteocytic canalicular formation and bone metabolism. J. Biol. Chem. 281, 33814–33824.

    Article  PubMed  CAS  Google Scholar 

  5. David, V., Martin, A., Hedge, A. M., and Rowe, P. S. N. (2009) Matrix extracellular phosphoglycoprotein (MEPE) is a new bone renal hormone and vascularization modulator. Endocrinology 150, 4012–4023.

    Article  PubMed  CAS  Google Scholar 

  6. Holmbeck, K., Bianco, P., Pidoux, I., Inoue, S., Billinghurst, R. C., Wu, W., Chrysovergis, K., Yamada, S., Birkedal-Hansen, H., and Poole, A. R. (2005) The metalloproteinase MT1-MMP is required for normal development and maintenance of osteocyte processes in bone. J. Cell Sci. 118, 147–156.

    Article  PubMed  CAS  Google Scholar 

  7. Van der Plas, A., Aarden, E. M., Feijen, J. H. M., de Boer, A. H., Wiltink, A., Alblas, M. J., de Leij, L., and Nijweide, P. J. (1994) Characteristics and properties of osteocytes in culture. J. Bone Miner. Res. 9, 1697–1704.

    Article  PubMed  Google Scholar 

  8. Hefley, T. J. (1987) Utilization of FPLC-purified bacterial collagenase for the isolation of cells from bone. J. Bone Miner. Res. 2, 505–516.

    Article  PubMed  CAS  Google Scholar 

  9. Nijweide, P. J., and Mulder, R. J. P. (1986) Identification of osteocytes in osteoblast-like cell cultures using a monoclonal antibody specifically directed against osteocytes. Histochemistry 84, 342–347.

    Article  PubMed  CAS  Google Scholar 

  10. Van der Plas, A., and Nijweide, P. J. (1992) Isolation and purification of osteocytes. J. Bone Miner. Res. 7, 389–396.

    Article  PubMed  Google Scholar 

  11. Mikuni-Takagaki, Y., Kakai, Y., Satoyoshi, M., Kawano, E., Suxzuki, Y., Kawase, T., and Saito, S. (1995) Matrix mineralization and the differentiation of osteocyte-like cells in culture. J. Bone Miner. Res. 10, 231–242.

    Article  PubMed  CAS  Google Scholar 

  12. Nijweide, P. J., van der Plas, A., and Olthof, A. A. (1988) Osteoblastic differentiation, in Cell and Molecular Biology of Vertebrate Hard Tissues. Ciba Foundation Symposium 136 (Evered, D. and Harnett, S., eds.), John Wiley & Sons, Chichester, UK, pp. 61–77.

    Google Scholar 

  13. Bruder, S. P., and Caplan, A. I. (1990) Terminal differentiation of osteogenic cells in the embryonic chick tibia is revealed by a monoclonal antibody against osteocytes. Bone 11, 189–198.

    Article  PubMed  CAS  Google Scholar 

  14. Wetterwald, A., Hoffstetter, W., Cecchini, M. G., Lanske, B., Wagner, C., Fleisch, H., and Atkinson, M. (1996) Characterization and cloning of the E11 antigen, a marker expressed by rat osteoblasts and osteocytes. Bone 18, 125–132.

    Article  PubMed  CAS  Google Scholar 

  15. Tanaka-Kamioka, K., Kamioka, H., Ris, H., and Lim, S. S. (1998) Osteocyte shape is dependent on actin filaments and osteocyte processes are unique actin-rich projections. J. Bone Miner. Res. 13, 1555–1568.

    Article  PubMed  CAS  Google Scholar 

  16. Aarden, E. M., Wassenaar, A. M., Alblas, M. J., and Nijweide, P. J. (1996) Immunocytochemical demonstration of extracellular matrix proteins in isolated osteocytes. Histochem. Cell Biol. 106, 495–501.

    Article  PubMed  CAS  Google Scholar 

  17. Petersen, D. N., Tkalcevic, G. T., Mansolf, A. L., Rivera-Gonzalez, R., and Brown, T. A. (2000) Identification of osteoblast/osteocyte factor 45 (OF45), a bone-specific cDNA encoding an RGD-containing protein that is highly expressed in osteoblasts and osteocytes. J. Biol. Chem. 17, 36172–36180.

    Article  Google Scholar 

  18. Toyosawa, S., Shintani, S., Fujiwara, T., Ooshima, T., Sato, A., Ijuhin, N., and Komori, T. (2001) Dentin matrix protein 1 is predominantly expressed in chicken and rat osteocytes but not in osteoblasts. J. Bone Miner. Res. 16, 2017–2026.

    Article  PubMed  CAS  Google Scholar 

  19. Ruchon, A. F., Tenenhouse, H. S., Marcinkiewicz, M., Siegfried, G., Aubin, J. E., DesGroseillers, L., Crine, P., and Boileau, G. (2000) Developmental expression and tissue distribution of Phex protein: effect of the Hyp mutation and relationship to bone markers. J. Bone Miner. Res. 15, 1440–1450.

    Article  PubMed  CAS  Google Scholar 

  20. Poole, K. E., van Bezooijen, R. L., Loveridge, N., Hamersma, H., Papapoulos, S. E., Löwik, C. W., and Reeve, J. (2005) Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J. 19, 1842–1844.

    PubMed  CAS  Google Scholar 

  21. Zhang, K., Barragan-Adjemian, C., Ye, L., Kotha, S., Dallas, M., Lu, Y., Zhao, S., Harris, M., Harris, S. E., Feng, J. Q., and Bonewald, L. F. (2006) E11/gp38 selective expression in osteocytes: regulation by mechanical strain and role in dendrite elongation. Mol. Cell Biol. 26, 4539–4552.

    Article  PubMed  CAS  Google Scholar 

  22. Nakamura, H., and Ozawa, H. (1996) Immunolocalization of CD44 and the ERM family in bone cells of mouse tibiae. J. Bone Miner. Res. 11, 1715–1722.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cor M. Semeins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Semeins, C.M., Bakker, A.D., Klein-Nulend, J. (2012). Isolation of Primary Avian Osteocytes. In: Helfrich, M., Ralston, S. (eds) Bone Research Protocols. Methods in Molecular Biology, vol 816. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-415-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-415-5_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-414-8

  • Online ISBN: 978-1-61779-415-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics