Skip to main content

Transposable Elements as Plasmid-Based Vectors for Long-Term Gene Transfer into Tumors

  • Protocol
  • First Online:
Gene Therapy of Cancer

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 542))

Summary

A primary limitation to using nonviral vectors for cancer gene therapy is transient expression of the therapeutic gene. Even when the ultimate goal is tumor cell death, a minimum threshold of gene expression is required to kill tumor cells by direct or indirect mechanisms. It has been shown that transposable elements can significantly enhance the duration of gene expression when plasmid DNA vectors are used to transfect tumor or tumor-associated stroma. Much like a retrovirus, transposon-based plasmid vectors achieve integration into the genome, and thereby sustain transgene expression, which is especially important in actively mitotic cells such as tumor cells. Herein we briefly discuss the different transposons available for gene therapy applications, and provide a detailed protocol for nonviral transposon-based gene delivery to solid experimental tumors in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Lundstrom, K. (2003) Latest development in viral vectors for gene therapy. Trends Biotechnol 21, 117–22.

    Article  PubMed  CAS  Google Scholar 

  2. Pathak, V.K. and H.M. Temin (1990) Broad spectrum of in vivo forward mutations, hypermutations, and mutational hotspots in a retroviral shuttle vector after a single replication cycle: substitutions, frameshifts, and hypermutations. Proc Natl Acad Sci USA 87, 6019–23.

    Article  PubMed  CAS  Google Scholar 

  3. Schroder, A.R., P. Shinn, H. Chen, C. Berry, J.R. Ecker, and F. Bushman (2002) HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110, 521–9.

    Article  PubMed  CAS  Google Scholar 

  4. Bushman, F.D. (2003) Targeting survival: integration site selection by retroviruses and LTR-retrotransposons. Cell 115, 135–8.

    Article  PubMed  CAS  Google Scholar 

  5. Hacein-Bey-Abina, S., C. Von Kalle, M. Schmidt, et al. (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302, 415–9.

    Article  PubMed  CAS  Google Scholar 

  6. Izsvak, Z. and Z. Ivics (2004) Sleeping beauty transposition: biology and applications for molecular therapy. Mol Ther 9, 147–56.

    Article  PubMed  CAS  Google Scholar 

  7. Ivics, Z. and Z. Izsvak (2006) Transposons for gene therapy! Curr Gene Ther 6, 593–607.

    Article  PubMed  CAS  Google Scholar 

  8. Ivics, Z., P.B. Hackett, R.H. Plasterk, and Z. Izsvak (1997) Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91, 501–10.

    Article  PubMed  CAS  Google Scholar 

  9. Miskey, C., Z. Izsvak, R.H. Plasterk, and Z. Ivics (2003) The Frog Prince: a reconstructed transposon from Rana pipiens with high transpositional activity in vertebrate cells. Nucleic Acids Res 31, 6873–81.

    Article  PubMed  CAS  Google Scholar 

  10. Wilson, M.H., C.J. Coates, and A.L. George, Jr. (2007) PiggyBac transposon-mediated gene transfer in human cells. Mol Ther 15, 139–45.

    Article  PubMed  CAS  Google Scholar 

  11. Balciunas, D., K.J. Wangensteen, A. Wilber, et al. (2006) Harnessing a high cargo-capacity transposon for genetic applications in vertebrates. PLoS Genet 2, e169.

    Article  PubMed  Google Scholar 

  12. Calos, M.P. (2006) The phiC31 integrase system for gene therapy. Curr Gene Ther 6, 633–45.

    Article  PubMed  CAS  Google Scholar 

  13. Mikkelsen, J.G., S.R. Yant, L. Meuse, Z. Huang, H. Xu, and M.A. Kay (2003) Helper-independent Sleeping Beauty transposon-transposase vectors for efficient nonviral gene delivery and persistent gene expression in vivo. Mol Ther 8, 654–65.

    Article  PubMed  CAS  Google Scholar 

  14. Yant, S.R., L. Meuse, W. Chiu, Z. Ivics, Z. Izsvak, and M.A. Kay (2000) Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system. Nat Genet 25, 35–41.

    Article  PubMed  CAS  Google Scholar 

  15. Ortiz-Urda, S., B. Thyagarajan, D.R. Keene, Q. Lin, M. Fang, M.P. Calos, and P.A. Khavari (2002) Stable nonviral genetic correction of inherited human skin disease. Nat Med 8, 1166–70.

    Article  PubMed  CAS  Google Scholar 

  16. Wu, A., S. Oh, K. Ericson, et al. (2007) Transposon-based interferon gamma gene transfer overcomes limitations of episomal plasmid for immunogene therapy of glioblastoma. Cancer Gene Ther 14, 550–60.

    Article  PubMed  CAS  Google Scholar 

  17. Ohlfest, J.R., P.D. Lobitz, S.G. Perkinson, and D.A. Largaespada (2004) Integration and long-term expression in xenografted human glioblastoma cells using a plasmid-based transposon system. Mol Ther 10, 260–8.

    Article  PubMed  CAS  Google Scholar 

  18. Wu, S.C., Y.J. Meir, C.J. Coates, A.M. Handler, P. Pelczar, S. Moisyadi, and J.M. Kaminski (2006) piggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2, and Mos1 in mammalian cells. Proc Natl Acad Sci USA 103, 15008–13.

    Article  PubMed  CAS  Google Scholar 

  19. Liu, J., I. Jeppesen, K. Nielsen, and T.G. Jensen (2006) Phi c31 integrase induces chromosomal aberrations in primary human fibroblasts. Gene Ther 13, 1188–90.

    Article  PubMed  CAS  Google Scholar 

  20. Ehrhardt, A., J.A. Engler, H. Xu, A.M. Cherry, and M.A. Kay (2006) Molecular analysis of chromosomal rearrangements in mammalian cells after phiC31-mediated integration. Hum Gene Ther 17, 1077–94.

    Article  PubMed  CAS  Google Scholar 

  21. Vigdal, T.J., C.D. Kaufman, Z. Izsvak, D.F. Voytas, and Z. Ivics (2002) Common physical properties of DNA affecting target site selection of sleeping beauty and other Tc1/mariner transposable elements. J Mol Biol 323, 441–52.

    Article  PubMed  CAS  Google Scholar 

  22. Yant, S.R., X. Wu, Y. Huang, B. Garrison, S.M. Burgess, and M.A. Kay (2005) High-resolution genome-wide mapping of transposon integration in mammals. Mol Cell Biol 25, 2085–94.

    Article  PubMed  CAS  Google Scholar 

  23. Walisko, O., A. Schorn, F. Rolfs, A. Devaraj, C. Miskey, Z. Izsvak, and Z. Ivics (2008) Transcriptional activities of the Sleeping Beauty transposon and shielding its genetic cargo with insulators. Mol Ther 16, 359–69.

    Article  PubMed  CAS  Google Scholar 

  24. Yant, S.R., Y. Huang, B. Akache, and M.A. Kay (2007) Site-directed transposon integration in human cells. Nucleic Acids Res 35, e50.

    Article  PubMed  Google Scholar 

  25. Ivics, Z., A. Katzer, E.E. Stuwe, D. Fiedler, S. Knespel, and Z. Izsvak (2007) Targeted Sleeping Beauty transposition in human cells. Mol Ther 15, 1137–44.

    PubMed  CAS  Google Scholar 

  26. Maragathavally, K.J., J.M. Kaminski, and C.J. Coates (2006) Chimeric Mos1 and piggyBac transposases result in site-directed integration. FASEB J 20, 1880–2.

    Article  PubMed  CAS  Google Scholar 

  27. Laha, T., A. Loukas, S. Wattanasatitarpa, et al. (2007) The bandit, a new DNA transposon from a hookworm-possible horizontal genetic transfer between host and parasite. PLoS Negl Trop Dis 1, e35.

    Article  PubMed  Google Scholar 

  28. Lander, E.S., L.M. Linton, B. Birren, et al. (2001) Initial sequencing and analysis of the human genome. Nature 409, 860–921.

    Article  PubMed  CAS  Google Scholar 

  29. Ohlfest, J.R., A.B. Freese, and D.A. Largaespada (2005) Nonviral vectors for cancer gene therapy: prospects for integrating vectors and combination therapies. Curr Gene Ther 5, 629–41.

    Article  PubMed  CAS  Google Scholar 

  30. Ohlfest, J.R., Z.L. Demorest, Y. Motooka, et al. (2005) Combinatorial antiangiogenic gene therapy by nonviral gene transfer using the sleeping beauty transposon causes tumor regression and improves survival in mice bearing intracranial human glioblastoma. Mol Ther 12, 778–88.

    Article  PubMed  CAS  Google Scholar 

  31. Oh, S., G.E. Pluhar, E.A. McNeil, et al. (2007) Efficacy of nonviral gene transfer in the canine brain. J Neurosurg 107, 136–44.

    Article  PubMed  CAS  Google Scholar 

  32. Ohana, P., P. Schachter, B. Ayesh, et al. (2005) Regulatory sequences of H19 and IGF2 genes in DNA-based therapy of colorectal rat liver metastases. J Gene Med 7, 366–74.

    Article  PubMed  CAS  Google Scholar 

  33. Yant, S.R., A. Ehrhardt, J.G. Mikkelsen, L. Meuse, T. Pham, and M.A. Kay (2002) Transposition from a gutless adeno-transposon vector stabilizes transgene expression in vivo. Nat Biotechnol 20, 999–1005.

    Article  PubMed  CAS  Google Scholar 

  34. Bowers, W.J., M.A. Mastrangelo, D.F. Howard, H.A. Southerland, K.A. Maguire-Zeiss, and H.J. Federoff (2006) Neuronal precursor-restricted transduction via in utero CNS gene delivery of a novel bipartite HSV amplicon/transposase hybrid vector. Mol Ther 13, 580–8.

    Article  PubMed  CAS  Google Scholar 

  35. Raghavan, R., M.L. Brady, M.I. Rodriguez-Ponce, A. Hartlep, C. Pedain, and J.H. Sampson (2006) Convection-enhanced delivery of therapeutics for brain disease, and its optimization. Neurosurg Focus 20, E12.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Ohlfest .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ohlfest, J., Ivics, Z., Izsvák, Z. (2009). Transposable Elements as Plasmid-Based Vectors for Long-Term Gene Transfer into Tumors. In: Walther, W., Stein, U. (eds) Gene Therapy of Cancer. Methods in Molecular Biology™, vol 542. Humana Press. https://doi.org/10.1007/978-1-59745-561-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-561-9_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-85-5

  • Online ISBN: 978-1-59745-561-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics