Skip to main content

Analysis of HSV Oncolytic Virotherapy in Organotypic Cultures

  • Protocol
  • First Online:
Gene Therapy of Cancer

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 542))

Summary

Tumor-selective replication-competent viral vectors, such as oncolytic herpes simplex virus (HSV) type I (HSV-1), represent an attractive strategy for tumor-based therapies because these viruses can replicate and spread in situ exhibiting cytopathic effects through direct oncolytic activity. These lytic viruses offer a distinct advantage over other forms of cancer therapies in that they are self-perpetuating and can spread not only in the tumor itself, but also to distant micrometastases. Translational studies aimed at identifying novel virotherapies for human cancers are incumbent upon the appropriate experimental models. While animal models are the preferred choice for efficacy studies of HSV virotherapy, we have developed a novel complementary approach toward assessing the effectiveness of oncolytic HSV therapy in both brain and prostate cancers. This experimental model takes advantage of previously published work in which human prostate cancer biopsies and rodent brain slices can be easily maintained ex vivo. The advantage of these systems is that the three-dimensional structure remains intact. Thus, all of the factors that may affect viral entry and replication, such as cell–cell and cell–matrix interactions, and interstitial fluid within this three-dimensional milieu remain preserved. Moreover, with respect to the brain, this system offers the advantage of direct access to brain cells, such as microglia and astrocytes, and circumvents the problems associated with the presence of the blood–brain barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Fulci G, Chiocca EA. (2003) Oncolytic viruses for the therapy of brain tumors and other solid malignancies: a review. Front Biosci 8:e346–60.

    Article  Google Scholar 

  2. Varghese S, Rabkin SD, Nielsen GP, MacGarvey U, Liu R, Martuza RL. (2007) Systemic therapy of spontaneous prostate cancer in transgenic mice with oncolytic herpes simplex viruses. Cancer Res 67:9371–9.

    Article  PubMed  CAS  Google Scholar 

  3. Varghese S, Rabkin SD, Nielsen PG, Wang W, Martuza RL. (2006) Systemic oncolytic herpes virus therapy of poorly immunogenic prostate cancer metastatic to lung. Clin Cancer Res 12:2919–27.

    Article  PubMed  CAS  Google Scholar 

  4. Liu R, Varghese S, Rabkin SD. (2005) Oncolytic herpes simplex virus vector therapy of breast cancer in C3(1)/SV40 T-antigen transgenic mice. Cancer Res 65:1532–40.

    Article  PubMed  CAS  Google Scholar 

  5. McKee TD, Grandi P, Mok W, . (2006) Degradation of fibrillar collagen in a human melanoma xenograft improves the efficacy of an oncolytic herpes simplex virus vector. Cancer Res 66:2509–13.

    Article  PubMed  CAS  Google Scholar 

  6. Ganesh S, Gonzalez Edick M, Idamakanti N, . (2007) Relaxin-expressing, fiber chimeric oncolytic adenovirus prolongs survival of tumor-bearing mice. Cancer Res 67:4399–407.

    Article  PubMed  CAS  Google Scholar 

  7. Ikeda K, Ichikawa T, Wakimoto H, . (1999) Oncolytic virus therapy of multiple tumors in the brain requires suppression of innate and elicited antiviral responses. Nat Med 5:881–7.

    Article  PubMed  CAS  Google Scholar 

  8. Ikeda K, Wakimoto H, Ichikawa T, . (2000) Complement depletion facilitates the infection of multiple brain tumors by an intravascular, replication-conditional herpes simplex virus mutant. J Virol 74:4765–75.

    Article  PubMed  CAS  Google Scholar 

  9. Hirasawa K, Nishikawa SG, Norman KL, . (2003) Systemic reovirus therapy of metastatic cancer in immune-competent mice. Cancer Res 63:348–53.

    PubMed  CAS  Google Scholar 

  10. Balachandran S, Barber GN. (2004) Defective translational control facilitates vesicular stomatitis virus oncolysis. Cancer Cell 5:51–65.

    Article  PubMed  CAS  Google Scholar 

  11. Balachandran S, Thomas E, Barber GN. (2004) A FADD-dependent innate immune mechanism in mammalian cells. Nature 432401–5.

    Google Scholar 

  12. Wakimoto H, Fulci G, Tyminski E, Chiocca EA. (2004) Altered expression of antiviral cytokine mRNAs associated with cyclophosphamide's enhancement of viral oncolysis. Gene Ther 11:214–23.

    Article  PubMed  CAS  Google Scholar 

  13. Fulci G, Breymann L, Gianni D, . (2006) Cyclophosphamide enhances glioma virotherapy by inhibiting innate immune responses. Proc Natl Acad Sci USA 103:12873–8.

    Article  PubMed  CAS  Google Scholar 

  14. Fulci G, Dmitrieva N, Gianni D, . (2007) Depletion of peripheral macrophages and brain microglia increases brain tumor titers of oncolytic viruses. Cancer Res 67:9398–406.

    Article  PubMed  CAS  Google Scholar 

  15. Lamfers ML, Fulci G, Gianni D, . (2006) Cyclophosphamide increases transgene expression mediated by an oncolytic adenovirus in glioma-bearing mice monitored by bioluminescence imaging. Mol Ther 14:779–88.

    Article  PubMed  CAS  Google Scholar 

  16. Iankov ID, Pandey M, Harvey M, Griesmann GE, Federspiel MJ, Russell SJ. (2006) Immunoglobulin g antibody-mediated enhancement of measles virus infection can bypass the protective antiviral immune response. J Virol 80:8530–40.

    Article  PubMed  CAS  Google Scholar 

  17. Power AT, Wang J, Falls TJ, . (2007) Carrier cell-based delivery of an oncolytic virus circumvents antiviral immunity. Mol Ther 15:123–30.

    Article  PubMed  CAS  Google Scholar 

  18. Li H, Zeng Z, Fu X, Zhang X. (2007) Coadministration of a herpes simplex virus-2 based oncolytic virus and cyclophosphamide produces a synergistic antitumor effect and enhances tumor-specific immune responses. Cancer Res 67:7850–5.

    Article  PubMed  CAS  Google Scholar 

  19. Nevalainen MT, Harkonen PL, Valve EM, Ping W, Nurmi M, Martikainen PM. (1993) Hormone regulation of human prostate in organ culture. Cancer Res 53:5199–207.

    PubMed  CAS  Google Scholar 

  20. Shinmura Y, Kosugi I, Kaneta M, Tsutsui Y. (1999) Migration of virus-infected neuronal cells in cerebral slice cultures of developing mouse brains after in vitro infection with murine cytomegalovirus. Acta Neuropathol (Berlin) 98:590–6.

    Article  CAS  Google Scholar 

  21. Jung S, Ackerley C, Ivanchuk S, Mondal S, Becker LE, Rutka JT. (2001) Tracking the invasiveness of human astrocytoma cells by using green fluorescent protein in an organotypical brain slice model. J Neurosurg 94:80–9.

    Article  PubMed  CAS  Google Scholar 

  22. de Bouard S, Christov C, Guillamo JS, et al. (2002) Invasion of human glioma biopsy specimens in cultures of rodent brain slices: a quantitative analysis. J Neurosurg 97:169–76.

    Article  PubMed  Google Scholar 

  23. Markovic DS, Glass R, Synowitz M, Rooijen N, Kettenmann H. (2005) Microglia stimulate the invasiveness of glioma cells by increasing the activity of metalloprotease-2. J Neuropathol Exp Neurol 64:754–62.

    Article  PubMed  CAS  Google Scholar 

  24. Belmadani A, Tran PB, Ren D, Miller RJ. (2006) Chemokines regulate the migration of neural progenitors to sites of neuroinflammation. J Neurosci 26:3182–91.

    Article  PubMed  CAS  Google Scholar 

  25. Goldstein DJ, Weller SK. (1988) An ICP6::lacZ insertional mutagen is used to demonstrate that the UL52 gene of herpes simplex virus type 1 is required for virus growth and DNA synthesis. J Virol 62:2970–7.

    PubMed  CAS  Google Scholar 

  26. Todo T, Martuza RL, Rabkin SD, Johnson PA. (2001) Oncolytic herpes simplex virus vector with enhanced MHC class I presentation and tumor cell killing. Proc Natl Acad Sci, USA 98:6396–401.

    Article  PubMed  CAS  Google Scholar 

  27. Del Duca D, Werbowetski T, Del Maestro RF. (2004) Spheroid preparation from hanging drops: characterization of a model of brain tumor invasion. J Neurooncol 67:295–303.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a US Department of Defense (DOD) grant W81XWH-05-1-0367 to Brent J. Passer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulia Fulci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fulci, G., Passer, B. (2009). Analysis of HSV Oncolytic Virotherapy in Organotypic Cultures. In: Walther, W., Stein, U. (eds) Gene Therapy of Cancer. Methods in Molecular Biology™, vol 542. Humana Press. https://doi.org/10.1007/978-1-59745-561-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-561-9_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-85-5

  • Online ISBN: 978-1-59745-561-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics