Skip to main content

Designing Adenoviral Vectors for Tumor-Specific Targeting

  • Protocol
  • First Online:
Gene Therapy of Cancer

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 542))

Summary

Adenovirus provides an attractive candidate tool to destroy tumor cells. However, to fulfill the expectations, selective targeting of tumor cells is mandatory. This chapter reviews critical aspects in the design of tumor-targeted adenovirus vectors and oncolytic adenoviruses. The review focuses on genetic modifications of capsid and regulatory genes that can enhance the therapeutic index of these agents after systemic administration. Selectivity will be considered at different levels: biodistribution selectivity of the injected virus particles, transductional selectivity defined as cell receptor interactions and trafficking that lead to virus gene expression, transcriptional selectivity by means of tumor-selective promoters, and mutation-rescue selectivity to achieve selective replication. Proper assays to analyze selectivity at these different levels are discussed. Finally, mutations and transgenes that can enhance the potency and efficacy of tumor-targeted adenoviruses from virocentric or immunocentric points of view will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Leopold PL, Crystal RG. (2007) Intracellular trafficking of adenovirus: many means to many ends. Adv Drug Deliv Rev 59:810–21.

    Article  PubMed  CAS  Google Scholar 

  2. Jiang H, Gomez-Manzano C, Aoki H, et al. (2007) Examination of the therapeutic potential of Delta-24-RGD in brain tumor stem cells: role of autophagic cell death. J Natl Cancer Inst 99:1410–4.

    Article  PubMed  CAS  Google Scholar 

  3. Ito H, Aoki H, Kuhnel F, et al. (2006) Autophagic cell death of malignant glioma cells induced by a conditionally replicating adenovirus. J Natl Cancer Inst 98:625–36.

    Article  PubMed  CAS  Google Scholar 

  4. Volpers C, Kochanek S. (2004) Adenoviral vectors for gene transfer and therapy. J Gene Med 6 Suppl 1:S164–71.

    Article  PubMed  CAS  Google Scholar 

  5. Alemany R. (2007) Cancer selective adenoviruses. Mol Aspects Med 28:42–58.

    Article  PubMed  CAS  Google Scholar 

  6. Kreppel F, Kochanek S. (2008) Modification of adenovirus gene transfer vectors with synthetic polymers: a scientific review and technical guide. Mol Ther 16:16–29.

    Article  PubMed  CAS  Google Scholar 

  7. Lievens J, Snoeys J, Vekemans K, et al. (2004) The size of sinusoidal fenestrae is a critical determinant of hepatocyte transduction after adenoviral gene transfer. Gene Ther 11:1523–31.

    Article  PubMed  CAS  Google Scholar 

  8. Bernt KM, Ni S, Gaggar A, Li ZY, Shayakhmetov DM, Lieber A. (2003) The effect of sequestration by nontarget tissues on anti-tumor efficacy of systemically applied, conditionally replicating adenovirus vectors. Mol Ther 8:746–55.

    Article  PubMed  CAS  Google Scholar 

  9. Shayakhmetov DM, Li ZY, Ni S, Lieber A. (2004) Analysis of adenovirus sequestration in the liver, transduction of hepatic cells, and innate toxicity after injection of fiber-modified vectors. J Virol 78:5368–81.

    Article  PubMed  CAS  Google Scholar 

  10. Morrissey RE, Horvath C, Snyder EA, Patrick J, MacDonald JS. (2002) Rodent nonclinical safety evaluation studies of SCH 58500, an adenoviral vector for the p53 gene. Toxicol Sci 65:266–75.

    Article  PubMed  CAS  Google Scholar 

  11. Morrissey RE, Horvath C, Snyder EA, et al. (2002) Porcine toxicology studies of SCH 58500, an adenoviral vector for the p53 gene. Toxicol Sci 65:256–65.

    Article  PubMed  CAS  Google Scholar 

  12. Cichon G, Schmidt HH, Benhidjeb T, et al. (1999) Intravenous administration of recombinant adenoviruses causes thrombocytopenia, anemia and erythroblastosis in rabbits. J Gene Med 1:360–71.

    Article  PubMed  CAS  Google Scholar 

  13. Lyons M, Onion D, Green NK, et al. (2006) Adenovirus type 5 interactions with human blood cells may compromise systemic delivery. Mol Ther 14:118–28.

    Article  PubMed  CAS  Google Scholar 

  14. Nicol CG, Graham D, Miller WH, et al. (2004) Effect of adenovirus serotype 5 fiber and penton modifications on in vivo tropism in rats. Mol Ther 10:344–54.

    Article  PubMed  CAS  Google Scholar 

  15. Steiner I, Aebi C, Ridolfi Luthy A, Wagner B, Leibundgut K. (2008) Fatal adenovirus hepatitis during maintenance therapy for childhood acute lymphoblastic leukemia. Pediatr Blood Cancer 50(3):647–9.

    Article  PubMed  Google Scholar 

  16. Hamid O, Varterasian ML, Wadler S, et al. (2003) Phase II trial of intravenous CI-1042 in patients with metastatic colorectal cancer. J Clin Oncol 21:1498–504.

    Article  PubMed  CAS  Google Scholar 

  17. Connelly S. (1999) Adenoviral vectors for liver-directed gene therapy. Curr Opin Mol Ther 1:565–72.

    PubMed  CAS  Google Scholar 

  18. Stone D, Liu Y, Shayakhmetov D, Li ZY, Ni S, Lieber A. (2007) Adenovirus-platelet interaction in blood causes virus sequestration to the reticuloendothelial system of the liver. J Virol 81:4866–71.

    Article  PubMed  CAS  Google Scholar 

  19. Baker AH, McVey JH, Waddington SN, Di Paolo NC, Shayakhmetov DM. (2007) The influence of blood on in vivo adenovirus bio-distribution and transduction. Mol Ther 15:1410–6.

    Article  PubMed  CAS  Google Scholar 

  20. Cotter MJ, Zaiss AK, Muruve DA. (2005) Neutrophils interact with adenovirus vectors via Fc receptors and complement receptor 1. J Virol 79:14622–31.

    Article  PubMed  CAS  Google Scholar 

  21. Shayakhmetov DM, Gaggar A, Ni S, Li ZY, Lieber A. (2005) Adenovirus binding to blood factors results in liver cell infection and hepatotoxicity. J Virol 79:7478–91.

    Article  PubMed  CAS  Google Scholar 

  22. Parker AL, Waddington SN, Nicol CG, et al. (2006) Multiple vitamin K-dependent coagulation zymogens promote adenovirus-mediated gene delivery to hepatocytes. Blood 108:2554–61.

    Article  PubMed  CAS  Google Scholar 

  23. van Beusechem VW, van Rijswijk AL, van Es HH, Haisma HJ, Pinedo HM, Gerritsen WR. (2000) Recombinant adenovirus vectors with knobless fibers for targeted gene transfer. Gene Ther 7:1940–6.

    Article  PubMed  CAS  Google Scholar 

  24. Krasnykh V, Belousova N, Korokhov N, Mikheeva G, Curiel DT. (2001) Genetic targeting of an adenovirus vector via replacement of the fiber protein with the phage T4 fibritin. J Virol 75:4176–83.

    Article  PubMed  CAS  Google Scholar 

  25. Magnusson MK, Hong SS, Boulanger P, Lindholm L. (2001) Genetic retargeting of adenovirus: novel strategy employing “deknobbing” of the fiber. J Virol 75:7280–9.

    Article  PubMed  CAS  Google Scholar 

  26. Mercier GT, Campbell JA, Chappell JD, Stehle T, Dermody TS, Barry MA. (2004) A chimeric adenovirus vector encoding reovirus attachment protein sigma1 targets cells expressing junctional adhesion molecule 1. Proc Natl Acad Sci USA 101:6188–93.

    Article  PubMed  CAS  Google Scholar 

  27. Henning P, Lundgren E, Carlsson M, et al. (2006) Adenovirus type 5 fiber knob domain has a critical role in fiber protein synthesis and encapsidation. J Gen Virol 87:3151–60.

    Article  PubMed  CAS  Google Scholar 

  28. Nicklin SA, Wu E, Nemerow GR, Baker AH. (2005) The influence of adenovirus fiber structure and function on vector development for gene therapy. Mol Ther 12:384–93.

    Article  PubMed  CAS  Google Scholar 

  29. Hedley SJ, Auf der Maur A, Hohn S, et al. (2006) An adenovirus vector with a chimeric fiber incorporating stabilized single chain antibody achieves targeted gene delivery. Gene Ther 13:88–94.

    Article  PubMed  CAS  Google Scholar 

  30. Vellinga J, de Vrij J, Myhre S, et al. (2007) Efficient incorporation of a functional hyper-stable single-chain antibody fragment protein-IX fusion in the adenovirus capsid. Gene Ther 14:664–70.

    Article  PubMed  CAS  Google Scholar 

  31. Vigne E, Mahfouz I, Dedieu JF, Brie A, Perricaudet M, Yeh P. (1999) RGD inclusion in the hexon monomer provides adenovirus type 5-based vectors with a fiber knob-independent pathway for infection. J Virol 73:5156–61.

    PubMed  CAS  Google Scholar 

  32. Campos SK, Barry MA. (2006) Comparison of adenovirus fiber, protein IX, and hexon capsomeres as scaffolds for vector purification and cell targeting. Virology 349:453–62.

    Article  PubMed  CAS  Google Scholar 

  33. Sadeghi H, Hitt MM. (2005) Transcriptionally targeted adenovirus vectors. Curr Gene Ther 5:411–27.

    Article  PubMed  CAS  Google Scholar 

  34. Fuerer C, Iggo R. (2002) Adenoviruses with Tcf binding sites in multiple early promoters show enhanced selectivity for tumour cells with constitutive activation of the wnt signalling pathway. Gene Ther 9:270–81.

    Article  PubMed  CAS  Google Scholar 

  35. Working PK, Lin A, Borellini F. (2005) Meeting product development challenges in manufacturing clinical grade oncolytic adenoviruses. Oncogene 24:7792–801.

    Article  PubMed  CAS  Google Scholar 

  36. Yu DC, Working P, Ando D. (2002) Selectively replicating oncolytic adenoviruses as cancer therapeutics. Curr Opin Mol Ther 4:435–43.

    PubMed  CAS  Google Scholar 

  37. Bischoff JR, Kirn DH, Williams A, et al. (1996) An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274:373–6.

    Article  PubMed  CAS  Google Scholar 

  38. Holm PS, Bergmann S, Jurchott K, et al. (2002) YB-1 relocates to the nucleus in adenovirus-infected cells and facilitates viral replication by inducing E2 gene expression through the E2 late promoter. J Biol Chem 277:10427–34.

    Article  PubMed  CAS  Google Scholar 

  39. Fueyo J, Gomez-Manzano C, Alemany R, et al. (2000) A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene 19:2–12.

    Article  PubMed  CAS  Google Scholar 

  40. Heise C, Hermiston T, Johnson L, et al. (2000) An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nat Med 6:1134–9.

    Article  PubMed  CAS  Google Scholar 

  41. Howe JA, Demers GW, Johnson DE, et al. (2000) Evaluation of E1-mutant adenoviruses as conditionally replicating agents for cancer therapy. Mol Ther 2:485–95.

    Article  PubMed  CAS  Google Scholar 

  42. Duque PM, Alonso C, Sanchez-Prieto R, et al. (1999) Adenovirus lacking the 19-kDa and 55-kDa E1B genes exerts a marked cytotoxic effect in human malignant cells. Cancer Gene Ther 6:554–63.

    Article  PubMed  CAS  Google Scholar 

  43. Sauthoff H, Heitner S, Rom WN, Hay JG. (2000) Deletion of the adenoviral E1b-19 kD gene enhances tumor cell killing of a replicating adenoviral vector. Hum Gene Ther 11:379–88.

    Article  PubMed  CAS  Google Scholar 

  44. Williams BR. (1999) PKR: a sentinel kinase for cellular stress. Oncogene 18:6112–20.

    Article  PubMed  CAS  Google Scholar 

  45. Grander D, Einhorn S. (1998) Interferon and malignant disease—how does it work and why doesn't it always? Acta Oncol 37:331–8.

    Article  PubMed  CAS  Google Scholar 

  46. Cascallo M, Capella G, Mazo A, Alemany R. (2003) Ras-dependent oncolysis with an adenovirus VAI mutant. Cancer Res 63:5544–50.

    PubMed  CAS  Google Scholar 

  47. Cascallo M, Gros A, Bayo N, Serrano T, Capella G, Alemany R. (2006) Deletion of VAI and VAII RNA genes in the design of oncolytic adenoviruses. Hum Gene Ther 17:929–40.

    Article  PubMed  CAS  Google Scholar 

  48. Bergmann M, Romirer I, Sachet M, et al. (2001) A genetically engineered influenza A virus with ras-dependent oncolytic properties. Cancer Res 61:8188–93.

    PubMed  CAS  Google Scholar 

  49. Farassati F, Yang AD, Lee PW. (2001) Oncogenes in Ras signalling pathway dictate host-cell permissiveness to herpes simplex virus 1. Nat Cell Biol 3:745–50.

    Article  PubMed  CAS  Google Scholar 

  50. Youil R, Toner TJ, Su Q, et al. (2003) Comparative analysis of the effects of packaging signal, transgene orientation, promoters, polyadenylation signals, and E3 region on growth properties of first-generation adenoviruses. Hum Gene Ther 14:1017–34.

    Article  PubMed  CAS  Google Scholar 

  51. Suzuki K, Fueyo J, Krasnykh V, Reynolds PN, Curiel DT, Alemany R. (2001) A conditionally replicative adenovirus with enhanced infectivity shows improved oncolytic potency. Clin Cancer Res 7:120–6.

    PubMed  CAS  Google Scholar 

  52. Doronin K, Toth K, Kuppuswamy M, Krajcsi P, Tollefson AE, Wold WS. (2003) Overexpression of the ADP (E3-11.6K) protein increases cell lysis and spread of adenovirus. Virology 305:378–87.

    Article  PubMed  CAS  Google Scholar 

  53. Suzuki K, Alemany R, Yamamoto M, Curiel DT. (2002) The presence of the adenovirus E3 region improves the oncolytic potency of conditionally replicative adenoviruses. Clin Cancer Res 8:3348–59.

    PubMed  CAS  Google Scholar 

  54. Yu DC, Chen Y, Seng M, Dilley J, Henderson DR. (1999) The addition of adenovirus type 5 region E3 enables calydon virus 787 to eliminate distant prostate tumor xenografts [published erratum appears in Cancer Res 2000 Feb 15;60(4):1150]. Cancer Res 59:4200–3.

    PubMed  CAS  Google Scholar 

  55. Zou A, Atencio I, Huang WM, Horn M, Ramachandra M. (2004) Overexpression of adenovirus E3-11.6K protein induces cell killing by both caspase-dependent and caspase-independent mechanisms. Virology 326: 240–9.

    Article  PubMed  CAS  Google Scholar 

  56. Ying B, Wold WS. (2003) Adenovirus ADP protein (E3-11.6K), which is required for efficient cell lysis and virus release, interacts with human MAD2B. Virology 313:224–34.

    Article  PubMed  CAS  Google Scholar 

  57. Kuppuswamy M, Spencer JF, Doronin K, Tollefson AE, Wold WS, Toth K. (2005) Oncolytic adenovirus that overproduces ADP and replicates selectively in tumors due to hTERT promoter-regulated E4 gene expression. Gene Ther 12:1608–17.

    Article  PubMed  CAS  Google Scholar 

  58. Yan W, Kitzes G, Dormishian F, et al. (2003) Developing novel oncolytic adenoviruses through bioselection. J Virol 77:2640–50.

    Article  PubMed  CAS  Google Scholar 

  59. Subramanian T, Vijayalingam S, Chinnadurai G. (2006) Genetic identification of adenovirus type 5 genes that influence viral spread. J Virol 80:2000–12.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank the collaborative effort of the Virus Therapy Group at the Institut Català d?Oncologia involved in the author’s results mentioned herein. Special thanks to Manel Cascallo and Juan Fueyo for their close collaboration. Thanks to Cristina Balague for critical reading of the manuscript. The author is supported by Bio2005-08682-C03-01 from the Ministerio de Ciencia y Tecnología of the Government of Spain, the EU 6th FP research contract 18700 (Theradpox, RA), and the Network of Cooperative Research on Cancer (C03-10), Instituto de Salud Carlos III of the Ministerio de Sanidad y Consumo, Government of Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramon Alemany .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Alemany, R. (2009). Designing Adenoviral Vectors for Tumor-Specific Targeting. In: Walther, W., Stein, U. (eds) Gene Therapy of Cancer. Methods in Molecular Biology™, vol 542. Humana Press. https://doi.org/10.1007/978-1-59745-561-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-561-9_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-85-5

  • Online ISBN: 978-1-59745-561-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics