Skip to main content

Nonviral Jet-Injection Technology for Intratumoral In Vivo Gene Transfer of Naked DNA

  • Protocol
  • First Online:
Gene Therapy of Cancer

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 542))

Summary

The main challenges for application of gene therapy to patients are poor selectivity in vector targeting, insufficient gene transfer, and great difficulties in systemic treatment in association with safety concerns for particular vector systems. For success in gene therapy, safe, applicable, and efficient transfer technologies are required. Because of the complex nature of targeted vector delivery to the tumor, our strategy for gene therapy is focused on the development of local nonviral gene transfer. This approach of local interference with tumor growth and progression could contribute to better control of the disease. Transfer of naked DNA is an important alternative to liposomal or viral systems. Different physical procedures are used for improved delivery of naked DNA into the target cells or tissues in vitro and in vivo. Among the various nonviral gene delivery technologies, jet-injection is gaining increased attractiveness, because this technique allows gene transfer into different tissues with deep penetration of naked DNA by circumventing the disadvantages associated with, e.g., viral vectors. The jet-injection technology is based on jets of high velocity for penetration of the skin and underlaying tissues, associated with efficient transfection of the affected area. The jet-injection technology has been successfully applied for in vivo gene transfer in different tumor models. More importantly, the efficacy and safety of jet-injection gene transfer have recently been investigated in a phase I clinical trial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. 1. Wolff J. A., Malone R. W., Williams P., Chong G., Acsadi A., Jani A., Felgner P. L. (1990) Direct gene transfer into mouse muscle in vivo. Science 247: 1465–1458.

    Article  PubMed  CAS  Google Scholar 

  2. 2. Herweijer H., Wolff J. A. (2003) Progress and prospects: naked DNA transfer and therapy. Gene Ther 10: 453–458.

    Article  PubMed  CAS  Google Scholar 

  3. 3. Niidome T, Huang L. (2002) Gene therapy progress and prospects: nonviral vectors. Gene Ther 9: 1647–1652.

    Article  PubMed  CAS  Google Scholar 

  4. 4. Romano G. (2007) Current development of nonviral-mediated gene transfer. Drug News Perspect 20: 227–231.

    Article  PubMed  CAS  Google Scholar 

  5. 5. Edelstein M. L., Abedi M. R., Wixon J. (2007) Gene therapy clinical trials worldwide to 2007 – an update. J. Gene Med 9: 833–842.

    Article  PubMed  Google Scholar 

  6. 6. Klinman D. M., Conover J., Leiden J. M., Rosenberg S. A., Sechler J. M. G. (1999) Safe and effective regulation of hematocrit by gene gun administration of an erythropoietin-encoding DNA plasmid. Hum Gene Ther 10: 659–665.

    Article  PubMed  CAS  Google Scholar 

  7. 7. Sikes M. L., O'Malley B. W., Finegold M. J., Ledley F. D. (1994). In vivo gene transfer into rabbit thyroid follicular cells by direct DNA injection. Hum Gene Ther 6: 837–844.

    Article  Google Scholar 

  8. 8. Yang N. S., Burkholder J., Roberts B., Martinell B., McCabe D. (1990) In vivo and in vitro gene transfer to mammalian cells by particle bombardment. Proc Natl Acad Sci USA 87: 9568–9572.

    Article  PubMed  CAS  Google Scholar 

  9. 9. Aihara H., Miyazaki J. I. (1998) Gene transfer into muscle by electroporation in vivo. Nat Biotechnol 16: 867–870.

    Article  PubMed  CAS  Google Scholar 

  10. 10. Heller L. C., Ugen K., Heller R. (2005) Electroporation for targeted gene transfer. Expert Opin Drug Deliv 2: 255–268.

    Article  PubMed  CAS  Google Scholar 

  11. 11. Miller D. L., Pislaru S. V., Greenleaf J. E. (2002) Sonoporation: mechanical DNA delivery by ultrasonic cavitation. Somat Cell Mol Genet 27: 115–134.

    Article  PubMed  CAS  Google Scholar 

  12. 12. Furth P. A., Shamay A., Wall R. J., Hennighausen L. (1992) Gene transfer into somatic tissue by jet injection. Anal Biochem 205: 365–368.

    Article  PubMed  CAS  Google Scholar 

  13. 13. Vahlsing H. L., Yankauckas M., Sawdey S. H., Gromkowski M., Manthorpe M. (1994) Immunization with plasmid DNA using a pneumatic gun. J Immunol Methods 175: 11–22.

    Article  PubMed  CAS  Google Scholar 

  14. 14. Rakhmilevich A. L., Turner J., Ford M. J., McCabe D., Sun W. H., Sondel P. H., Grota K., Yang N. S. (1996) Gene gun-mediated skin transfection with interleukin 12 gene results in regression of established primary and metastatic murine tumors. Proc Natl Acad Sci USA 93: 6291–6296.

    Article  PubMed  CAS  Google Scholar 

  15. 15. Liu M. A., Ulmer J. B. (2000) Gene based vaccines. Mol Ther 1: 497–500.

    Article  PubMed  CAS  Google Scholar 

  16. 16. Macklin M. D., McCabe D., McGregor M. W., Neumann V., Meyer T., Callan R., Hinshaw V. S. Swain W. F. (1998) Immunization of pigs with a particle-mediated DNA vaccine to influenza A virus protects against challenge with homologous virus. J Virol 72: 1491–1496.

    PubMed  CAS  Google Scholar 

  17. 17. Turner J. G., Tan J., Crucian B. E., Sullivan D. M., Ballester O. F., Dalton W. S., Yang N. S., Burkholder J. K., Yu H. (1998) Broadened clinical utility of gene gun-mediated granulocyte-macrophage colony-stimulating factor cDNA-based tumor cell vaccines as demonstrated with a mouse myeloma model. Hum Gene Ther 9: 1121–1130.

    Article  PubMed  CAS  Google Scholar 

  18. 18. Davis H. L., Demeneix B. A., Quantin B., Coulombe J., Whalen R. G. (1993) Plasmid DNA is superior to viral vectors for direct gene transfer into adult mouse skeletal muscle. Hum Gene Ther 4: 733–740.

    Article  PubMed  CAS  Google Scholar 

  19. 19. Heinzerling L., Burg G., Dummer R., Maier T., Oberholzer P. A., Schultz J., Elzaouk L., Pavlovic J., Moelling K. (2005) Intratumoral injection of DNA encoding human interleukin 12 into patients with metastatic melanoma: clinical efficacy. Hum Gene Ther 16: 35–48.

    Article  PubMed  CAS  Google Scholar 

  20. 20. Zhang G., Vargo D., Budker V., Armstromg N., Knechtle S., Wolff J. A. (1997) Expression of naked plasmid DNA injected into afferent and efferent vessels of rodent and dog livers. Hum Gene Ther 8: 1763–1772.

    Article  PubMed  CAS  Google Scholar 

  21. 21. Budker V., Zhang G., Danko I., Williams P., Wolff J. A. (1997) The efficient expression of intravascularly delivered DNA in rat muscle. Gene Ther 5: 272–276.

    Article  Google Scholar 

  22. 22. Liu F., Song Y. K., Liu D. (1999) Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 6: 1258–1266.

    Article  PubMed  CAS  Google Scholar 

  23. 23. Zhang G., Song Y. K., Liu D. (2000) Long-term expression of human alpha1-antitrypsin gene in mouse liver achieved by intravenous administration of plasmid DNA using hydrodynamics-based procedure. Gene Ther 7: 1344–1349.

    Article  PubMed  CAS  Google Scholar 

  24. 24. Pertmer T. M., Eisenbraun M. D., McCabe D., Prayaga S. K., Fuller D. H., Haynes J. R. (1995) Gene gun-based nucleic acid immunization: elicitation of humoral and cytotoxic T-lymphocyte responses following epidermal delivery of nanogram quantities of DNA. Vaccine 13: 1427–1430.

    Article  PubMed  CAS  Google Scholar 

  25. 25. Wells D. J. (2004) Gene therapy progress and prospects: electroporation and other physical methods. Gene Ther 11: 1363–1369.

    Article  PubMed  CAS  Google Scholar 

  26. 26. McCreery T. P., Sweitzer R. H., Unger E. C., Sullivan S. (2004) DNA delivery to cells in vivo by ultrasound. Methods Mol Biol 245: 293–298.

    PubMed  CAS  Google Scholar 

  27. 27. Weller C., Linder M. (1966) Jet injection of insulin vs the syringe-and-needle method. JAMA 195: 844–847.

    Article  PubMed  CAS  Google Scholar 

  28. 28. Baxter J., Mitragotri S. (2006) Needle-free liquid jet injections: mechanisms and applications. Expert Rev Med Devices 3: 565–574.

    Article  PubMed  Google Scholar 

  29. 29. Mitragotri S. (2006) Current status and future prospects of needle-free liquid jet injectors. Nat Rev Drug Discov 5: 543–548.

    PubMed  Google Scholar 

  30. 30. Furth P. A., Kerr D., Wall R. (1995) Gene transfer by jet injection into differentiated tissues of living animals and in organ culture. Mol Biotechnol 4: 121–127.

    Article  PubMed  CAS  Google Scholar 

  31. 31. Walther W., Stein U., Fichtner I., Voss K., Schmidt T., Schleef M., Nellessen T., Schlag P. M. (2002) Intratumoral low volume jet-injection for efficient nonviral gene transfer. Mol Biotechnol 21: 105–115.

    Article  PubMed  CAS  Google Scholar 

  32. 32. Walther W., Stein U., Siegel R., Fichtner I., Schlag P. M. (2005) Use of the nuclease inhibitor aurintricarboxylic acid (ATA) for improved non-viral intratumoral in vivo gene transfer by jet-injection. J Gene Med 7: 477–485.

    Article  PubMed  CAS  Google Scholar 

  33. 33. Heansler J., Verdelet C., Sanchez V., Girerd-Chambaz Y., Bonnin A., Trannoy E., Krishnan S., Meulien P. (1999) Intradermal DNA immunization by using jet-injectors in mice and monkeys. Vaccine 17: 628–638.

    Article  Google Scholar 

  34. 34. Choi A. H., Smiley K., Basu M., McNeal M. M., Shao M. Bean J. A., Clements J. D., Stout R. R., Ward R. L. (2007) Protection of mice against rotavirus challenge following intradermal DNA immunization by Biojector needle-free injection. Vaccine 25: 3215–3218.

    Article  PubMed  CAS  Google Scholar 

  35. 35. Seigne J., Turner J., Diaz J., Hackney J., Pow-Sang J., Helal M., Lockhart J., Yu H. (1999) Feasibility study of gene gun mediated immunotherapy for renal cell carcinoma. J Urol 162: 1259–1263.

    Article  PubMed  CAS  Google Scholar 

  36. 36. Yamashita Y., Shimada M., Hasegawa H., Minagawa R., Rikimaru T., Hamatsu T., Tanaka S., Shirabe K., Miyazaki J., Sugimachi K. (2001) Electroporation-mediated interleukin-12 gene therapy for hepatocellular carcinoma in the mice model. Cancer Res 61: 1005–1012.

    PubMed  CAS  Google Scholar 

  37. 37. Hui K. M., Chia T. F. (1997) Eradication of tumor growth via biolistic transformation with allogeneic MHC genes. Gene Ther 4: 762–767.

    Article  PubMed  CAS  Google Scholar 

  38. 38. Walther W., Stein U., Fichtner I., Schlag P. M. (2001) In vivo gene transfer of naked DNA into xenotransplanted colon carcinoma by jet-injection. Langenbeck's Archives Surg 2001, 30: 69–72.

    Google Scholar 

  39. 39. Walther W., Stein U., Fichtner I., Malcherek L., Lemm M., Schlag P. M. (2001) Non-viral in vivo gene delivery into tumors using a novel low volume jet-injection technology. Gene Ther 8: 173–180.

    Article  PubMed  CAS  Google Scholar 

  40. 40. Walther W., Stein U., Fichtner I., Schlag P. M. (2004) Low-volume jet-injection for efficient in vivo gene transfer. Mol Biotechnol 28: 121–128.

    Article  PubMed  CAS  Google Scholar 

  41. 41. Walther W., Stein U., Fichtner I., Aumann J., Arlt F., Schlag P. M. (2005) Nonviral jet-injection gene transfer for efficient in vivo cytosine deaminase suicide gene therapy of colon carcinoma. Mol Ther 12, 1176–1184.

    Article  PubMed  CAS  Google Scholar 

  42. 42. Walther W., Arlt F., Stein U., Fichtner I., Schlag P. M. (2007) Heat-inducible in vivo gene therapy of colon carcinoma by human mdr1 promoter regulated TNF-α expression. Mol Cancer Ther 6: 235–243.

    Article  Google Scholar 

  43. 43. Stein U., Stege A., Walther W., Lage H. (2008) Complete in vivo reversal of the multidrug resistance (MDR) phenotype in a breast cancer model by jet-injection of anti-MDR1 short hairpin RNA-encoding plasmid DNA. Mol Ther 16: 178–186.

    Article  PubMed  CAS  Google Scholar 

  44. 44. Ren S., Li M., Smith J. M., DeTolla L. J., Furth P. A. (2002) Low-volume jet injection for intradermal immunization in rabbits. BMC Biotechnol 23: 10.

    Article  Google Scholar 

  45. 45. Cartier R., Ren S. V., Walther W., Stein U., Lewis A., Schlag P. M., Li M., Furth P. A. (2000) In vivo gene transfer by low-volume jet injection. Anal Biochem 282: 262–265.

    Article  PubMed  CAS  Google Scholar 

  46. Walther W., Siegel R., Kobelt D., Knösel T., Dietel M., Bembenek A., Aumann J., Schleef M., Baier R., Stein U., Schlag P.M. (2008) Novel jet-injection technology for nonviral intratumoral gene transfer in patients with melanoma and breast cancer. Clin Cancer Res 14: 7545–7553.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was kindly supported by the EMS Medical Systems SA, Nyon, Switzerland, and grants from the H.W. & J. Hector Foundation, Mannheim, Germany, and the Deutsche Forschungsgemeinschaft, Bonn, Germany. Support from A. Menne and T. Nellessen in the establishment of the jet-injection technology is appreciated. Help in the performance of the animal studies by M. Lemm and the excellent technical assistance of D. Kobelt, J. Aumann, and L. Malcherek are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Walther .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Walther, W., Fichtner, I., Schlag, P.M., Stein, U.S. (2009). Nonviral Jet-Injection Technology for Intratumoral In Vivo Gene Transfer of Naked DNA . In: Walther, W., Stein, U. (eds) Gene Therapy of Cancer. Methods in Molecular Biology™, vol 542. Humana Press. https://doi.org/10.1007/978-1-59745-561-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-561-9_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-85-5

  • Online ISBN: 978-1-59745-561-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics