Skip to main content

Construction and Characterization of a Cell Line Deficient in Repair of Mitochondrial, but Not Nuclear, Oxidative DNA Damage

  • Protocol
Mitochondrial DNA

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 554))

Abstract

Oxidative base lesions, such as 8-oxoguanine, accumulate in nuclear and mitochondrial DNAs under oxidative stress, resulting in cell death. However, it is not known whether only oxidative lesion accumulated in mitochondrial DNA is involved in such cell death. By introducing human cDNA encoding a nuclear form of 8-oxoG DNA glycosylase (hOGG1-1a) into immortalized mouse embryo fibroblasts lacking Ogg1 gene, we established a cell line which selectively accumulates 8-oxoguanine in mitochondrial DNA under oxidative stress. Selective accumulation of 8-oxoguanine in mitochondrial DNA in this cell line causes degradation of mitochondrial DNA followed by ATP depletion, mitochondrial membrane permeability transition, and Ca2+ efflux, which in turn activates calpains to execute cell death. Knockdown of MUTYH which excises adenine opposite 8-oxoG in DNA prevents degradation of mitochondrial DNA and activation of calpain, thus suppressing the cell death induced by menadione.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kasai, H. and Nishimura, S. (1984) Hydroxylation of deoxyguanosine at the C-8 position by ascorbic acid and other reducing agents. Nucleic Acids Res 12, 2137–2145.

    Article  CAS  PubMed  Google Scholar 

  2. Maki, H. (2002) Origins of spontaneous mutations: specificity and directionality of base-substitution, frameshift, and sequence-substitution mutageneses. Annu. Rev. Genet. 36, 279–303.

    Article  CAS  PubMed  Google Scholar 

  3. Shimura-Miura, H., Hattori, N., Kang, D., Miyako, K., Nakabeppu, Y. and Mizuno, Y. (1999) Increased 8-oxo-dGTPase in the mitochondria of substantia nigral neurons in Parkinson's disease. Ann. Neurol 46, 920–924.

    Article  CAS  PubMed  Google Scholar 

  4. Nunomura, A., Perry, G., Aliev, G., Hirai, K., Takeda, A., Balraj, E. K., et al. (2001) Oxidative damage is the earliest event in Alzheimer disease. J. Neuropathol. Exp. Neurol 60, 759–767.

    CAS  PubMed  Google Scholar 

  5. Nakabeppu, Y., Sakumi, K., Sakamoto, K., Tsuchimoto, D., Tsuzuki, T. and Nakatsu, Y. (2006) Mutagenesis and carcinogenesis caused by the oxidation of nucleic acids. Biol. Chem 387, 373–379.

    Article  CAS  PubMed  Google Scholar 

  6. Boiteux, S. and Radicella, J. P. (2000) The human OGG1 gene: structure, functions, and its implication in the process of carcinogenesis. Arch. Biochem. Biophys 377, 1–8.

    Article  CAS  PubMed  Google Scholar 

  7. Nishioka, K., Ohtsubo, T., Oda, H., Fujiwara, T., Kang, D., Sugimachi, K., et al. (1999) Expression and differential intracellular localization of two major forms of human 8-oxoguanine DNA glycosylase encoded by alternatively spliced OGG1 mRNAs. Mol. Biol. Cell 10, 1637–1652.

    CAS  PubMed  Google Scholar 

  8. Oka, S., Ohno, M., Tsuchimoto, D., Sakumi, K., Furuichi, M. and Nakabeppu, Y. (2008) Two distinct pathways of cell death triggered by oxidative damage to nuclear and mitochondrial DNAs. EMBO J 27, 421–432.

    Article  CAS  PubMed  Google Scholar 

  9. Yoshimura, D., Sakumi, K., Ohno, M., Sakai, Y., Furuichi, M., Iwai, S., et al. (2003) An oxidized purine nucleoside triphosphatase, MTH1, suppresses cell death caused by oxidative stress. J. Biol. Chem 278, 37965–37973.

    Article  CAS  PubMed  Google Scholar 

  10. Miyako, K., Takamatsu, C., Umeda, S., Tajiri, T., Furuichi, M., Nakabeppu, Y., et al. (2000) Accumulation of adenine DNA glycosylase-sensitive sites in human mitochondrial DNA. J. Biol. Chem 275, 12326–12330.

    Article  CAS  PubMed  Google Scholar 

  11. Ogden, R. C. and Adams, D. A. (1987) Electrophoresis in agarose and acrylamide gels. Methods Enzymol 152, 61–87.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Oka, S., Ohno, M., Nakabeppu, Y. (2009). Construction and Characterization of a Cell Line Deficient in Repair of Mitochondrial, but Not Nuclear, Oxidative DNA Damage. In: Stuart, J.A. (eds) Mitochondrial DNA. Methods in Molecular Biology™, vol 554. Humana Press. https://doi.org/10.1007/978-1-59745-521-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-521-3_16

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-60-2

  • Online ISBN: 978-1-59745-521-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics