Skip to main content

In Vitro Measurement of DNA Base Excision Repair in Isolated Mitochondria

  • Protocol
Mitochondrial DNA

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 554))

Abstract

Mitochondrial DNA (mtDNA) is in relatively close proximity to reactive oxygen species (ROS) arising from spontaneous superoxide formation during respiration. As a result, it sustains oxidative damage that may include base modifications, base loss, and strand breaks. mtDNA replication past sites of oxidative damage can result in the introduction of mutations. mtDNA mutations are associated with various human diseases and can manifest as loss of bioenergetic function. DNA repair processes exist in mitochondria from apparently all metazoans. A fully functional DNA base excision repair (BER) pathway is present in mitochondria of vertebrates. This pathway is catalyzed by a number of DNA glycosylases, an AP endonuclease, polymerase γ, and a DNA ligase. This chapter outlines the step-by-step protocols for isolating mitochondrial fractions, from a number of different model organisms, of sufficient purity to allow mtDNA repair activities to be measured. It details in vitro assays for the measurement of BER enzyme activities in lysates prepared from isolated mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moraes, C.T. (2001) What regulates mitochondrial DNA copy number in animal cells? Trends Genet 17, 199–205.

    Article  CAS  PubMed  Google Scholar 

  2. Gross, N.J., Getz, G.S., Rabinowitz, M. (1969) Apparent turnover of mitochondrial deoxyribonucleic acid and mitochondrial phospholipids in the tissues of the rat. J Biol Chem 244, 1552–1562.

    CAS  PubMed  Google Scholar 

  3. Menzies, R.A., Gold, P.H. (1971) The turnover of mitochondria in a variety of tissues of young adult and aged rats. J Biol Chem 246, 2425–2429.

    CAS  PubMed  Google Scholar 

  4. Kim, I., Rodriguez-Enriquez, S., Lemasters, J.J. (2007) Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462, 245–253.

    Article  CAS  PubMed  Google Scholar 

  5. Pinz, K.G., Shibutani, S., Bogenhagen, D.F. (1995) Action of mitochondrial DNA polymerase gamma at sites of base loss or oxidative damage. J Biol Chem 270, 9202–9206.

    Article  CAS  PubMed  Google Scholar 

  6. Elson, J.L., Samuels, D.C., Turnbull, D.M., Chinnery, P.F. (2001) Random intracellular drift explains the clonal expansion of mitochondrial DNA mutations with age. Am J Hum Genet 68, 802–806.

    Article  CAS  PubMed  Google Scholar 

  7. Mambo, E., Gao, X., Cohen, Y., Guo, Z., Talalay, P., Sidransky, D. (2003) Electrophile and oxidant damage of mitochondrial DNA leading to rapid evolution of homoplasmic mutations. Proc Natl Acad Sci USA 100, 1838–1843

    Article  CAS  PubMed  Google Scholar 

  8. Bender, A., Krishnan, K.J., Morris, C.M., Taylor, G.A., Reeve, A.K., Perry, R.H., Jaros, E., Hersheson, J.S., Betts, J., Klopstock, T., Taylor, R.W., Turnbull, D.M. (2006) High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 38, 515–517.

    Article  CAS  PubMed  Google Scholar 

  9. Kratysberg, T., Kudryavtseva, E., McKee, A.C., Geula, C., Kowall, N.W., Khrapko, K. (2006) Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet 38, 518–520.

    Article  Google Scholar 

  10. Krisham, K.J., Reeve, A.K., Samuels, D.G., Chinnery, P.F., Blackwood, J.K., Taylor, R.W., Wanrooij, S., Spelbrink, J.N., Lightowlers, R.N., Turnbull, D.M. (2008) What causes mitochondrial DNA deletions in human cells? Nat Genet 40, 275–279.

    Article  Google Scholar 

  11. Gilkerson, R.W., Schon, E.A., Hernandez, E., Davidson, M.M. (2008) Mitochondrial nucleoids maintain genetic autonomy but allow for functional complementation. J Cell Biol 181, 1117–1128.

    Article  CAS  PubMed  Google Scholar 

  12. Anson, R.M., Croteau, D.L., Stierum, R.H., Filburn, C., Parsell, R., Bohr, V.A. (1998) Homogenous repair of singlet oxygen-induced DNA damage in differentially transcribed regions and strands of human mitochondrial DNA. Nucleic Acids Res 26, 662–668.

    Article  CAS  PubMed  Google Scholar 

  13. de Souza-Pinto, N.C., Eide, L., Hogue, B.A., Thybo, T., Stevnsner, T., Seeberg, E., Klungland, A., Bohr, V.A. (2001) Repair of 8-oxodeoxyguanosine lesions in mitochondrial DNA depends on the oxoguanine DNA glycosylase (OGG1) gene and 8-oxoguanine accumulates in the mitochondrial DNA of OGG1-defective mice. Cancer Res 61, 5378–5381.

    PubMed  Google Scholar 

  14. Thorslund, T., Sunesen, M., Bohr, V.A., Stevnsner, T. (2002) Repair of 8-oxoG is slower in endogenous nuclear genes than in mitochondrial DNA and is without strand bias. DNA Repair 1, 261–273.

    Article  CAS  PubMed  Google Scholar 

  15. LeDoux, S.P., Wilson, G.L., Beecham, E.J., Stevnsner, T., Wassermann, K., Bohr V.A. (1992) Repair of mitochondrial DNA after various types of DNA damage in Chinese hamster ovary cells. Carcinogenesis 13, 1967–1973.

    Article  CAS  PubMed  Google Scholar 

  16. Pinz, K.G., Bogenhagen, D.F. (1998) Efficient repair of abasic sites in DNA by mitochondrial enzymes. Mol Cell Biol 18, 1257–1265

    CAS  PubMed  Google Scholar 

  17. Nyaga, S.G., Bohr, V.A. (2002) Characterization of specialized mtDNA glycosylases. Methods Mol Biol 197, 227–244.

    CAS  PubMed  Google Scholar 

  18. Endres, M., Biniszkiewicz, D., Sobol, R.W., Harms, C., Ahmadi, M., Lipski, A., Katchanov, J., Mergenthaler, P., Dirnagl, U., Wilson, S.H., Meisel, A., Jaenisch, R. (2004) Increased postischemic brain injury in mice deficient in uracil-DNA glycosylase. J Clin Invest. 113, 1711–1721.

    CAS  PubMed  Google Scholar 

  19. Akbari, M., Visnes, T., Krokan, H.E., Otterlei, M. (2008) Mitochondrial base excision repair of uracil and AP sites takes place by single-nucleotide insertion and long-patch DNA synthesis. DNA Repair 7, 605–616.

    Article  CAS  PubMed  Google Scholar 

  20. Nakabeppu, Y. (2001) Regulation of intracellular localization of human MTH1, OGG1, and MYH proteins for repair of oxidative DNA damage. Prog Nucleic Acid Res Mol Biol 68, 75–94.

    Article  CAS  PubMed  Google Scholar 

  21. Mitra, S., Izumi, T., Boldogh, I., Bhakat, K.K., Chattopadhyay, R., Szczesny, B. (2007) Intracellular trafficking and regulation of mammalian AP-endonuclease 1 (APE1), an essential DNA repair protein. DNA Repair 6, 461–469.

    Article  CAS  PubMed  Google Scholar 

  22. Stuart, J.A., Karahalil, B., Hogue, B.A., Souza-Pinto, N.C., Bohr, V.A. (2004) Mitochondrial and nuclear DNA base excision repair are affected differently by caloric restriction. FASEB J 18, 595–597.

    CAS  PubMed  Google Scholar 

  23. Stuart, J.A., Maynard, S., Hashiguchi, K., Souza-Pinto, N.C., Bohr, V.A. (2005) Localization of mitochondrial base excision repair to an inner membrane-associated particulate fraction. Nucleic Acids Res 33, 3722–3732.

    Article  CAS  PubMed  Google Scholar 

  24. Hansen, A.B., Griner, N.B., Anderson, J.P., Kujoth, G.C., Prolla, T.A., Loeb, L.A., Glick, E. (2006) Mitochondrial DNA integrity is not dependent on DNA polymerase-β activity. DNA Repair 5, 71–79.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Page, M.M., Stuart, J.A. (2009). In Vitro Measurement of DNA Base Excision Repair in Isolated Mitochondria. In: Stuart, J.A. (eds) Mitochondrial DNA. Methods in Molecular Biology™, vol 554. Humana Press. https://doi.org/10.1007/978-1-59745-521-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-521-3_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-60-2

  • Online ISBN: 978-1-59745-521-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics