Skip to main content

Artificial Rearing

  • Protocol
Alcohol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 447))

Summary

Prenatal alcohol exposure disrupts development, leading to a range of effects referred to as fetal alcohol spectrum disorders (FASD). FASDs include physical, central nervous system, and behavioral alterations. Animal model systems are used to study the relationship between alcohol-related central nervous system damage and behavioral alterations, risk factors for FASD, mechanisms of alcohol-induced damage, as well as treatments and interventions. When using a rodent model, it is important to recognize that the timing of brain development relative to birth differs between humans and rodents. Thus, to model alcohol exposure during the third trimester equivalent, rats must be exposed during early postnatal development (postnatal days 4-9). Artificial rearing is one experimental paradigm that is used to expose neonatal rats to alcohol during this period of brain development. Neonatal rat pups are housed in an artificial rearing environment and automatically fed a milk diet substitute via an intragastric cannula to ensure adequate growth during the treatment period. Alcohol is delivered in the milk diet. This chapter provides a description of the methods needed for this administrative technique, including preparation of the artificial rearing environment, gastrostomy surgery, and care of artificially reared rat pups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. 1. Riley, E. P., and Meyer, L. S. (1984) Considerations for the design, implementation, and interpretation of animal models of fetal alcohol effects. Neurobehav. Toxicol. Teratol. 6, 97–101.

    PubMed  CAS  Google Scholar 

  2. 2. Dobbing, J., and Sands, J. (1979) Comparative aspects of the brain growth spurt. Early Hum. Dev. 3, 79–83.

    Article  PubMed  CAS  Google Scholar 

  3. 3. Goodlett, C. R., and Johnson, T. B. (1997) Neonatal binge ethanol exposure using intubation: timing and dose effects on place learning. Neurotoxicol. Teratol. 19, 435–446.

    Article  PubMed  CAS  Google Scholar 

  4. 4. Moore, D. B., Madorsky, I., Paiva, M., and Barrow Heaton, M. (2004) Ethanol exposure alters neurotrophin receptor expression in the rat central nervous system: Effects of neonatal exposure. J. Neurobiol. 60, 114–126.

    Article  PubMed  CAS  Google Scholar 

  5. 5. Diaz, J., and Samson, H. H. (1980) Impaired brain growth in neonatal rats exposed to ethanol. Science 208, 751–753.

    Article  PubMed  CAS  Google Scholar 

  6. 6. Pierce, D. R., and West, J. R. (1986) Alcohol-induced microencephaly during the third trimester equivalent: relationship to dose and blood alcohol concentration. Alcohol 3, 185–191.

    Article  PubMed  CAS  Google Scholar 

  7. 7. Klintsova, A. Y., Scamra, C., Hoffman, M., Napper, R. M., Goodlett, C. R., and Greenough, W. T. (2002) Therapeutic effects of complex motor training on motor performance deficits induced by neonatal binge-like alcohol exposure in rats: II. A quantitative stereological study of synaptic plasticity in female rat cerebellum. Brain Res. 937, 83–93.

    Article  PubMed  CAS  Google Scholar 

  8. 8. Kelly, S. J. (1996) Effects of alcohol exposure and artificial rearing during development on septal and hippocampal neurotransmitters in adult rats. Alcohol Clin. Exp. Res. 20, 670–676.

    Article  PubMed  CAS  Google Scholar 

  9. 9. Smith, A. M., Zeve, D. R., Grisel, J. J., and Chen, W. J. (2005) Neonatal alcohol exposure increases malondialdehyde (MDA) and glutathione (GSH) levels in the developing cerebellum. Brain Res. Dev. Brain Res. 160, 231–238.

    Article  PubMed  CAS  Google Scholar 

  10. 10. Clements, K. M., Girard, T. A., Ellard, C. G., and Wainwright, P. E. (2005) Short-term memory impairment and reduced hippocampal c-Fos expression in an animal model of fetal alcohol syndrome. Alcohol Clin. Exp. Res. 29, 1049–1059.

    Article  PubMed  CAS  Google Scholar 

  11. 11. Slawecki, C. J., Thomas, J. D., Riley, E. P., and Ehlers, C. L. (2004) Neurophysiologic consequences of neonatal ethanol exposure in the rat. Alcohol 34, 187–196.

    Article  PubMed  CAS  Google Scholar 

  12. 12. Allen, G. C., West, J. R., Chen, W. J., and Earnest, D. J. (2004) Developmental alcohol exposure disrupts circadian regulation of BDNF in the rat suprachiasmatic nucleus. Neurotoxicol. Teratol. 26, 353–358.

    Article  PubMed  CAS  Google Scholar 

  13. 13. Meyer, L. S., Kotch, L. E., and Riley, E. P. (1990) Alterations in gait following ethanol exposure during the brain growth spurt in rats. Alcohol Clin. Exp. Res. 14, 23–27.

    Article  PubMed  CAS  Google Scholar 

  14. 14. West, J. R., Hamre, K. M., and Pierce, D. R. (1984) Delay in brain growth induced by alcohol in artificially reared rat pups. Alcohol 1, 213–222.

    Article  PubMed  CAS  Google Scholar 

  15. 15. Messer, M., Thoman, E. B., Galofre, A., Dallman, T., and Dallman, P. R. (1969) Artificial feeding of infant rats by continuous gastric infusion. J. Nutr. 98, 404–410.

    PubMed  CAS  Google Scholar 

  16. 16. Hall, W. G. (1975) Weaning and growth of artificially reared rats. Science 26, 1313–1315.

    Article  Google Scholar 

  17. 17. Diaz, J., Moore, E., Patracca, F., Schacher, J., and Stamper, C. (1982) Artificial rearing of pups with a protein-enriched formula. J. Nutr. 112, 841–847.

    PubMed  CAS  Google Scholar 

  18. 18. Ward, G. R., Huang, Y. S., Bobik, E., Zing, H. C., Mutsaers, L., Auestad, N., Montalto, M., and Wainwright, P. (1998) Long-chain polyunsaturated fatty acid levels in formulae influence deposition of docosahexaenoic acid and arachidonic acid in brain and red blood cells of artificially reared neonatal rats. J. Nutr. 128, 2473–2487.

    PubMed  CAS  Google Scholar 

  19. 19. Moore, W. A., Goldberg, S. J., and Shall, M. S. (2007) Effects of artificial rearing on contractile properties of genioglossus muscle in Sprague-Dawley rat. Arch. Oral Biol. 52, 133–141.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Special thanks to Dr. Wei-Jung Chen and Dr. Susan Maier for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dominguez, H.D., Thomas, J.D. (2008). Artificial Rearing. In: Nagy, L.E. (eds) Alcohol. Methods in Molecular Biology™, vol 447. Humana Press. https://doi.org/10.1007/978-1-59745-242-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-242-7_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-906-2

  • Online ISBN: 978-1-59745-242-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics