Skip to main content

Assessment of Natural Killer (NK) and NKT Cells in Murine Spleens and Livers

  • Protocol
Alcohol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 447))

Summary

Natural killer (NK) cells part of innate immunity. NK cells have been assigned numerous functions, including the ability to serve as a bridge between innate and adaptive immunity. In evaluating NK cell function, two pathways need to be examined: their ability to kill certain tumors spontaneously and their ability to secrete cytokines, interferon-gamma (IFN-γ), in particular. Although NK cells are distinct from T lymphocytes, a new lymphocyte subset, termed NKT cell, has been described. NKT cells express surface markers that are unique to NK cells (e.g., NK1.1) as well as markers that are unique to T cells (e.g., CD3). Most NKT cells recognize glycolipids and are thought to play an important immunoregulatory role. This chapter will detail the methodology needed for examination of NK and NKT cells in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. MacGregor, R. R., and Louria, D. B. (1997) Alcohol and infection. Curr. Clin. Top. Infect. Dis. 17, 291–315.

    PubMed  CAS  Google Scholar 

  2. 2. Brown, L. M. (2005) Epidemiology of alcohol-associated cancers. Alcohol. 35, 161–168.

    Article  PubMed  Google Scholar 

  3. 3. Boffeta, P., and Hashibe, M. (2006) Alcohol and cancer. Lancet Oncol. 7, 149–156.

    Article  Google Scholar 

  4. 4. Orange, J. S., and Ballas, Z. K. (2006) Natural killer cells in human health and disease. Clin. Immunol. 118, 1–10.

    Article  PubMed  CAS  Google Scholar 

  5. 5. Heusel, J. W., and Ballas, Z. K. (2003) Natural killer cells: emerging concepts in immunity to infection and implications for assessment of immunodeficiency. Curr. Opin. Pediatr. 15, 586–593.

    Article  PubMed  Google Scholar 

  6. 6. Yokoyama, W. M., and Kim, S. (2006) How do natural killer cells find self to achieve tolerance? Immunity. 24, 249–257.

    Article  PubMed  CAS  Google Scholar 

  7. 7. Lodoen, M. B., and Lanier, L. L. (2006) Natural killer cells as an initial defense against pathogens. Curr. Opin. Immunol. 18, 391–398.

    Article  PubMed  CAS  Google Scholar 

  8. 8. Kronenberg, M. (2005) Towards an understanding of NKT cell biology: progress and paradoxes. Annu. Rev. Immunol. 23, 877–900.

    Article  PubMed  CAS  Google Scholar 

  9. 9. Cook, R. T., Li, F., Vandersteen, D., Ballas, Z. K., Cook, B. L., and LaBrecque, D. R. (1997) Ethanol and natural killer cells. I. Activity and immunophenotype in alcoholic humans. Alcohol Clin. Exp. Res. 21, 974–980.

    PubMed  CAS  Google Scholar 

  10. 10. Meadows, G. G., Blank, S. E., and Duncan, D. D. (1989) Influence of ethanol consumption on natural killer cell activity in mice. Alcohol Clin. Exp. Res. 13, 476–479.

    Article  PubMed  CAS  Google Scholar 

  11. 11. Saxena, Q. B., Saxena, R. K., and Adler, W. H. (1981) Regulation of natural killer activity in vivo: part IV–high natural killer activity in alcohol drinking mice. Indian J. Exp. Biol. 19, 1001–1006.

    PubMed  CAS  Google Scholar 

  12. 12. Abdallah, R. M., Starkey, J. R., and Meadows, G. G. (1988) Toxicity of chronic high alcohol intake on mouse natural killer cell activity. Res. Commun. Chem. Pathol. Pharmacol. 59, 245–258.

    PubMed  CAS  Google Scholar 

  13. 13. Kronenberg, M., and Gapin, L. (2002) The unconventional lifestyle of NKT cells. Nat. Rev. Immunol. 2, 557–568.

    PubMed  CAS  Google Scholar 

  14. 14. Chan, C. W., Crafton, E., Fan, H. N., Flook, J., Yoshimura, K., Skarica, M., Brockstedt, D., Dubensky, T. W., Stins, M. F., Lanier, L. L., et al. (2006) Interferon-producing killer dendritic cells provide a link between innate and adaptive immunity. Nat. Med. 12, 207–213.

    Article  PubMed  CAS  Google Scholar 

  15. 15. Ballas, Z. K., Rasmussen, W., and van Otegham, J. K. (1987) Lymphokine-activated killer (LAK) cells. II. Delineation of distinct murine LAK-precursor subpopulations. J. Immunol. 138, 1647–1652.

    PubMed  CAS  Google Scholar 

  16. 16. Watanabe, H., Ohtsuka, K., Kimura, M., Ikarashi, Y., Ohmori, K., Kusumi, A., Ohteki, T., Seki, S., and Abo, T. (1992) Details of an isolation method for hepatic lymphocytes in mice. J. Immunol. Methods. 146, 145–154.

    Article  PubMed  CAS  Google Scholar 

  17. 17. Arase, H., Saito, T., Phillips, J. H., and Lanier, L. L. (2001) Cutting edge: the mouse NK cell-associated antigen recognized by DX5 monoclonal antibody is CD49b (alpha 2 integrin, very late antigen-2). J. Immunol. 167, 1141–1144.

    PubMed  CAS  Google Scholar 

  18. 18. Kobayaski, E., Motoki, K., Uchida, T., Fukushima, H., and Koezuka, Y. (1995) KRN7000, a novel immunomodulator, and its antitumor activities. Oncol. Res. 7, 529–534.

    Google Scholar 

  19. 19. Hameg, A., Apostolou, I., Leite-De-Moraes, M., Gombert, J. M., Garcia, C., Koezuka, Y., Bach, J. F., and Herbelin, A. (2000) A subset of NKT cells that lacks the NK1.1 marker, expresses CD1d molecules, and autopresents the alpha-galactosylceramide antigen. J. Immunol. 165, 4917–4926.

    PubMed  CAS  Google Scholar 

  20. 20. Ballas, Z. K., and Rasmussen,W. (1990) Lymphokine-activated killer (LAK) cells. IV. Characterization of murine LAK effector subpopulations. J. Immunol. 144, 386–395.

    PubMed  CAS  Google Scholar 

  21. 21. Ballas Z. K., Rasmussen, W. L., and Krieg, A. M. (1996) Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J Immunol. 157, 1840–1845.

    Google Scholar 

  22. 22. Rothenfusser, S., Tuma, E., Wagner, M., Endres, S., and Hartmann, G. (2003) Recent advances in immunostimulatory CpG oligonucleotides. Curr. Opin. Mol. Ther. 5, 98–106.

    PubMed  CAS  Google Scholar 

  23. 23. Daeron, M. (1997) Fc receptor biology. Annu. Rev. Immunol. 15, 203–234.

    Article  PubMed  CAS  Google Scholar 

  24. 24. Emoto M., Emoto, Y., and Kaufmann, S. H. (1997) TCR-mediated target cell lysis by CD4+NK1+ liver T lymphocytes. Int. Immunol. 9, 563–571.

    Article  PubMed  CAS  Google Scholar 

  25. 25. Ballas, Z. K., and Rasmussen, W. (1990) NK1.1+ thymocytes. Adult murine CD4-, CD8- thymocytes contain an NK1.1+, CD3+, CD5hi, CD44hi, TCR-V beta 8+ subset. J. Immunol. 145, 1039–1045.

    PubMed  CAS  Google Scholar 

  26. 26. Bartizal, K. F., Salkowski, C., Pleasants, J. R., and Balish, E. (1984) The effect of microbial flora, diet, and age on the tumoricidal activity of natural killer cells. J. Leukoc. Biol. 36, 739–750.

    PubMed  CAS  Google Scholar 

  27. 27. Godfrey, D. I., Hammond, K. J., Poulton, L. D., Smyth, M. J., and Baxter, A. G. (2000) NKT cells: facts, functions and fallacies. Immunol Today. 21, 573–583.

    Article  PubMed  CAS  Google Scholar 

  28. 28. O'Connor, K. A., Holguin, A., Hansen, M. K., Maier, S. F., and Watkins, L. R. (2004) A method for measuring multiple cytokines from small samples. Brain Behav. Immun. 18, 274–280.

    Article  PubMed  Google Scholar 

  29. 29. Parekh, V. V., Singh, A. K., Wilson, M. T., Olivares-Villagomez, D., Bezbradica, J. S., Inazawa, H., Ehara, H., Sakai, T., Serizawa, I., Wu, L., et al. (2004) Quantitative and qualitative differences in the in vivo response of NKT cells to distinct alpha- and beta-anomeric glycolipids. J. Immunol. 173, 3693–3706.

    PubMed  CAS  Google Scholar 

  30. 30. Carnaud, C., Lee, D., Donnars, O., Park, S. H., Beavis, A., Koezuka, Y., and Bendelac, A. (1999) Cutting edge: cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J. Immunol. 163, 4647–4650.

    PubMed  CAS  Google Scholar 

  31. 31. Inui, T., Nakagawa, R., Ohkura, S., Habu, Y., Koike Y, Motoki, K., Kuranaga, N., Fukasawa, M., Shinomiya, N., and Seki, S. (2002) Age-associated augmentation of the synthetic ligand- mediated function of mouse NK1.1 ag(+) T cells: their cytokine production and hepatotoxicity in vivo and in vitro. J. Immunol. 169, 6127–6132.

    PubMed  CAS  Google Scholar 

  32. 32. Sagiyama, K., Tsuchida, M., Kawamura, H.,Wang, S., Li, C., Bai, X., Nagura, T., Nozoe, S., and Abo, T. (2004) Age-related bias in function of natural killer T cells and granulocytes after stress: reciprocal association of steroid hormones and sympathetic nerves. Clin Ex. Immunol 135, 56–63.

    Article  CAS  Google Scholar 

  33. 33. Wilson, M. T., Johansson, C., Olivares-Villagomez, D., Singh, A. K., Stanic, A. K., Wang, C. R., Joyce, S., Wick, M. J., and Van Kaer, L. (2003) The response of natural killer T cells to glycolipid antigens is characterized by surface receptor down-modulation and expansion. Proc. Natl. Acad. Sci. USA. 100, 10913–10918.

    Article  PubMed  CAS  Google Scholar 

  34. 34. Crowe, N. Y., Uldrich, A. P., Kyparissoudis, K., Hammond, K. J., Hayakawa, Y., Sidobre, S., Keating, R., Kronenberg, M., Smyth, M. J., and Godfrey, D. I. (2003) Glycolipid antigen drives rapid expansion and sustained cytokine production by NK T cells. J. Immunol. 171, 4020–4027.

    PubMed  CAS  Google Scholar 

  35. 35. Parekh, V. V., Wilson, M. T., Olivares-Villagomez, D., Singh, A. K., Eu, L., Wang, C. R., Joyce, S., and Van Kaer, L. (2005) Glycolipid antigen induces long-term natural killer T cell anergy in mice. J. Clin. Invest. 115, 2328–2329.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by VA Merit Review and by Grant AA014418 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Shey, M.R., Ballas, Z.K. (2008). Assessment of Natural Killer (NK) and NKT Cells in Murine Spleens and Livers. In: Nagy, L.E. (eds) Alcohol. Methods in Molecular Biology™, vol 447. Humana Press. https://doi.org/10.1007/978-1-59745-242-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-242-7_18

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-906-2

  • Online ISBN: 978-1-59745-242-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics