Skip to main content

Utility of Small Animal Models of Developmental Programming

  • Protocol
  • First Online:
Investigations of Early Nutrition Effects on Long-Term Health

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1735))

Abstract

Any effective strategy to tackle the global obesity and rising noncommunicable disease epidemic requires an in-depth understanding of the mechanisms that underlie these conditions that manifest as a consequence of complex gene-environment interactions. In this context, it is now well established that alterations in the early life environment, including suboptimal nutrition, can result in an increased risk for a range of metabolic, cardiovascular, and behavioral disorders in later life, a process preferentially termed developmental programming. To date, most of the mechanistic knowledge around the processes underpinning development programming has been derived from preclinical research performed mostly, but not exclusively, in laboratory mouse and rat strains. This review will cover the utility of small animal models in developmental programming, the limitations of such models, and potential future directions that are required to fully maximize information derived from preclinical models in order to effectively translate to clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aiken CE, Ozanne SE (2014) Transgenerational developmental programming. Hum Reprod Update 20:63–75

    Article  PubMed  Google Scholar 

  2. Barker DJ, Winter PD, Osmond C, Margetts B, Simmonds SJ (1989) Weight in infancy and death from ischaemic heart disease. Lancet 2:577–580

    Article  CAS  PubMed  Google Scholar 

  3. Barker DJ (1990) The fetal and infant origins of adult disease. BMJ 301:1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lumey LH, Van Poppel FW (1994) The Dutch famine of 1944–45: mortality and morbidity in past and present generations. Soc Hist Med 7:229–246

    Article  CAS  PubMed  Google Scholar 

  5. Stanner SA, Yudkin JS (2001) Fetal programming and the Leningrad Siege study. Twin Res 4:287–292

    Article  CAS  PubMed  Google Scholar 

  6. Wang N, Wang X, Li Q, Han B, Chen Y, Zhu C et al (2017) The famine exposure in early life and metabolic syndrome in adulthood. Clin Nutr 36:253–259

    Article  PubMed  Google Scholar 

  7. Gluckman PD, Hanson MA, Beedle AS, Spencer HG (2008) Predictive adaptive responses in perspective. Trends Endocrinol Metab 19:109–110

    Article  CAS  PubMed  Google Scholar 

  8. Hales CN, Barker DJ (2001) The thrifty phenotype hypothesis. Br Med Bull 60:5–20

    Article  CAS  PubMed  Google Scholar 

  9. Dickinson H, Moss TJ, Gatford KL, Moritz KM, Akison L, Fullston T et al (2016) A review of fundamental principles for animal models of DOHaD research: an Australian perspective. J Dev Orig Health Dis 7:449–472

    Article  CAS  PubMed  Google Scholar 

  10. Mouse Genome Sequencing Consortium et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  CAS  Google Scholar 

  11. Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S et al (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428:493–521

    Article  CAS  PubMed  Google Scholar 

  12. Carter AM, Enders AC (2016) Placentation in mammals: definitive placenta, yolk sac, and paraplacenta. Theriogenology 86:278–287

    Article  CAS  PubMed  Google Scholar 

  13. Cole LA (2012) hCG, the wonder of today’s science. Reprod Biol Endocrinol 10:24. https://doi.org/10.1186/1477-7827-10-24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schmidt A, Morales-Prieto DM, Pastuschek J, Fröhlich K, Markert UR (2015) Only humans have human placentas: molecular differences between mice and humans. J Reprod Immunol 108:65–71

    Article  CAS  PubMed  Google Scholar 

  15. Forsyth IA (1994) Comparative aspects of placental lactogens: structure and function. Exp Clin Endocrinol 102:244–251

    Article  CAS  PubMed  Google Scholar 

  16. Howie GJ, Sloboda DM, Reynolds CM, Vickers MH (2013) Timing of maternal exposure to a high fat diet and development of obesity and hyperinsulinemia in male rat offspring: same metabolic phenotype, different developmental pathways? J Nutr Metab 2013:517384. https://doi.org/10.1155/2013/517384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Reynolds CM, Li M, Gray C, Vickers MH (2013) Preweaning growth hormone treatment ameliorates adipose tissue insulin resistance and inflammation in adult male offspring following maternal undernutrition. Endocrinology 154:2676–2686

    Article  CAS  PubMed  Google Scholar 

  18. Lecoutre S, Marousez L, Drougard A, Knauf C, Guinez C, Eberlé D et al (2017) Maternal undernutrition programs the apelinergic system of adipose in adult male rat offspring. J Dev Orig Health Dis 8:3–7

    Article  CAS  PubMed  Google Scholar 

  19. Lecoutre S, Breton C (2014) The cellularity of offspring’s adipose tissue is programmed by maternal nutritional manipulations. Adipocytes 3:256–262

    Article  Google Scholar 

  20. Howie GJ, Sloboda DM, Vickers MH (2012) Maternal undernutrition during critical windows of development results in differential and sex-specific effects on postnatal adiposity and related metabolic profiles in adult rat offspring. Br J Nutr 108:298–307

    Article  CAS  PubMed  Google Scholar 

  21. Thompson N et al (2014) Metabolic programming of adipose tissue structure and function in male rat offspring by prenatal undernutrition. Nutr Metab (Lond) 11:50. https://doi.org/10.1186/1743-7075-11-50

    Article  Google Scholar 

  22. Raychaudhuri N, Raychaudhuri S, Thamotharan M, Devaskar SU (2008) Histone code modifications repress glucose transporter 4 expression in the intrauterine growth-restricted offspring. J Biol Chem 283:3611–13626

    Article  CAS  Google Scholar 

  23. Jahan-Mihan A, Rodriguez J, Christie C, Sadeghi M, Zerbe T (2015) The role of maternal dietary proteins in development of metabolic syndrome in offspring. Nutrients 7:9185–9217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yajnik CS, Fall CH, Coyaji KJ, Hirve SS, Rao S, Barker DJ et al (2003) Neonatal anthropometry: the thin-fat Indian baby. The Pune Maternal Nutrition Study. Int J Obes Relat Metab Disord 27:173–180

    Article  CAS  PubMed  Google Scholar 

  25. Snoeck A, Remacle C, Reusens B, Hoet JJ (1990) Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas. Biol Neonate 57:107–118

    Article  CAS  PubMed  Google Scholar 

  26. Sparre T, Reusens B, Cherif H, Larsen MR, Roepstorff P, Fey SJ et al (2003) Intrauterine programming of fetal islet gene expression in rats—effects of maternal protein restriction during gestation revealed by proteome analysis. Diabetologia 46:1497–1511

    Article  CAS  PubMed  Google Scholar 

  27. Langley SC, Browne RF, Jackson AA (1994) Altered glucose tolerance in rats exposed to maternal low protein diets in utero. Comp Biochem Physiol Physiol 109:223–229

    Article  CAS  PubMed  Google Scholar 

  28. Zambrano E, Bautista CJ, Deás M, Martínez-Samayoa PM, González-Zamorano M, Ledesma H et al (2006) A low maternal protein diet during pregnancy and lactation has sex and window of exposure-specific effects on offspring growth and food intake, glucose metabolism and serum leptin in the rat. J Physiol 571:221–230

    Article  CAS  PubMed  Google Scholar 

  29. Chamson-Reig A, Thyssen SM, Hill DJ, Arany E (2009) Exposure of the pregnant rat to low protein diet causes impaired glucose homeostasis in the young adult offspring by different mechanisms in males and females. Exp Biol Med (Maywood) 234:1425–1436

    Article  CAS  Google Scholar 

  30. Claycombe KJ, Vomhof-DeKrey EE, Garcia R, Johnson WT, Uthus E, Roemmich JN et al (2016) Decreased beige adipocyte number and mitochondrial respiration coincide with increased histone methyl transferase (G9a) and reduced FGF21 gene expression in Sprague-Dawley rats fed prenatal low protein and postnatal high-fat diets. J Nutr Biochem 31:113–121

    Article  CAS  PubMed  Google Scholar 

  31. Ferreira DJS, da Silva Pedroza AA, Braz GR, da Silva-Filho RC, Lima TA, Fernandes MP et al (2016) Mitochondrial bioenergetics and oxidative status disruption in brainstem of weaned rats: immediate response to maternal protein restriction. Brain Res 1642:553–561

    Article  CAS  PubMed  Google Scholar 

  32. Claycombe KJ, Roemmich JN, Johnson L, Vomhof-DeKrey EE, Johnson WT (2015) Skeletal muscle Sirt3 expression and mitochondrial respiration are regulated by a prenatal low-protein diet. J Nutr Biochem 26:184–189

    Article  CAS  PubMed  Google Scholar 

  33. Moraes C, Rebelato HJ, Amaral ME, Resende TM, Silva EV, Esquisatto MA et al (2014) Effect of maternal protein restriction on liver metabolism in rat offspring. J Physiol Sci 64:347–355

    Article  CAS  PubMed  Google Scholar 

  34. Brøns C, Jensen CB, Storgaard H, Alibegovic A, Jacobsen S, Nilsson E et al (2008) Mitochondrial function in skeletal muscle is normal and unrelated to insulin action in young men born with low birth weight. J Clin Endocrinol Metab 93:3885–3892

    Article  PubMed  CAS  Google Scholar 

  35. Armitage JA, Poston L, Taylor PD (2008) Developmental origins of obesity and the metabolic syndrome: the role of maternal obesity. Front Horm Res 36:73–84

    Article  PubMed  Google Scholar 

  36. Wigglesworth JS (1964) Experimental growth retardation in the foetal rat. J Pathol Bacteriol 88:1–13

    Article  CAS  PubMed  Google Scholar 

  37. Kollée LA, Monnens LA, Trijbels JM, Veerkamp JH, Janssen AJ (1979) Experimental intrauterine growth retardation in the rat. Evaluation of the Wigglesworth model. Early Hum Dev 3:295–300

    Article  PubMed  Google Scholar 

  38. Neitzke U, Harder T, Schellong K, Melchior K, Ziska T, Rodekamp E et al (2008) Intrauterine growth restriction in a rodent model and developmental programming of the metabolic syndrome: a critical appraisal of the experimental evidence. Placenta 29:246–254

    Article  CAS  PubMed  Google Scholar 

  39. Nüsken K-D, Dötsch J, Rauh M, Rascher W, Schneider H (2008) Uteroplacental insufficiency after bilateral uterine artery ligation in the rat: impact on postnatal glucose and lipid metabolism and evidence for metabolic programming of the offspring by sham operation. Endocrinology 149:1056–1063

    Article  PubMed  CAS  Google Scholar 

  40. Simmons RA, Templeton LJ, Gertz SJ (2001) Intrauterine growth retardation leads to the development of type 2 diabetes in the rat. Diabetes 50:2279–2286

    Article  CAS  PubMed  Google Scholar 

  41. Fu Q, Yu X, Callaway CW, Lane RH, McKnight RA (2009) Epigenetics: intrauterine growth retardation (IUGR) modifies the histone code along the rat hepatic IGF-1 gene. FASEB J 23:2438–2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Park JH, Stoffers DA, Nicholls RD, Simmons RA (2008) Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1. J Clin Invest 118:2316–2324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Thompson RF, Fazzari MJ, Niu H, Barzilai N, Simmons RA, Greally JM (2010) Experimental intrauterine growth restriction induces alterations in DNA methylation and gene expression in pancreatic islets of rats. J Biol Chem 285:15111–15118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cheong JN, Cuffe JSM, Jefferies AJ, Moritz KM, Wlodek ME (2016) Adrenal, metabolic and cardio-renal dysfunction develops after pregnancy in rats born small or stressed by physiological measurements during pregnancy. J Physiol 594:6055–6068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Moritz KM, Mazzuca MQ, Siebel AL, Mibus A, Arena D, Tare M et al (2009) Uteroplacental insufficiency causes a nephron deficit, modest renal insufficiency but no hypertension with ageing in female rats. J Physiol 587:2635–2646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ojeda NB et al (2011) Hypersensitivity to acute ANG II in female growth-restricted offspring is exacerbated by ovariectomy. Am J Physiol Regul Integr Comp Physiol 301:R199–1205

    Article  CAS  Google Scholar 

  47. Black MJ, Siebel AL, Gezmish O, Moritz KM, Wlodek ME (2012) Normal lactational environment restores cardiomyocyte number after uteroplacental insufficiency: implications for the preterm neonate. Am J Physiol Regul Integr Comp Physiol 302:R1101–R1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Johnson AR, Wilkerson MD, Sampey BP, Troester MA, Hayes DN, Makowski L et al (2016) Cafeteria diet-induced obesity causes oxidative damage in white adipose. Biochem Biophys Res Commun 473:545–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sampey BP, Vanhoose AM, Winfield HM, Freemerman AJ, Muehlbauer MJ, Fueger PT et al (2011) Cafeteria diet is a robust model of human metabolic syndrome with liver and adipose inflammation: comparison to high-fat diet. Obesity (Silver Spring) 19:1109–1117

    Article  CAS  Google Scholar 

  50. Barrett P, Mercer JG, Morgan PJ (2016) Preclinical models for obesity research. Dis Model Mech 9:1245–1255

    Article  PubMed  PubMed Central  Google Scholar 

  51. King V, Dakin RS, Liu L, Hadoke PW, Walker BR, Seckl JR et al (2013) Maternal obesity has little effect on the immediate offspring but impacts on the next generation. Endocrinology 154:2514–2524

    Article  CAS  PubMed  Google Scholar 

  52. Crew RC, Waddell BJ, Mark PJ (2016) Maternal obesity induced by a ‘cafeteria’ diet in the rat does not increase inflammation in maternal, placental or fetal tissues in late gestation. Placenta 39:33–40

    Article  CAS  PubMed  Google Scholar 

  53. Bayol SA, Simbi BH, Bertrand JA, Stickland NC (2008) Offspring from mothers fed a ‘junk food’ diet in pregnancy and lactation exhibit exacerbated adiposity that is more pronounced in females. J Physiol 586:3219–3230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Samuelsson A-M, Matthews PA, Argenton M, Christie MR, McConnell JM, Jansen EH et al (2008) Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance. Hypertension 51:383–392

    Article  CAS  PubMed  Google Scholar 

  55. Daniel ZC, Akyol A, McMullen S, Langley-Evans SC (2014) Exposure of neonatal rats to maternal cafeteria feeding during suckling alters hepatic gene expression and DNA methylation in the insulin signalling pathway. Genes Nutr 9:365. https://doi.org/10.1007/s12263-013-0365-3

    Article  PubMed  CAS  Google Scholar 

  56. Chen H, Morris MJ (2009) Differential responses of orexigenic neuropeptides to fasting in offspring of obese mothers. Obesity (Silver Spring) 17:1356–1362

    CAS  Google Scholar 

  57. Mucellini AB et al (2014) Effects of exposure to a cafeteria diet during gestation and after weaning on the metabolism and body weight of adult male offspring in rats. Br J Nutr 111:1499–1506

    Article  CAS  PubMed  Google Scholar 

  58. Buettner R, Schölmerich J, Bollheimer LC (2007) High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity 15:798–808

    Article  CAS  PubMed  Google Scholar 

  59. Lephart ED, Setchell KDR, Handa RJ, Lund TD (2004) Behavioral effects of endocrine-disrupting substances: phytoestrogens. ILAR J 45:443–454

    Article  CAS  PubMed  Google Scholar 

  60. Velloso LA, Folli F, Saad MJ (2015) TLR4 at the crossroads of nutrients, gut microbiota, and metabolic inflammation. Endocr Rev 36:245–271

    Article  CAS  PubMed  Google Scholar 

  61. Vickers MH, Clayton ZE, Yap C, Sloboda DM (2011) Maternal fructose intake during pregnancy and lactation alters placental growth and leads to sex-specific changes in fetal and neonatal endocrine function. Endocrinology 152:1378–1387

    Article  CAS  PubMed  Google Scholar 

  62. Tamura K, Ohki K, Kobayashi R, Uneda K, Azushima K, Ohsawa M et al (2014) Fetal programming by high-sucrose diet during pregnancy affects the vascular angiotensin II receptor–PKC–L-type Ca2+ channels (Cav1.2) axis to enhance pressor responses. Hypertens Res 37:796–798

    Article  CAS  PubMed  Google Scholar 

  63. Marques C, Meireles M, Norberto S, Leite J, Freitas J, Pestana D et al (2015) High-fat diet-induced obesity Rat model: a comparison between Wistar and Sprague-Dawley Rat. Adipocytes 5:11–21

    Article  CAS  Google Scholar 

  64. West DB, Boozer CN, Moody DL, Atkinson RL (1992) Dietary obesity in nine inbred mouse strains. Am J Phys 262:R1025–R1032

    CAS  Google Scholar 

  65. Gray C, Harrison CJ, Segovia SA, Reynolds CM, Vickers MH (2015) Maternal salt and fat intake causes hypertension and sustained endothelial dysfunction in fetal, weanling and adult male resistance vessels. Sci Rep 5:9753. https://doi.org/10.1038/srep09753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Reynolds CM, Gray C, Li M, Segovia SA, Vickers MH (2015) Early life nutrition and energy balance disorders in offspring in later life. Nutrients 7:8090–8111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Reynolds CM, Segovia SA, Zhang XD, Gray C, Vickers MH (2015) Conjugated linoleic acid supplementation during pregnancy and lactation reduces maternal high-fat-diet-induced programming of early-onset puberty and hyperlipidemia in female rat offspring. Biol Reprod 92:40. https://doi.org/10.1095/biolreprod.114.125047

    Article  PubMed  CAS  Google Scholar 

  68. Alfaradhi MZ, Ozanne SE (2011) Developmental programming in response to maternal overnutrition. Front Genet 2:27. https://doi.org/10.3389/fgene.2011.00027

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ribaroff GA, Wastnedge E, Drake AJ, Sharpe RM, Chambers TJG (2017) Animal models of maternal high fat diet exposure and effects on metabolism in offspring: a meta-regression analysis. Obes Rev 18:673–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shapiro A, Mu W, Roncal C, Cheng KY, Johnson RJ, Scarpace PJ (2008) Fructose-induced leptin resistance exacerbates weight gain in response to subsequent high-fat feeding. Am J Physiol Regul Integr Comp Physiol 295:R1370–R1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Johnson RJ et al (2013) Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes 62:3307–3315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mukai Y, Kumazawa M, Sato S (2013) Fructose intake during pregnancy up-regulates the expression of maternal and fetal hepatic sterol regulatory element-binding protein-1c in rats. Endocrine 44:79–86

    Article  CAS  PubMed  Google Scholar 

  73. Zou M et al (2012) Fructose consumption during pregnancy and lactation induces fatty liver and glucose intolerance in rats. Nutr Res 32(8):588–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kaufmann RC, Amankwah KS, Dunaway G, Maroun L, Arbuthnot J, Roddick JW Jr (1981) An animal model of gestational diabetes. Am J Obstet Gynecol 141:479–482

    Article  CAS  PubMed  Google Scholar 

  75. Yamashita H, Shao J, Qiao L, Pagliassotti M, Friedman JE (2003) Effect of spontaneous gestational diabetes on fetal and postnatal hepatic insulin resistance in Lepr(db/+) mice. Pediatr Res 53:411–418

    Article  CAS  PubMed  Google Scholar 

  76. Plows JF, Yu X, Broadhurst R, Vickers MH, Tong C, Zhang H et al (2017) Absence of a gestational diabetes phenotype in the LepRdb/+ mouse is independent of control strain, diet, misty allele, or parity. Sci Rep 7:45130. https://doi.org/10.1038/srep45130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pollock KE, Stevens D, Pennington KA, Thaisrivongs R, Kaiser J, Ellersieck MR et al (2015) Hyperleptinemia during pregnancy decreases adult weight of offspring and is associated with increased offspring locomotor activity in mice. Endocrinology 156:3777–3790

    Article  CAS  PubMed  Google Scholar 

  78. Constância M, Hemberger M, Hughes J, Dean W, Ferguson-Smith A, Fundele R et al (2002) Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature 417:945–948

    Article  PubMed  CAS  Google Scholar 

  79. Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A (1993) Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 7:59–72

    Google Scholar 

  80. Vickers MH, Gluckman PD, Coveny AH, Hofman PL, Cutfield WS, Gertler A et al (2005) Neonatal leptin treatment reverses developmental programming. Endocrinology 146:4211–4216

    Article  CAS  PubMed  Google Scholar 

  81. Itoh H, Yura S, Sagawa N, Kanayama N, Konihi I, Hamamatsu Birth Cohort for Mothers and Children (HBC) Study Team (2011) Neonatal exposure to leptin reduces glucose tolerance in adult mice. Acta Physiol 202:159–164

    Article  CAS  Google Scholar 

  82. Vickers MH, Sloboda DM (2012) Leptin as mediator of the effects of developmental programming. Best Pract Res Clin Endocrinol Metab 26:677–687

    Article  CAS  PubMed  Google Scholar 

  83. Li M, Reynolds CM, Gray C, Vickers MH (2015) Preweaning GH treatment normalizes body growth trajectory and reverses metabolic dysregulation in adult offspring after maternal undernutrition. Endocrinology 156:3228–3238

    Article  CAS  PubMed  Google Scholar 

  84. Reynolds CM, Li M, Gray C, Vickers MH (2013) Pre-weaning growth hormone treatment ameliorates bone marrow macrophage inflammation in adult male rat offspring following maternal undernutrition. PLoS One 8:e68262. https://doi.org/10.1371/journal.pone.0068262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC (2005) Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr 135:1382–1386

    Article  CAS  PubMed  Google Scholar 

  86. Bai SY, Briggs DI, Vickers MH (2012) Increased systolic blood pressure in rat offspring following a maternal low-protein diet is normalized by maternal dietary choline supplementation. J Dev Orig Health Dis 3:342–349

    Article  CAS  PubMed  Google Scholar 

  87. Li M, Reynolds CM, Sloboda DM, Gray C, Vickers MH (2015) Maternal taurine supplementation attenuates maternal fructose-induced metabolic and inflammatory dysregulation and partially reverses adverse metabolic programming in offspring. J Nutr Biochem 26:267–276

    Article  PubMed  CAS  Google Scholar 

  88. Boujendar S, Arany E, Hill D, Remacle C, Reusens B (2003) Taurine supplementation of a low protein diet fed to rat dams normalizes the vascularization of the fetal endocrine pancreas. J Nutr 133:2820–2825

    Article  CAS  PubMed  Google Scholar 

  89. Gray C, Vickers MH, Segovia SA, Zhang XD, Reynolds CM (2015) A maternal high fat diet programmes endothelial function and cardiovascular status in adult male offspring independent of body weight, which is reversed by maternal conjugated linoleic acid (CLA) supplementation. PLoS One 10:e0115994. https://doi.org/10.1371/journal.pone.0115994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Wyrwoll CS, Mark PJ, Mori TA, Puddey IB, Waddell BJ (2006) Prevention of programmed hyperleptinemia and hypertension by postnatal dietary omega-3 fatty acids. Endocrinology 147:599–606

    Article  CAS  PubMed  Google Scholar 

  91. Vega CC, Reyes-Castro LA, Bautista CJ, Larrea F, Nathanielsz PW, Zambrano E (2015) Exercise in obese female rats has beneficial effects on maternal and male and female offspring metabolism. Int J Obes 39:712–719

    Article  CAS  Google Scholar 

  92. Raipuria M, Bahari H, Morris MJ (2015) Effects of maternal diet and exercise during pregnancy on glucose metabolism in skeletal muscle and fat of weanling rats. PLoS One 10:e0120980. https://doi.org/10.1371/journal.pone.0120980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Burdge GC, Lillycrop KA (2012) Folic acid supplementation in pregnancy: are there devils in the detail? Br J Nutr 108:1924–1930

    Article  CAS  PubMed  Google Scholar 

  94. Vickers MH, Gluckman PD, Coveny AH, Hofman PL, Cutfield WS, Gertler A et al (2008) The effect of neonatal leptin treatment on postnatal weight gain in male rats is dependent on maternal nutritional status during pregnancy. Endocrinology 149:1906–1913

    Article  CAS  PubMed  Google Scholar 

  95. Kirk SL et al (2009) Maternal obesity induced by diet in rats permanently influences central processes regulating food intake in offspring. PLoS One 4:e5870. https://doi.org/10.1371/journal.pone.0005870

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Godfrey KM, Sheppard A, Gluckman PD, Lillycrop KA, Burdge GC, McLean C et al (2011) Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes 60:1528–1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Albert BB, Derraik JG, Cameron-Smith D, Hofman PL, Tumanov S, Villas-Boas SG et al (2015) Fish oil supplements in New Zealand are highly oxidised and do not meet label content of n-3 PUFA. Sci Rep 5:7928. https://doi.org/10.1038/srep07928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Albert BB, Vickers MH, Gray C, Reynolds CM, Segovia SA, Derraik JG et al (2016) Oxidized fish oil in rat pregnancy causes high newborn mortality and increases maternal insulin resistance. Am J Physiol Regul Integr Comp Physiol 311:R497–R504

    Article  PubMed  Google Scholar 

  99. Beltowski J, Wójcicka G, Borkowska E (2002) Human leptin stimulates systemic nitric oxide production in the rat. Obes Res 10:939–946

    Article  CAS  PubMed  Google Scholar 

  100. Bełtowski J, Wjcicka G, Górny D, Marciniak A (2002) Human leptin administered intraperitoneally stimulates natriuresis and decreases renal medullary Na+, K+-ATPase activity in the rat—impaired effect in dietary-induced obesity. Med Sci Monit 8:BR221–BR229

    PubMed  Google Scholar 

  101. Jackson EK, Herzer WA (1999) A comparison of the natriuretic/diuretic effects of rat vs. human leptin in the rat. Am J Phys 277:F761–F765

    CAS  Google Scholar 

  102. Tannenbaum C, Schwarz JM, Clayton JA, de Vries GJ, Sullivan C (2016) Evaluating sex as a biological variable in preclinical research: the devil in the details. Biol Sex Differ 7:13. https://doi.org/10.1186/s13293-016-0066-x

    Article  PubMed  PubMed Central  Google Scholar 

  103. Bale TL (2016) The placenta and neurodevelopment: sex differences in prenatal vulnerability. Dialogues Clin Neurosci 18:459–464

    PubMed  PubMed Central  Google Scholar 

  104. Reynolds CM, Vickers MH, Harrison CJ, Segovia SA, Gray C (2015) Maternal high fat and/or salt consumption induces sex-specific inflammatory and nutrient transport in the rat placenta. Physiol Rep 3. pii: e12399. doi: 10.14814/phy2.12399

    Google Scholar 

  105. Mauvais-Jarvis F, Arnold AP, Reue K (2017) A guide for the design of pre-clinical studies on sex differences in metabolism. Cell Metab 25:1216–1230

    Article  CAS  PubMed  Google Scholar 

  106. Li M, Reynolds CM, Sloboda DM, Gray C, Vickers MH (2013) Effects of taurine supplementation on hepatic markers of inflammation and lipid metabolism in mothers and offspring in the setting of maternal obesity. PLoS One 8:e76961. https://doi.org/10.1371/journal.pone.0076961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ojeda NB, Grigore D, Yanes LL, Iliescu R, Robertson EB, Zhang H et al (2007) Testosterone contributes to marked elevations in mean arterial pressure in adult male intrauterine growth restricted offspring. Am J Physiol Regul Integr Comp Physiol 292:R758–R763. https://doi.org/10.1152/ajpregu.00311.2006

    Article  CAS  PubMed  Google Scholar 

  108. Sampson AK et al (2012) The arterial depressor response to chronic low-dose angiotensin II infusion in female rats is estrogen dependent. Am J Physiol Regul Integr Comp Physiol 302:R159–R165. https://doi.org/10.1152/ajpregu.00256.2011

    Article  CAS  PubMed  Google Scholar 

  109. Link JC, Chen X, Arnold AP, Reue K (2013) Metabolic impact of sex chromosomes. Adipocytes 2:74–79

    Article  Google Scholar 

  110. Arnold AP, Chen X (2009) What does the ‘four core genotypes’ mouse model tell us about sex differences in the brain and other tissues? Front Neuroendocrinol 30:1–9

    Article  PubMed  Google Scholar 

  111. Arnold AP (2014) Conceptual frameworks and mouse models for studying sex differences in physiology and disease: why compensation changes the game. Exp Neurol 259:2–9

    Article  PubMed  Google Scholar 

  112. Burgoyne PS, Mahadevaiah SK, Perry J, Palmer SJ, Ashworth A (1998) The Y* rearrangement in mice: new insights into a perplexing PAR. Cytogenet Cell Genet 80:37–40

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark H. Vickers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Reynolds, C.M., Vickers, M.H. (2018). Utility of Small Animal Models of Developmental Programming. In: Guest, P. (eds) Investigations of Early Nutrition Effects on Long-Term Health. Methods in Molecular Biology, vol 1735. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7614-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7614-0_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7613-3

  • Online ISBN: 978-1-4939-7614-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics