Skip to main content

Fungal-Grade Reagents and Materials for Molecular Analysis

  • Protocol
  • First Online:
Human Fungal Pathogen Identification

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1508))

Abstract

Fungal DNA is present at very low loads in clinical specimens. Molecular detection by amplification assays generally is a challenge because of a potentially multiple input of contaminating DNA from exogenous sources. Besides airborne, handling and cross-contamination, materials and reagents used in the molecular laboratory can contain microbial DNA which is a long underestimated potential source of false positive results. In this contribution decontamination procedures of materials and reagents and the selection of certified microbial DNA-free components for sample collection, DNA extraction, and PCR amplification are discussed with respect to the aim of building up a reliable molecular system for the diagnosis of fungal organisms at the limit of detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wain J, Diep TS, Ho VA, Walsh AM, Hoa NTT, Parry CM, White NJ (1998) Quantitation of bacteria in blood of typhoid fever patients and relationship between counts and clinical features, transmissibility, and antibiotic resistance. J Clin Microbiol 36:1683–1687

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Phillips SE, Bradley JS (1990) Bacteremia detected by lysis direct plating in a neonatal intensive care unit. J Clin Microbiol 28:1–4

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Liesenfeld O, Lehman L, Hunfeld KP, Kost G (2014) Molecular diagnosis of sepsis: new aspects and recent developments. Eur J Microbiol Immunol 4:1–25

    Article  CAS  Google Scholar 

  4. Salter JJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, Turner P, Parkhill J, Loman NJ, Walker AW (2014) Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 12:87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rogers GB, Bruce KD (2010) Next-generation sequencing in the analysis of human microbiota. Mol Diagn Ther 14:343–350

    Article  CAS  PubMed  Google Scholar 

  6. Ballantyne KN, Salemi R, Guarino F, Pearson JR, Garlepp D, Fowler S, van Oorschot RAH (2015) DNA contamination minimisation—finding an effective cleaning method. Aust J For Sci. doi:10.1080/00450618.2015.1004195

    Google Scholar 

  7. Champlot S, Berthelot C, Pruvost M, Bennett EA, Grange T, Geigl EM (2010) An efficient multistrategy DNA decontamination procedure of PCR reagents for hypersensitive PCR applications. PLoS One 5(9), e13042. doi:10.1371/journal.pone.0013042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Millar BC, Xu J, Moore JE (2002) Risk assessment models and contamination management: implications for broad-range ribosomal DNA PCR as a diagnostic tool in medical bacteriology. J Clin Microbiol 40:1575–1580

    Article  PubMed  PubMed Central  Google Scholar 

  9. Harrison E, Stahlberger T, Whelan R, Sugrue M, Wingard JR, Alexander BD, Follet SA, Bowyer P, Denning DW (2010) Aspergillus DNA contamination in blood collection tubes. Diagn Microbiol Infect Dis 67:392–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Alexander B, Denning D, Perlin D, Harrison E, Wingard J, Sugrue M, Bowyer P (2008) Fungal DNA contamination of blood collection tubes. Poster D-1095, Diagnosis of fungal infections. Infect Dis Soc Am

    Google Scholar 

  11. Keay S, Zang C-O, Baldwin BR et al (1998) Polymerase chain reaction amplification of bacterial 16S rRNA genes from cold-cup biopsy forceps. J Urol 160:2229–2231

    Article  CAS  PubMed  Google Scholar 

  12. Loeffler J, Hebart H, Bialek R, Hagmeyer L, Schmidt D, Serey FP, Hartmann M, Eucker J, Einsele H (1999) Contaminations occurring in fungal PCR assays. J Clin Microbiol 37:1200–1202

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Mohammadi T, Reesink HW, Vandenbroucke-Grauls CMJE, Savelkoul PHM (2005) Removal of contaminating DNA from commercial nucleic acid extraction kit reagents. J Microbiol Meth 61:285–288

    Article  CAS  Google Scholar 

  14. Evans GE, Murdoch DR, Anderson TP et al (2003) Contamination of Qiagen DNA extraction kits with Legionella DNA. J Clin Microbiol 41:3452–3453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. van der Zee A, Peeters M, de Jong C et al (2002) Qiagen DNA extraction kits for sample preparation for Legionella PCR are not suitable for diagnostic purposes. J Clin Microbiol 40:1126

    Google Scholar 

  16. Fredricks DN, Smith CS, Meier A (2005) Comparison of six DNA extraction methods for recovery of fungal DNA as assessed by quantitative PCR. J Clin Microbiol 43:5122–5128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Queipo-Ortuño MI, Tena F, Colmenero JD, Morata P (2008) Comparison of seven commercial DNA extraction kits for the recovery of Brucella DNA from spiked human serum samples using real-time PCR. Eur J Clin Microbiol Infect Dis 27:109–114

    Google Scholar 

  18. Own results using DNA extraction part of the complete diagnostic system, SepsiTest™, including buffers, reagents and plastic consumables. The limit of detection in the test’s 16S and 18S rRNA gene assays was at <5cfu S. aureus and C. albicans/25μl assay, respectively

    Google Scholar 

  19. Bartram AK, Poon C, Neufeld JD (2009) Nucleic acid contamination of glycogen used in nucleic acid precipitation and assessment of linear polyacrylamide as an alternative co-precipitant. Biotechniques 47:1019–1022

    Article  CAS  PubMed  Google Scholar 

  20. Chang S-S, Hsu H-L, Cheng J-C, Tseng CP (2011) An efficient strategy for broad-range detection of low abundance bacteria without DNA decontamination of PCR reagents. PLoS One 6:1–9

    Google Scholar 

  21. Mühl H, Kochem AJ, Disqué C, Sakka SG (2008) Activity and DNA contamination of commercial polymerase chain reaction reagents for the universal 16S rDNA real-time polymerase chain reaction detection of bacterial pathogens in blood. Diagn Microbiol Infect Dis 66:41–49

    Article  CAS  PubMed  Google Scholar 

  22. Spangler R, Goddard NL, Thaler DS (2009) Optimizing Taq polymerase concentration for improved signal-to-noise in the broad range detection of low abundance bacteria. PLoS One 4, e7010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tilburg JJHC, Nabuurs-Franssen MH, van Hannen EJ et al (2010) Contamination of commercial PCR master mix with DNA from Coxiella burnetii. J Clin Microbiol 48:4634–4635

    Google Scholar 

  24. Goto M, Ando S, Hachisuka Y, Yoneyama T (2005) Contamination of diverse nifH and nifH-like DNA into commercial PCR primers. FEMS Microbiol Lett 246:33–38

    Article  CAS  PubMed  Google Scholar 

  25. Own results. Among three manufacturers, the product of one showed severe contamination of the tips (shown). The other products (PCR tubes, pipette tips) were continuously free of any DNA contamination as analysed by Molzym 16S and 18S rRNA gene PCR assays, Mastermix 16S Complete and Mastermix 18S Complete (n=32 to 320; different lots tested)

    Google Scholar 

  26. Morono Y, Yamamoto K, Inagaki F (2012) Radical gas-based DNA decontamination for ultra-sensitive molecular experiments. Microbes Environ 27:512–514

    Article  PubMed  PubMed Central  Google Scholar 

  27. Motley TS, Picuri JM, Crowder CD et al (2014) Improved multiple displacement amplification (iMDA) and ultraclean reagents. BMC Genomics 15:443. DOI: 10.1186/1471-2164-15-443

  28. Wiesinger-Mayr H, Jordana-Lluch E, Martró E et al (2011) Establishment of a semi-automated pathogen DNA isolation from whole blood and comparison with commercially available kits. J Microbiol Meth 85:206–213

    Article  CAS  Google Scholar 

  29. Handschur M, Karlic H, Hertl C et al (2009) Preanalytic removal of human DNA eliminates false signals in general 16S rDNA PCR monitoring of bacterial pathogens in blood. Comp Immunol Microbiol Infect Dis 32:207–219

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

The work was supported by the European Union, FP7-HEALTH-2013-INNOVATION-1, project ID 602125: Optimized Diagnostics for Improved Treatment Stratification in Invasive Fungal Diseases (FUNGITECT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Lorenz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lorenz, M.G., Lustig, M., Linow, M. (2017). Fungal-Grade Reagents and Materials for Molecular Analysis. In: Lion, T. (eds) Human Fungal Pathogen Identification. Methods in Molecular Biology, vol 1508. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6515-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6515-1_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6513-7

  • Online ISBN: 978-1-4939-6515-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics