Skip to main content

Measuring the Adjuvant Activity of RNA Vaccines

  • Protocol
  • First Online:
RNA Vaccines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1499))

Abstract

mRNA has recently arisen as a promising new drug class with the potential to be applied to various therapeutic modalities, including protein replacement and vaccination against cancer and infectious diseases. Numerous approaches have been pursued to develop potent mRNA vaccines, many of them have proved to be successful and have already entered human clinical trials. RNA, especially in vitro transcribed, is extremely immunogenic as it induces innate immune responses through the activation of a variety of pattern recognition receptors. This feature of RNA is potentially beneficial for vaccine development, where antigen-encoding RNA might also function as an adjuvant to elicit potent antigen-specific T and B cell immune responses. Here, we describe the methods that can be used to evaluate the immunogenicity of RNA vaccines in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Martinon F, Krishnan S, Lenzen G et al (1993) Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur J Immunol 23:1719–1722

    Article  CAS  PubMed  Google Scholar 

  2. Fotin-Mleczek M, Duchardt KM, Lorenz C et al (2011) Messenger RNA-based vaccines with dual activity induce balanced TLR-7 dependent adaptive immune responses and provide antitumor activity. J Immunother 34:1–15

    Article  CAS  PubMed  Google Scholar 

  3. Petsch B, Schnee M, Vogel AB et al (2012) Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat Biotechnol 30:1210–1216

    Article  CAS  PubMed  Google Scholar 

  4. Geall AJ, Verma A, Otten GR et al (2012) Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci U S A 109:14604–14609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hekele A, Bertholet S, Archer J et al (2013) Rapidly produced SAM® vaccine against H7N9 influenza is immunogenic in mice. Emerg Microbes Infect 2:e52

    Article  PubMed  PubMed Central  Google Scholar 

  6. Brito LA, Chan M, Shaw CA et al (2014) A cationic nanoemulsion for the delivery of next-generation RNA vaccines. Mol Ther 22:2118–2129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bogers WM, Oostermeijer H, Mooij P et al (2015) Potent immune responses in rhesus macaques induced by nonviral delivery of a self-amplifying RNA vaccine expressing HIV type 1 envelope with a cationic nanoemulsion. J Infect Dis 211:947–955

    Article  PubMed  Google Scholar 

  8. Brazzoli M, Magini D, Bonci A et al (2015) Induction of broad-based immunity and protective efficacy by self-amplifying mRNA vaccines encoding influenza virus hemagglutinin. J Virol. doi:10.1128/JVI.01786-15

    PubMed  PubMed Central  Google Scholar 

  9. Kreiter S, Selmi A, Diken M et al (2010) Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res 70:9031–9040

    Article  CAS  PubMed  Google Scholar 

  10. Van Lint S, Wilgenhof S, Heirman C et al (2014) Optimized dendritic cell-based immunotherapy for melanoma: the TriMix-formula. Cancer Immunol Immunother 63:959–967

    Article  PubMed  Google Scholar 

  11. Wilgenhof S, Van Nuffel AM, Benteyn D et al (2013) A phase IB study on intravenous synthetic mRNA electroporated dendritic cell immunotherapy in pretreated advanced melanoma patients. Ann Oncol 24:2686–2693

    Article  CAS  PubMed  Google Scholar 

  12. Weissman D, Ni H, Scales D et al (2000) HIV gag mRNA transfection of dendritic cells (DC) delivers encoded antigen to MHC class I and II molecules, causes DC maturation, and induces a potent human in vitro primary immune response. J Immunol 165:4710–4717

    Article  CAS  PubMed  Google Scholar 

  13. Thess A, Grund S, Mui BL et al (2015) Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals. Mol Ther 23:1456–1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kariko K, Buckstein M, Ni H et al (2005) Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23:165–175

    Article  CAS  PubMed  Google Scholar 

  15. Kariko K, Muramatsu H, Welsh FA et al (2008) Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther 16:1833–1840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kariko K, Muramatsu H, Ludwig J et al (2011) Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res 39:e142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Midoux P, Pichon C (2015) Lipid-based mRNA vaccine delivery systems. Expert Rev Vaccines 14:221–234

    Article  CAS  PubMed  Google Scholar 

  18. Harrell MI, Iritani BM, Ruddell A (2008) Lymph node mapping in the mouse. J Immunol Methods 332:170–174

    Article  CAS  PubMed  Google Scholar 

  19. Andorko JI, Tostanoski LH, Solano E et al (2014) Intra-lymph node injection of biodegradable polymer particles. J Vis Exp 83:e50984

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Drew Weissman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Pardi, N., Weissman, D. (2017). Measuring the Adjuvant Activity of RNA Vaccines. In: Kramps, T., Elbers, K. (eds) RNA Vaccines. Methods in Molecular Biology, vol 1499. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6481-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6481-9_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6479-6

  • Online ISBN: 978-1-4939-6481-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics