Skip to main content

Plant Expression of Trans-Encapsidated Viral Nanoparticle Vaccines with Animal RNA Replicons

  • Protocol
  • First Online:
RNA Vaccines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1499))

Abstract

In this protocol, we outline how to produce a live viral nanoparticle vaccine in a biosafety level 1 (BSL1) environment. An animal viral vector RNA encapsidated with tobacco mosaic virus (TMV) coat protein can be fully assembled in planta. Agrobacterium cultures containing each component are inoculated together into tobacco leaves and the self-assembled hybrid nanoparticle vaccine is harvested 4 days later and purified with a simple PEG precipitation. The viral RNA delivery vector is derived from the BSL1 insect virus, Flock House virus (FHV), and replicates in human and animal cells but does not spread systemically. A polyethylene glycol purification protocol is also provided to collect and purify these vaccines for immunological tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303:1529–1531

    Article  CAS  PubMed  Google Scholar 

  2. Lund JM, Alexopoulou L, Sato A, Karow M, Adams NC, Gale NW, Iwasaki A, Flavell RA (2004) Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci U S A 101:5598–5603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schwarz K, Storni T, Manolova V, Didierlaurent A, Sirard JC, Rothlisberger P, Bachmann MF (2003) Role of Toll-like receptors in costimulating cytotoxic T cell responses. Eur J Immunol 33:1465–1470

    Article  CAS  PubMed  Google Scholar 

  4. Fraile A, Escriu F, Aranda MA, Malpica JM, Gibbs AJ, Garcia-Arenal F (1997) A century of tobamovirus evolution in an Australian population of Nicotiana glauca. J Virol 71:8316–8320

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Turner DR, Butler PJ (1986) Essential features of the assembly origin of tobacco mosaic virus RNA as studied by directed mutagenesis. Nucleic Acids Res 14:9229–9242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Smith ML, Corbo T, Bernales J, Lindbo JA, Pogue GP, Palmer KE, McCormick AA (2007) Assembly of trans-encapsidated recombinant viral vectors engineered from tobacco mosaic virus and Semliki Forest virus and their evaluation as immunogens. Virology 358:321–333

    Article  CAS  PubMed  Google Scholar 

  7. Sacher R, French R, Ahlquist P (1988) Hybrid brome mosaic virus RNAs express and are packaged in tobacco mosaic virus coat protein in vivo. Virology 167:15–24

    Article  CAS  PubMed  Google Scholar 

  8. Zhou Y, Maharaj PD, Mallajosyula JK, McCormick AA, Kearney CM (2015) In planta production of flock house virus transencapsidated RNA and its potential use as a vaccine. Mol Biotechnol 57:325–336

    Article  CAS  PubMed  Google Scholar 

  9. Kemnade JO, Seethammagari M, Collinson-Pautz M, Kaur H, Spencer DM, McCormick AA (2014) Tobacco mosaic virus efficiently targets DC uptake, activation and antigen-specific T cell responses in vivo. Vaccine 32:4228–4233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lundstrom K (2003) Semliki Forest virus vectors for gene therapy. Expert Opin Biol Ther 3:771–777

    Article  CAS  PubMed  Google Scholar 

  11. Johnson KL, Ball LA (1999) Induction and maintenance of autonomous flock house virus RNA1 replication. J Virol 73:7933–7942

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Francis KE, Spiker S (2005) Identification of Arabidopsis thaliana transformants without selection reveals a high occurrence of silenced T-DNA integrations. Plant J 41:464–477

    Article  CAS  PubMed  Google Scholar 

  13. De Buck S, Jacobs A, Van Montagu M, Depicker A (1998) Agrobacterium tumefaciens transformation and cotransformation frequencies of Arabidopsis thaliana root explants and tobacco protoplasts. Mol Plant-Microbe Interact 11:449–457

    Article  PubMed  Google Scholar 

  14. van der Meer IM (2006) Agrobacterium-mediated transformation of Petunia leaf discs. Methods Mol Biol 318:265–272

    PubMed  Google Scholar 

  15. Liu Z, Kearney CM (2010) An efficient Foxtail mosaic virus vector system with reduced environmental risk. BMC Biotechnol 10:88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Selling BH, Allison RF, Kaesberg P (1990) Genomic RNA of an insect virus directs synthesis of infectious virions in plants. Proc Natl Acad Sci U S A 87:434–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dasgupta R, Cheng LL, Bartholomay LC, Christensen BM (2003) Flock house virus replicates and expresses green fluorescent protein in mosquitoes. J Gen Virol 84:1789–1797

    Article  CAS  PubMed  Google Scholar 

  18. Maharaj PD, Mallajosyula JK, Lee G, Thi P, Zhou Y, Kearney CM, McCormick AA (2014) Nanoparticle encapsidation of flock house virus by auto assembly of tobacco mosaic virus coat protein. Int J Mol Sci 15:18540–18556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Scholthof HB (2006) The Tombusvirus-encoded P19: from irrelevance to elegance. Nat Rev Microbiol 4:405–411

    Article  CAS  PubMed  Google Scholar 

  20. Odell JT, Nagy F, Chua NH (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812

    Article  CAS  PubMed  Google Scholar 

  21. Lindbo JA (2007) High-efficiency protein expression in plants from agroinfection-compatible tobacco mosaic virus expression vectors. BMC Biotechnol 7:52

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schrammeijer B, Beijersbergen A, Idler KB, Melchers LS, Thompson DV, Hooykaas PJ (2000) Sequence analysis of the vir-region from Agrobacterium tumefaciens octopine Ti plasmid pTi15955. J Exp Bot 51:1167–1169

    Article  CAS  PubMed  Google Scholar 

  23. Sheikholeslam SN, Weeks DP (1987) Acetosyringone promotes high efficiency transformation of Arabidopsis thaliana explants by Agrobacterium tumefaciens. Plant Mol Biol 8:291–298

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. Kearney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zhou, Y., McCormick, A.A., Kearney, C.M. (2017). Plant Expression of Trans-Encapsidated Viral Nanoparticle Vaccines with Animal RNA Replicons. In: Kramps, T., Elbers, K. (eds) RNA Vaccines. Methods in Molecular Biology, vol 1499. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6481-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6481-9_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6479-6

  • Online ISBN: 978-1-4939-6481-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics