Skip to main content

Self-Replicating RNA Vaccine Delivery to Dendritic Cells

  • Protocol
  • First Online:
RNA Vaccines

Abstract

Most current vaccines are either inactivated pathogen-derived or protein/peptide-based, although attenuated and vector vaccines have also been developed. The former induce at best moderate protection, even as multimeric antigen, due to limitations in antigen loads and therefore capacity for inducing robust immune defense. While attenuated and vector vaccines offer advantages through their replicative nature, drawbacks and risks remain with potential reversion to virulence and interference from preexisting immunity. New advances averting these problems are combining self-amplifying replicon RNA (RepRNA) technology with nanotechnology. RepRNA are large self-replicating RNA molecules (12–15 kb) derived from viral genomes defective in at least one structural protein gene. They provide sustained antigen production, effectively increasing vaccine antigen payloads over time, without the risk of producing infectious progeny. The major limitation with RepRNA is RNase-sensitivity and inefficient uptake by dendritic cells (DCs)—absolute requirements for efficacious vaccine design. We employed biodegradable delivery vehicles to protect the RepRNA and promote DC delivery. Encapsulating RepRNA into chitosan nanoparticles, as well as condensing RepRNA with polyethylenimine (PEI), cationic lipids, or chitosans, has proven effective for delivery to DCs and induction of immune responses in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atkins GJ, Fleeton MN, Sheahan BJ (2008) Therapeutic and prophylactic applications of alphavirus vectors. Expert Rev Mol Med 10:e33

    Article  PubMed  Google Scholar 

  2. Khromykh AA (2000) Replicon-based vectors of positive strand RNA viruses. Curr Opin Mol Ther 2:555–569

    CAS  PubMed  Google Scholar 

  3. Ljungberg K, Liljestrom P (2015) Self-replicating alphavirus RNA vaccines. Expert Rev Vaccines 14:177–194

    Article  CAS  PubMed  Google Scholar 

  4. Lundstrom K (2002) Alphavirus-based vaccines. Curr Opin Mol Ther 4:28–34

    CAS  PubMed  Google Scholar 

  5. McCullough KC, Bassi I, Démoulins T, Thomann-Harwood LJ, Ruggli N (2012) Functional RNA delivery targeted to dendritic cells by synthetic nanoparticles. Ther Deliv 3:1077–1099

    Article  CAS  PubMed  Google Scholar 

  6. Pijlman GP, Suhrbier A, Khromykh AA (2006) Kunjin virus replicons: an RNA-based, non-cytopathic viral vector system for protein production, vaccine and gene therapy applications. Expert Opin Biol Ther 6:135–145

    Article  CAS  PubMed  Google Scholar 

  7. Rayner JO, Dryga SA, Kamrud KI (2002) Alphavirus vectors and vaccination. Rev Med Virol 12:279–296

    Article  CAS  PubMed  Google Scholar 

  8. Frey CF, Bauhofer O, Ruggli N, Summerfield A, Hofmann MA, Tratschin JD (2006) Classical swine fever virus replicon particles lacking the Erns gene: a potential marker vaccine for intradermal application. Vet Res 37:655–670

    Article  CAS  PubMed  Google Scholar 

  9. Maurer R, Stettler P, Ruggli N, Hofmann MA, Tratschin JD (2005) Oronasal vaccination with classical swine fever virus (CSFV) replicon particles with either partial or complete deletion of the E2 gene induces partial protection against lethal challenge with highly virulent CSFV. Vaccine 23:3318–3328

    Article  CAS  PubMed  Google Scholar 

  10. Moser C, Stettler P, Tratschin JD, Hofmann MA (1999) Cytopathogenic and noncytopathogenic RNA replicons of classical swine fever virus. J Virol 73:7787–7794

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Suter R, Summerfield A, Thomann-Harwood LJ, McCullough KC, Tratschin JD, Ruggli N (2011) Immunogenic and replicative properties of classical swine fever virus replicon particles modified to induce IFN-alpha/beta and carry foreign genes. Vaccine 29:1491–1503

    Article  CAS  PubMed  Google Scholar 

  12. Démoulins T, Milona P, Englezou PC, Ebensen T, Schulze K, Suter R, Pichon C, Midoux P, Guzman CA, Ruggli N, McCullough KC (2016) Polyethylenimine-based polyplex delivery of self-replicating RNA vaccines. Nanomedicine 12(3):711–722

    PubMed  Google Scholar 

  13. McCullough KC, Bassi I, Milona P, Suter R, Thomann-Harwood L, Englezou P, Démoulins T, Ruggli N (2014) Self-replicating replicon-RNA delivery to dendritic cells by chitosan-nanoparticles for translation in vitro and in vivo. Mol Ther Nucleic Acids 3:e173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tratschin JD, Ruggli N, McCullough KC (2008) Pestivirus replicons providing an RNA-based viral vector system. PCT/EP2009/003892 WO 2009146867

    Google Scholar 

  15. McCullough KC, Milona P, Démoulins T, Englezou P, Ruggli N (2015) Dendritic cell targets for self-replicating RNA vaccines. J Blood Lymph 5:132. doi:10.4172/2165-7831.1000132

    Google Scholar 

  16. McCullough KC, Milona P, Thomann-Harwood L, Démoulins T, Englezou P, Suter R, Ruggli N (2014) Self-amplifying replicon RNA vaccine delivery to dendritic cells by synthetic nanoparticles. Vaccines 2:735–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811

    Article  CAS  PubMed  Google Scholar 

  18. Medzhitov R, Janeway C Jr (2000) Innate immune recognition: mechanisms and pathways. Immunol Rev 173:89–97

    Article  CAS  PubMed  Google Scholar 

  19. Mellman I, Steinman RM (2001) Dendritic cells: specialized and regulated antigen processing machines. Cell 106:255–258

    Article  CAS  PubMed  Google Scholar 

  20. Steinman RM (1991) The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9:271–296

    Article  CAS  PubMed  Google Scholar 

  21. Steinman RM (2012) Decisions about dendritic cells: past, present, and future. Annu Rev Immunol 30:1–22

    Article  CAS  PubMed  Google Scholar 

  22. Steinman RM, Hemmi H (2006) Dendritic cells: translating innate to adaptive immunity. Curr Top Microbiol Immunol 311:17–58

    CAS  PubMed  Google Scholar 

  23. Summerfield A, Horn MP, Lozano G, Carrasco CP, Atze K, McCullough K (2003) C-kit positive porcine bone marrow progenitor cells identified and enriched using recombinant stem cell factor. J Immunol Methods 280:113–123

    Article  CAS  PubMed  Google Scholar 

  24. Carrasco CP, Rigden RC, Schaffner R, Gerber H, Neuhaus V, Inumaru S, Takamatsu H, Bertoni G, McCullough KC, Summerfield A (2001) Porcine dendritic cells generated in vitro: morphological, phenotypic and functional properties. Immunology 104:175–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kasza L, Shadduck JA, Christofinis GJ (1972) Establishment, viral susceptibility and biological characteristics of a swine kidney cell line SK-6. Res Vet Sci 13:46–51

    CAS  PubMed  Google Scholar 

  26. Ruggli N, Tratschin JD, Mittelholzer C, Hofmann MA (1996) Nucleotide sequence of classical swine fever virus strain Alfort/187 and transcription of infectious RNA from stably cloned full-length cDNA. J Virol 70:3478–3487

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ruggli N, Summerfield A, Fiebach AR, Guzylack-Piriou L, Bauhofer O, Lamm CG, Waltersperger S, Matsuno K, Liu L, Gerber M, Choi KH, Hofmann MA, Sakoda Y, Tratschin JD (2009) Classical swine fever virus can remain virulent after specific elimination of the interferon regulatory factor 3-degrading function of Npro. J Virol 83:817–829

    Article  CAS  PubMed  Google Scholar 

  28. Ruggli N, Tratschin JD, Schweizer M, McCullough KC, Hofmann MA, Summerfield A (2003) Classical swine fever virus interferes with cellular antiviral defense: evidence for a novel function of N(pro). J Virol 77:7645–7654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mayer D, Hofmann MA, Tratschin JD (2004) Attenuation of classical swine fever virus by deletion of the viral N(pro) gene. Vaccine 22:317–328

    Article  CAS  PubMed  Google Scholar 

  30. Lorenz RJ, Bogel K (1973) Laboratory techniques in rabies: methods of calculation. Monograph series. World Health Organization 23(23):321–335

    Google Scholar 

  31. Bertrand E, Goncalves C, Billiet L, Gomez JP, Pichon C, Cheradame H, Midoux P, Guegan P (2011) Histidinylated linear PEI: a new efficient non-toxic polymer for gene transfer. Chem Commun (Camb) 47:12547–12549

    Article  CAS  Google Scholar 

  32. Sharma R, Ghasparian A, Robinson JA, McCullough KC (2012) Synthetic virus-like particles target dendritic cell lipid rafts for rapid endocytosis primarily but not exclusively by macropinocytosis. PLoS One 7:e43248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Python S, Gerber M, Suter R, Ruggli N, Summerfield A (2013) Efficient sensing of infected cells in absence of virus particles by plasmacytoid dendritic cells is blocked by the viral ribonuclease E(rns.). PLoS Pathog 9:e1003412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Démoulins T, Bassi I, Thomann-Harwood L, Jandus C, Kaeuper P, Simon HU, von Gunten S, McCullough KC (2013) Alginate-coated chitosan nanogel capacity to modulate the effect of TLR ligands on blood dendritic cells. Nanomedicine 9:806–817

    PubMed  Google Scholar 

  35. Démoulins T, Milona P, McCullough KC (2014) Alginate-coated chitosan nanogels differentially modulate class-A and class-B CpG-ODN targeting of dendritic cells and intracellular delivery. Nanomedicine 10:1739–1749

    PubMed  Google Scholar 

  36. Thomann-Harwood LJ, Kaeuper P, Rossi N, Milona P, Herrmann B, McCullough KC (2013) Nanogel vaccines targeting dendritic cells: contributions of the surface decoration and vaccine cargo on cell targeting and activation. J Control Release 166:95–105

    Article  CAS  PubMed  Google Scholar 

  37. Liniger M, Summerfield A, Zimmer G, McCullough KC, Ruggli N (2012) Chicken cells sense influenza A virus infection through MDA5 and CARDIF signaling involving LGP2. J Virol 86:705–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mittal A, Schulze K, Ebensen T, Weissmann S, Hansen S, Guzman CA, Lehr CM (2015) Inverse micellar sugar glass (IMSG) nanoparticles for transfollicular vaccination. J Control Release 206:140–152

    Article  CAS  PubMed  Google Scholar 

  39. Mittal A, Schulze K, Ebensen T, Weissmann S, Hansen S, Lehr CM, Guzman CA (2015) Efficient nanoparticle-mediated needle-free transcutaneous vaccination via hair follicles requires adjuvantation. Nanomedicine 11:147–154

    CAS  PubMed  Google Scholar 

  40. Rharbaoui F, Drabner B, Borsutzky S, Winckler U, Morr M, Ensoli B, Muhlradt PF, Guzman CA (2002) The Mycoplasma-derived lipopeptide MALP-2 is a potent mucosal adjuvant. Eur J Immunol 32:2857–2865

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thank Markus Gerber and Samira Locher for their help and input with the RepRNA technology, and Brigitte Herrmann for helping with the DC studies. We are also grateful to Patrick Midoux and Laure Magrangeas-Janot for help with the polyplex technology, Olivier Zelphati and Florent Poulhes for help with the lipoplex technology, and Kai Schulze for the adaptive immune response profiling. The work was funded by the Marie Curie IAPP Project Replixcel (251420) and the EU FP7 Project UniVax (HEALTH-F3-2013-60173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Démoulins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Démoulins, T. et al. (2017). Self-Replicating RNA Vaccine Delivery to Dendritic Cells. In: Kramps, T., Elbers, K. (eds) RNA Vaccines. Methods in Molecular Biology, vol 1499. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6481-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6481-9_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6479-6

  • Online ISBN: 978-1-4939-6481-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics