Skip to main content

Adjuvant-Enhanced mRNA Vaccines

  • Protocol
  • First Online:
RNA Vaccines

Abstract

Recent advances in molecular biology have led to dramatic enhancement of the stability of in vitro transcribed (IVT) messenger RNA (mRNA) and improvement in its translational efficacy. Nowadays, mRNA-based vaccines represent a promising approach in the field of anticancer immunotherapy, gaining attention over the earlier-established bacteria-, virus-, or cell-based vaccination approaches. Here, we present the experimental procedures employed in our laboratory to induce anticancer immune responses in different murine tumor models using IVT mRNA encoding for immune activation signals and antigens of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Palucka K, Banchereau J (2013) Dendritic-cell-based therapeutic cancer vaccines. Immunity 39:38–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Constantino J, Gomes C, Falcão A et al (2015) Antitumor dendritic cell-based vaccines: lessons from 20 years of clinical trials and future perspectives. Transl Res. doi:10.1016/j.trsl.2015.07.008

    PubMed  Google Scholar 

  3. Van Lint S, Wilgenhof S, Heirman C et al (2014) Optimized dendritic cell-based immunotherapy for melanoma: the TriMix-formula. Cancer Immunol Immunother 63:959–967

    Article  PubMed  Google Scholar 

  4. Van Lint S, Goyvaerts C, Maenhout S et al (2012) Preclinical evaluation of TriMix and antigen mRNA-based antitumor therapy. Cancer Res 72:1661–1671

    Article  PubMed  Google Scholar 

  5. Van der Jeught K, Bialkowski L, Daszkiewicz L et al (2015) Targeting the tumor microenvironment to enhance antitumor immune responses. Oncotarget 6:1359–1381

    Article  PubMed  Google Scholar 

  6. Van der Jeught K, Van Lint S, Thielemans K, Breckpot K (2015) Intratumoral delivery of mRNA: overcoming obstacles for effective immunotherapy. Oncoimmunology 4:e1005504

    Article  PubMed  PubMed Central  Google Scholar 

  7. Van Lint S, Renmans D, Broos K et al (2015) Intratumoral delivery of TriMix mRNA results in T-cell activation by cross-presenting dendritic cells. Cancer Immunol Res 4:146–156. doi:10.1158/2326-6066.CIR-15-0163

    Article  PubMed  Google Scholar 

  8. Tuyaerts S, Van Meirvenne S, Bonehill A et al (2007) Expression of human GITRL on myeloid dendritic cells enhances their immunostimulatory function but does not abrogate the suppressive effect of CD4 + CD25+ regulatory T cells. J Leukoc Biol 82:93–105

    Article  CAS  PubMed  Google Scholar 

  9. Pen JJ, Keersmaecker BD, Heirman C et al (2014) Interference with PD-L1/PD-1 co-stimulation during antigen presentation enhances the multifunctionality of antigen-specific T cells. Gene Ther 21:1–10

    Article  Google Scholar 

  10. De Keersmaecker B, Heirman C, Corthals J et al (2011) The combination of 4-1BBL and CD40L strongly enhances the capacity of dendritic cells to stimulate HIV-specific T cell responses. J Leukoc Biol 89:989–999

    Article  PubMed  Google Scholar 

  11. Bonehill A, Van Nuffel AMT, Corthals J et al (2009) Single-step antigen loading and activation of dendritic cells by mRNA electroporation for the purpose of therapeutic vaccination in melanoma patients. Clin Cancer Res 15:3366–3375

    Article  CAS  PubMed  Google Scholar 

  12. Aerts-Toegaert C, Heirman C, Tuyaerts S et al (2007) CD83 expression on dendritic cells and T cells: correlation with effective immune responses. Eur J Immunol 37:686–695

    Article  CAS  PubMed  Google Scholar 

  13. Van Nuffel AMT, Benteyn D, Wilgenhof S et al (2012) Intravenous and intradermal TriMix-dendritic cell therapy results in a broad T-cell response and durable tumor response in a chemorefractory stage IV-M1c melanoma patient. Cancer Immunol Immunother 61:1033–1043

    Article  PubMed  Google Scholar 

  14. Wilgenhof S, Corthals J, Van Nuffel AMT et al (2015) Long-term clinical outcome of melanoma patients treated with messenger RNA-electroporated dendritic cell therapy following complete resection of metastases. Cancer Immunol Immunother 64:381–388

    Article  CAS  PubMed  Google Scholar 

  15. Wilgenhof S, Van Nuffel AMT, Benteyn D et al (2013) A phase IB study on intravenous synthetic mRNA electroporated dendritic cell immunotherapy in pretreated advanced melanoma patients. Ann Oncol 24:2686–2693

    Article  CAS  PubMed  Google Scholar 

  16. Johansen P, Häffner AC, Koch F et al (2005) Direct intralymphatic injection of peptide vaccines enhances immunogenicity. Eur J Immunol 35:568–574

    Article  CAS  PubMed  Google Scholar 

  17. Van Lint S, Heirman C, Thielemans K, Breckpot K (2013) mRNA: from a chemical blueprint for protein production to an off-the-shelf therapeutic. Hum Vaccin Immunother 9:265–274

    Article  PubMed  PubMed Central  Google Scholar 

  18. Joyce JA, Fearon DT (2015) T cell exclusion, immune privilege, and the tumor microenvironment. Science 348:74–80

    Article  CAS  PubMed  Google Scholar 

  19. Keyaerts M, Verschueren J, Bos TJ et al (2008) Dynamic bioluminescence imaging for quantitative tumour burden assessment using IV or IP administration of D: luciferin: effect on intensity, time kinetics and repeatability of photon emission. Eur J Nucl Med Mol Imaging 35:999–1007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Agency for Innovation by Science and Technology (IWT-Vlaanderen), Interuniversity Attraction Poles Program, the National Cancer Plan, the Stichting Tegen Kanker, the Kom op tegen Kanker, the Fonds voor Wetenschappelijk Onderzoek Vlaanderen (FWO-Vlaanderen), the Hercules Foundation Flanders (Middelzware onderzoeksinfrastructuur), and the EU FP7-cancer immunotherapy program. Marleen Keyaerts is a Senior Clinical Investigator of FWO-Vlaanderen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kris Thielemans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bialkowski, L. et al. (2017). Adjuvant-Enhanced mRNA Vaccines. In: Kramps, T., Elbers, K. (eds) RNA Vaccines. Methods in Molecular Biology, vol 1499. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6481-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6481-9_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6479-6

  • Online ISBN: 978-1-4939-6481-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics