Thromb Haemost 2013; 109(06): 991-998
DOI: 10.1160/TH13-01-0060
Review Article
Schattauer GmbH

The physiological and pathophysiological roles of platelet CLEC-2

Leyre Navarro-Núñez
1   Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
,
Stacey A. Langan
1   Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
,
Gerard B. Nash
1   Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
,
Steve P. Watson
1   Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
› Author Affiliations
Further Information

Publication History

Received: 24 January 2013

Accepted after minor revision: 12 March 2013

Publication Date:
22 November 2017 (online)

Summary

CLEC-2 is a C-type lectin receptor which is highly expressed on platelets but also found at low levels on different immune cells. CLEC-2 elicits powerful platelet activation upon engagement by its endogenous ligand, the mucin-type glycoprotein podoplanin. Podoplanin is expressed in a variety of tissues, including lymphatic endothelial cells, kidney podocytes, type I lung epithelial cells, lymph node stromal cells and the choroid plexus epithelium. Animal models have shown that the correct separation of the lymphatic and blood vasculatures during embryonic development is dependent on CLEC-2-mediated platelet activation. Additionally, podoplanin-deficient mice show abnormalities in heart, lungs, and lymphoid tissues, whereas absence of CLEC-2 affects brain development. This review summarises the current understanding of the molecular pathways regulating CLEC-2 and podoplanin function and suggests other physiological and pathological processes where this molecular interaction might exert crucial roles.

 
  • References

  • 1 George JN. Platelets. Lancet 2000; 355: 1531-1539.
  • 2 Levin J. The evolution of mammalian platelets. Platelets. 2nd Edition. Academic Press; 2007: 3-22.
  • 3 Davi G, Patrono C. Platelet activation and atherothrombosis. N Engl J Med 2007; 357: 2482-2494.
  • 4 Nachman RL, Rafii S. Platelets, petechiae, and preservation of the vascular wall. N Engl J Med 2008; 359: 1261-1270.
  • 5 Anitua E, Andia I, Ardanza B. et al. Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb Haemost 2004; 91: 4-15.
  • 6 Nurden AT. Platelets, inflammation and tissue regeneration. Thromb Haemost 2011; 105 (Suppl. 01) S13-S33.
  • 7 Echtler K, Stark K, Lorenz M. et al. Platelets contribute to postnatal occlusion of the ductus arteriosus. Nat Med 2009; 16: 75-82.
  • 8 Bertozzi CC, Schmaier AA, Mericko P. et al. Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling. Blood 2010; 116: 661-670.
  • 9 Carramolino L, Fuentes J, García-Andrés C. et al. Platelets Play an Essential Role in Separating the Blood and Lymphatic Vasculatures During Embryonic Angiogenesis. Circ Res 2010; 106: 1197-1201.
  • 10 Finney BA, Schweighoffer E, Navarro-Nuñez L. et al. CLEC-2 and Syk in the megakaryocytic/platelet lineage are essential for development. Blood 2012; 119: 1747-1756.
  • 11 Suzuki-Inoue K, Inoue O, Ding G. et al. Essential in Vivo Roles of the C-type Lectin Receptor CLEC-2. J Biol Chem 2010; 285: 24494-24507.
  • 12 Alitalo K. The lymphatic vasculature in disease. Nat Med 2011; 17: 1371-1380.
  • 13 Schacht V, Ramirez MI, Hong YK. et al. T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J 2003; 22: 3546-3556.
  • 14 Uhrin P, Zaujec J, Breuss JM. et al. Novel function for blood platelets and podo-planin in developmental separation of blood and lymphatic circulation. Blood 2010; 115: 3997-4005.
  • 15 Fu J, Gerhardt H, McDaniel JM. et al. Endothelial cell O-glycan deficiency causes blood/lymphatic misconnections and consequent fatty liver disease in mice. J Clin Invest 2008; 118: 3725-3737.
  • 16 Abtahian F, Guerriero A, Sebzda E. et al. Regulation of blood and lymphatic vascular separation by signaling proteins SLP-76 and Syk. Science 2003; 299: 247-251.
  • 17 Bohmer R, Neuhaus B, Buhren S. et al. Regulation of developmental lymphan-giogenesis by Syk(+) leukocytes. Dev Cell 2010; 18: 437-449.
  • 18 Ichise H, Ichise T, Ohtani O. et al. Phospholipase C gamma2 is necessary for separation of blood and lymphatic vasculature in mice. Development 2009; 136: 191-195.
  • 19 Suzuki-Inoue K, Fuller GL, García A. et al. A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood 2006; 107: 542-549.
  • 20 Suzuki-Inoue K, Kato Y, Inoue O. et al. Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. J Biol Chem 2007; 282: 25993-26001.
  • 21 Mourão-SÃ D, Robinson MJ, Zelenay S. et al. CLEC-2 signaling via Syk in myeloid cells can regulate inflammatory responses. Eur J Immunol 2011; 41: 3040-3053.
  • 22 Huysamen C, Brown GD. The fungal pattern recognition receptor, Dectin-1, and the associated cluster of C-type lectin-like receptors. FEMS Microbiol Lett 2009; 290: 121-128.
  • 23 Colonna M, Samaridis J, Angman L. Molecular characterisation of two novel C-type lectin-like receptors, one of which is selectively expressed in human dendritic cells. Eur J Immunol 2000; 30: 697-704.
  • 24 Fuller GL, Williams JA, Tomlinson MG. et al. The C-type lectin receptors CLEC-2 and Dectin-1, but not DC-SIGN, signal via a novel YXXL-dependent signaling cascade. J Biol Chem 2007; 282: 12397-12409.
  • 25 Hughes CE, Pollitt AY, Mori J. et al. CLEC-2 activates Syk through dimerisation. Blood 2010; 115: 2947-2955.
  • 26 Séverin S, Pollitt AY, Navarro-Nuñez L. et al. Syk-dependent Phosphorylation of CLEC-2. J Biol Chem 2011; 286: 4107-4116.
  • 27 Parguiña AF, Alonso J, Rosa I. et al. A detailed proteomic analysis of rhodocy-tin-activated platelets reveals novel clues on the CLEC-2 signalosome: implications for CLEC-2 signaling regulation. Blood 2012; 120: e117-e126.
  • 28 Pollitt AY, Grygielska B, Leblond B. et al. Phosphorylation of CLEC-2 is dependent on lipid rafts, actin polymerisation, secondary mediators, and Rac. Blood 2010; 115: 2938-2946.
  • 29 May F, Hagedorn I, Pleines I. et al. CLEC-2 is an essential platelet-activating receptor in hemostasis and thrombosis. Blood 2009; 114: 3464-3472.
  • 30 Bender M, May F, Lorenz V. et al. Combined in vivo depletion of glycoprotein VI and C-type lectin-like receptor 2 severely compromises hemostasis and abrogates arterial thrombosis in mice. Arterioscler Thromb Vasc Biol . 2013 Epub ahead of print
  • 31 Hughes CE, Navarro-Nuñez L, Finney BA. et al. CLEC-2 is not required for platelet aggregation at arteriolar shear. J Thromb Haemost 2010; 08: 2328-2332.
  • 32 Law DA, Nannizzi-Alaimo L, Ministri K. et al. Genetic and pharmacological analyses of Syk function in alphaIIbbeta3 signaling in platelets. Blood 1999; 93: 2645-2652.
  • 33 Poole A, Gibbins JM, Turner M. et al. The Fc receptor gamma-chain and the tyrosine kinase Syk are essential for activation of mouse platelets by collagen. EMBO J 1997; 16: 2333-2341.
  • 34 Andre P, Morooka T, Sim D. et al. Critical role for Syk in responses to vascular injury. Blood 2011; 118: 5000-5010.
  • 35 Hou TZ, Bystrom J, Sherlock JP. et al. A distinct subset of podoplanin (gp38) expressing F4/80+ macrophages mediate phagocytosis and are induced following zymosan peritonitis. FEBS Lett 2010; 584: 3955-3961.
  • 36 Sawa Y. New trends in the study of podoplanin as a cell morphological regulator. JDSR 2010; 46: 165-172.
  • 37 Bretscher A, Edwards K, Fehon RG. ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol 2002; 03: 586-599.
  • 38 Charrin S, Alcover A. Role of ERM (ezrin-radixin-moesin) proteins in T lymphocyte polarisation, immune synapse formation and in T cell receptor-mediated signaling. Front Biosci 2006; 11: 1987-1997.
  • 39 Scholl FG, Gamallo C, Vilaro S. et al. Identification of PA2.26 antigen as a novel cell-surface mucin-type glycoprotein that induces plasma membrane extensions and increased motility in keratinocytes. J Cell Sci 1999; 112: 4601-4613.
  • 40 Wicki A, Lehembre F, Wick N. et al. Tumor invasion in the absence of epithelial-mesenchymal transition: podoplanin-mediated remodeling of the actin cytos-keleton. Cancer Cell 2006; 09: 261-272.
  • 41 Navarro A, Perez RE, Rezaiekhaligh M. et al. T1alpha/podoplanin is essential for capillary morphogenesis in lymphatic endothelial cells. Am J Physiol Lung Cell Mol Physiol 2008; 295: L543-L551.
  • 42 Navarro A, Perez RE, Rezaiekhaligh MH. et al. Polarized migration of lymphatic endothelial cells is critically dependent on podoplanin regulation of Cdc42. Am J Physiol Lung Cell Mol Physiol 2011; 300: L32-L42.
  • 43 Martin-Villar E, Megias D, Castel S. et al. Podoplanin binds ERM proteins to activate RhoA and promote epithelial-mesenchymal transition. J Cell Sci 2006; 119: 4541-4553.
  • 44 Kerosuo L, Bronner-Fraser M. What is bad in cancer is good in the embryo: Importance of EMT in neural crest development. Semin Cell Dev Biol 2012; 23: 320-332.
  • 45 Mahtab EA, Vicente-Steijn R, Hahurij ND. et al. Podoplanin deficient mice show a RhoA-related hypoplasia of the sinus venosus myocardium including the sinoatrial node. Dev Dyn 2009; 238: 183-193.
  • 46 Bertozzi CC, Hess PR, Kahn ML. Platelets: covert regulators of lymphatic development. Arterioscler Thromb Vasc Biol 2010; 30: 2368-2371.
  • 47 Nurden AT, Freson K, Seligsohn U. Inherited platelet disorders. Haemophilia 2012; 18 (Suppl. 04) 154-160.
  • 48 Emambokus NR, Frampton J. The glycoprotein IIb molecule is expressed on early murine hematopoietic progenitors and regulates their numbers in sites of hematopoiesis. Immunity 2003; 19: 33-45.
  • 49 Hodivala-Dilke KM, McHugh KP, Tsakiris DA. et al. Beta3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J Clin Invest 1999; 103: 229-238.
  • 50 Monkley SJ, Kostourou V, Spence L. et al. Endothelial cell talin1 is essential for embryonic angiogenesis. Dev Biol 2011; 349: 494-502.
  • 51 Bialkowska K, Ma Y-Q, Bledzka K. et al. The Integrin Co-activator Kindlin-3 Is Expressed and Functional in a Non-hematopoietic Cell, the Endothelial Cell. J Biol Chem 2010; 285: 18640-18649.
  • 52 Malinin NL, Zhang L, Choi J. et al. A point mutation in kindlin3 ablates activation of three integrin subfamilies in humans. Nat Med 2009; 15: 313-318.
  • 53 Bazigou E, Xie S, Chen C. et al. Integrin-alpha9 is required for fibronectin matrix assembly during lymphatic valve morphogenesis. Dev Cell 2009; 17: 175-186.
  • 54 Huang XZ, Wu JF, Ferrando R. et al. Fatal Bilateral Chylothorax in Mice Lacking the Integrin α9β1. Mol Cell Biol 2000; 20: 5208-5215.
  • 55 Garmy-Susini B, Avraamides CJ, Schmid MC. et al. Integrin alpha4beta1 signaling is required for lymphangiogenesis and tumor metastasis. Cancer Res 2010; 70: 3042-3051.
  • 56 Martin-Villar E, Fernandez-Munoz B, Parsons M. et al. Podoplanin associates with CD44 to promote directional cell migration. Mol Biol Cell 2010; 21: 4387-4399.
  • 57 Kunita A, Kashima TG, Ohazama A. et al. Podoplanin is regulated by AP-1 and promotes platelet aggregation and cell migration in osteosarcoma. Am J Pathol 2011; 179: 1041-1049.
  • 58 Cueni LN, Chen L, Zhang H. et al. Podoplanin-Fc reduces lymphatic vessel formation in vitro and in vivo and causes disseminated intravascular coagulation when transgenically expressed in the skin. Blood 2010; 116: 4376-4384.
  • 59 Osada M, Inoue O, Ding G. et al. Platelet activation receptor CLEC-2 regulates blood/lymphatic vessel separation by inhibiting proliferation, migration, and tube formation of lymphatic endothelial cells. J Biol Chem 2012; 287: 22241-22252.
  • 60 Coppinger JA, O’Connor R, Wynne K. et al. Moderation of the platelet releasate response by aspirin. Blood 2007; 109: 4786-4792.
  • 61 Tang T, Li L, Tang J. et al. A mouse knockout library for secreted and transmembrane proteins. Nat Biotechnol 201 (28) 749-755.
  • 62 Redzic ZB, Preston JE, Duncan JA. et al. The choroid plexus-cerebrospinal fluid system: from development to aging. Curr Top Dev Biol 2005; 71: 1-52.
  • 63 Reboldi A, Coisne C, Baumjohann D. et al. C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol 2009; 10: 514-523.
  • 64 Shankland SJ. The podocyte’s response to injury: Role in proteinuria and glome-rulosclerosis. Kidney Int 2006; 69: 2131-2147.
  • 65 Koop K, Eikmans M, Wehland M. et al. Selective loss of podoplanin protein expression accompanies proteinuria and precedes alterations in podocyte morphology in a spontaneous proteinuric rat model. Am J Pathol 2008; 173: 315-326.
  • 66 Matsui K, Breitender-Geleff S, Soleiman A. et al. Podoplanin, a novel 43-kDa membrane protein, controls the shape of podocytes. Nephrol Dial Transplant 1999; 14 (Suppl. 01) 9-11.
  • 67 Schmieder S, Nagai M, Orlando RA. et al. Podocalyxin activates RhoA and induces actin reorganisation through NHERF1 and Ezrin in MDCK cells. J Am Soc Nephrol 2004; 15: 2289-2298.
  • 68 Millien G, Spira A, Hinds A. et al. Alterations in gene expression in T1 alpha null lung: a model of deficient alveolar sac development. BMC Dev Biol 2006; 06: 35.
  • 69 Ramirez MI, Millien G, Hinds A. et al. T1α, a lung type I cell differentiation gene, is required for normal lung cell proliferation and alveolus formation at birth. Dev Biol 2003; 256: 61-72.
  • 70 Kerrigan AM, Dennehy KM, Mourão-SÃ D. et al. CLEC-2 is a phagocytic activation receptor expressed on murine peripheral blood neutrophils. J Immunol 2009; 182: 4150-4157.
  • 71 Kerrigan AM, Navarro-Nuñez L, Pyz E. et al. Podoplanin-expressing inflammatory macrophages activate murine platelets via CLEC-2. J Thromb Haemost 2012; 10: 484-486.
  • 72 Tal O, Lim HY, Gurevich I. et al. DC mobilisation from the skin requires docking to immobilized CCL21 on lymphatic endothelium and intralymphatic crawling. J Exp Med 2011; 208: 2141-2153.
  • 73 Acton SE, Astarita JL, Malhotra D. et al. Podoplanin-rich stromal networks induce dendritic cell motility via activation of the C-type lectin receptor CLEC-2. Immunity 2012; 37: 276-289.
  • 74 van de Pavert SA, Mebius RE. New insights into the development of lymphoid tissues. Nat Rev Immunol 2010; 10: 664-674.
  • 75 Peters A, Pitcher LA, Sullivan JM. et al. Th17 cells induce ectopic lymphoid follicles in central nervous system tissue inflammation. Immunity 2011; 35: 986-996.
  • 76 Miyamoto Y, Uga H, Tanaka S. et al. Podoplanin is an inflammatory protein up-regulated in Th17 cells in SKG arthritic joints. Mol Immunol 2012; 54: 199-207.
  • 77 Ekwall AK, Eisler T, Anderberg C. et al. The tumour-associated glycoprotein podoplanin is expressed in fibroblast-like synoviocytes of the hyperplastic synovial lining layer in rheumatoid arthritis. Arthritis Res Ther 2011; 13: R40.
  • 78 Boulaftali Y, Hess PR, Getz TM. et al. Platelet ITAM signaling is critical for vascular integrity in inflammation. J Clin Invest . 2013 Epub ahead of print
  • 79 Kato K, Kanaji T, Russell S. et al. The contribution of glycoprotein VI to stable platelet adhesion and thrombus formation illustrated by targeted gene deletion. Blood 2003; 102: 1701-1707.
  • 80 Lockyer S, Okuyama K, Begum S. et al. GPVI-deficient mice lack collagen responses and are protected against experimentally induced pulmonary throm-boembolism. Thromb Res 2006; 118: 371-380.
  • 81 Alexander JS, Ganta VC, Jordan PA. et al. Gastrointestinal lymphatics in health and disease. Pathophysiology 2010; 17: 315-335.
  • 82 Lowe KL, Navarro-Nuñez L, Watson SP. Platelet CLEC-2 and podoplanin in cancer metastasis. Throm Res 2012; 129 (Suppl. 01) S30-S37.
  • 83 Erpenbeck L, Schon MP. Deadly allies: the fatal interplay between platelets and metastasising cancer cells. Blood 2010; 115: 3427-3436.
  • 84 Cueni LN, Hegyi I, Shin JW. et al. Tumor lymphangiogenesis and metastasis to lymph nodes induced by cancer cell expression of podoplanin. Am J Pathol 2010; 177: 1004-1016.
  • 85 Martin-Villar E, Scholl FG, Gamallo C. et al. Characterisation of human PA2.26 antigen (T1alpha-2, podoplanin), a small membrane mucin induced in oral squamous cell carcinomas. Int J Cancer 2005; 113: 899-910.
  • 86 Schacht V, Dadras SS, Johnson LA. et al. Up-regulation of the lymphatic marker podoplanin, a mucin-type transmembrane glycoprotein, in human squamous cell carcinomas and germ cell tumors. Am J Pathol 2005; 166: 913-921.
  • 87 Kunita A, Kashima TG, Morishita Y. et al. The platelet aggregation-inducing factor aggrus/podoplanin promotes pulmonary metastasis. Am J Pathol 2007; 170: 1337-1347.
  • 88 Kato Y, Kaneko MK, Kunita A. et al. Molecular analysis of the pathophysiologi-cal binding of the platelet aggregation-inducing factor podoplanin to the C-type lectin-like receptor CLEC-2. Cancer Sci 2008; 99: 54-61.
  • 89 Nakazawa Y, Takagi S, Sato S. et al. Prevention of hematogenous metastasis by neutralising mice and its chimeric anti-Aggrus/podoplanin antibodies. Cancer Sci 2011; 102: 2051-2057.
  • 90 Hatakeyama K, Kaneko MK, Kato Y. et al. Podoplanin expression in advanced atherosclerotic lesions of human aortas. Thromb Res 2012; 129: e70-e76.