Thromb Haemost 2011; 105(05): 790-801
DOI: 10.1160/TH10-08-0560
Theme Issue Article
Schattauer GmbH

Degradation of the endothelial glycocalyx is associated with chylomicron leakage in mouse cremaster muscle microcirculation

Alina A. Constantinescu
1   Department of Medical Physics, Academic Medical Center, Amsterdam, the Netherlands
,
Jos A. E. Spaan
1   Department of Medical Physics, Academic Medical Center, Amsterdam, the Netherlands
,
E. Karin Arkenbout
2   Department of Medical Biochemistry, Academic Medical Center, Amsterdam, the Netherlands
,
Hans Vink
3   Department of Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands
4   Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
,
Jurgen W. G. E. VanTeeffelen
4   Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
› Author Affiliations
Financial support: This work was supported by the Netherlands Organization for Scientific Research (NWO, grant no. 902–16–192) and the Netherlands Heart Foundation (grant no. 2005T037).
Further Information

Publication History

Received: 31 August 2010

Accepted after minor revision: 09 November 2010

Publication Date:
28 November 2017 (online)

Summary

A thick endothelial glycocalyx contributes to the barrier function of vascular endothelium in macro- and microcirculation. We hypothesised in the current study that diet-induced hyperlipidaemia perturbs the glycocalyx, resulting in decreased dimensions of this layer and increased transendothelial lipoprotein leakage in capillaries. Glycocalyx thickness was measured in mouse cremaster muscle capillaries by intravital microscopy from the distance between flowing red blood cells and the endothelial surface. In control C57BL/6 mice on standard chow, glycocalyx thickness measured 0.58 ± 0.01 (mean ± SEM) μm, and no lipo-proteins were observed in the tissue. After three months administration of an either mild or severe high-fat / high-cholesterol diet (HFC) to C57BL/6 and ApoE3-Leiden mice, circulating large lipoproteins appeared into the subendothelial space in an increasing proportion of cre-master capillaries, and these capillaries displayed reduced glycocalyx dimensions of 0.40 ± 0.02 and 0.30 ± 0.01 μm (C57BL/6 mice), and 0.37 ± 0.01 and 0.28 ± 0.01 μm (ApoE3-Leiden mice), after the mild and severe HFC diet, respectively. The chylomicron nature of the accumulated lipoproteins was confirmed by observations of subendothelial deposition of DiI-labeled chylomicrons in capillaries after inducing acute glycocalyx degradation by heparitinase in normolipidaemic C57BL/6 mice. It is concluded that while under control conditions the endothelial glycocalyx contributes to the vascular barrier against transvascular lipoprotein leakage in the microcirculation, diet-induced hyperlipidaemia reduces the thickness of the glycocalyx, thereby facilitating leakage of chylomicrons across the capillary wall.

 
  • References

  • 1 Pries AR, Secomb TW, Gaehtgens P. The endothelial surface layer. Pflugers Arch 2000; 440: 653-666.
  • 2 Weinbaum S, Tarbell JM, Damiano ER. The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng 2007; 9: 121-167.
  • 3 Van Teeffelen JW, Brands J, Stroes ES. et al. Endothelial glycocalyx: sweet shield of blood vessels. Trends Cardiovasc Med 2007; 17: 101-105.
  • 4 Vink H, Duling BR. Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circulation Res 1996; 79: 581-589.
  • 5 Henry CB, Duling BR. Permeation of the luminal capillary glycocalyx is determined by hyaluronan. Am J Physiol 1999; 277: H508-514.
  • 6 Vink H, Constantinescu AA, Spaan JA. Oxidized lipoproteins degrade the endothelial surface layer : implications for platelet-endothelial cell adhesion. Circulation 2000; 101: 1500-1502.
  • 7 Platts SH, Duling BR. Adenosine A3 receptor activation modulates the capillary endothelial glycocalyx. Circulation Res 2004; 94: 77-82.
  • 8 VanTeeffelen JW, Constantinescu AA, Brands J. et al. Bradykinin- and sodium nitroprusside-induced increases in capillary tube haematocrit in mouse cremaster muscle are associated with impaired glycocalyx barrier properties. J Physiol 2008; 586: 3207-3218.
  • 9 Jacob M, Bruegger D, Rehm M. et al. The endothelial glycocalyx affords compatibility of Starling‘s principle and high cardiac interstitial albumin levels. Cardiovasc Res 2007; 73: 575-586.
  • 10 van den Berg BM, Vink H, Spaan JA. The endothelial glycocalyx protects against myocardial edema. Circulation Res 2003; 92: 592-594.
  • 11 van den Berg BM, Spaan JA, Rolf TM. et al. Atherogenic region and diet diminish glycocalyx dimension and increase intima-to-media ratios at murine carotid artery bifurcation. Am J Physiol 2006; 290: H915-920.
  • 12 Megens RT, Reitsma S, Schiffers PH. et al. Two-photon microscopy of vital murine elastic and muscular arteries. Combined structural and functional imaging with subcellular resolution. J Vasc Res 2007; 44: 87-98.
  • 13 van den Berg BM, Spaan JA, Vink H. Impaired glycocalyx barrier properties contribute to enhanced intimal low-density lipoprotein accumulation at the carotid artery bifurcation in mice. Pflugers Arch 2009; 457: 1199-1206.
  • 14 Smith ML, Long DS, Damiano ER. et al. Near-wall micro-PIV reveals a hydrodynamically relevant endothelial surface layer in venules in vivo. Biophys J 2003; 85: 637-645.
  • 15 Mulivor AW, Lipowsky HH. Role of glycocalyx in leukocyte-endothelial cell adhesion. Am J Physiol 2002; 283: H1282-1291.
  • 16 Curry FE, Michel CC. A fiber matrix model of capillary permeability. Microvasc Res 1980; 20: 96-99.
  • 17 Zhang X, Adamson RH, Curry FR. et al. A 1-D model to explore the effects of tissue loading and tissue concentration gradients in the revised Starling principle. Am J Physiol 2006; 291: H2950-2964.
  • 18 Vink H, Duling BR. Capillary endothelial surface layer selectively reduces plasma solute distribution volume. Am J Physiol 2000; 278: H285-289.
  • 19 Constantinescu AA, Vink H, Spaan JA. Endothelial cell glycocalyx modulates immobilization of leukocytes at the endothelial surface. Arterioscl Thromb Vasc Biol 2003; 23: 1541-1547.
  • 20 Adamson RH. Permeability of frog mesenteric capillaries after partial pronase digestion of the endothelial glycocalyx. J Physiol 1990; 428: 1-13.
  • 21 Huxley VH, Williams DA. Role of a glycocalyx on coronary arteriole permeability to proteins: evidence from enzyme treatments. Am J Physiol 2000; 278: H1177-1185.
  • 22 Rehm M, Zahler S, Lotsch M. et al. Endothelial glycocalyx as an additional barrier determining extravasation of 6% hydroxyethyl starch or 5% albumin solutions in the coronary vascular bed. Anesthesiology 2004; 100: 1211-1223.
  • 23 Nieuwdorp M, Meuwese MC, Vink H. et al. The endothelial glycocalyx: a potential barrier between health and vascular disease. Curr Opin Lipidol 2005; 16: 507-511.
  • 24 Gouverneur M, Berg B, Nieuwdorp M. et al. Vasculoprotective properties of the endothelial glycocalyx: effects of fluid shear stress. J Int Med 2006; 259: 393-400.
  • 25 Constantinescu AA, Vink H, Spaan JA. Elevated capillary tube hematocrit reflects degradation of endothelial cell glycocalyx by oxidized LDL. Am J Physiol 2001; 280: H1051-1057.
  • 26 Platts SH, Linden J, Duling BR. Rapid modification of the glycocalyx caused by ischemia-reperfusion is inhibited by adenosine A2A receptor activation. Am J Physiol 2003; 284: H2360-2367.
  • 27 Henry CB, Duling BR. TNF-alpha increases entry of macromolecules into luminal endothelial cell glycocalyx. Am J Physiol 2000; 279: H2815-2823.
  • 28 Getz GS, Reardon CA. Diet and murine atherosclerosis. Arterioscl Thromb Vasc Biol 2006; 26: 242-249.
  • 29 Pries AR, Secomb TW, Jacobs H. et al. Microvascular blood flow resistance: role of endothelial surface layer. Am J Physiol 1997; 273: H2272-2279.
  • 30 VanTeeffelen JW, Constantinescu AA, Vink H. et al. Hypercholesterolemia impairs reactive hyperemic vasodilation of 2A but not 3A arterioles in mouse cre-master muscle. Am J Physiol 2005; 289: H447-454.
  • 31 Lowry OH, Rosebrough NJ, Farr AL. et al. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193: 265-275.
  • 32 Barak LS, Webb WW. Fluorescent low density lipoprotein for observation of dynamics of individual receptor complexes on cultured human fibroblasts. J Cell Biol 1981; 90: 595-604.
  • 33 Ross R. Atherosclerosis--an inflammatory disease. New Engl J Med 1999; 340: 115-126.
  • 34 Lewis JC, Taylor RG, Jones ND. et al. Endothelial surface characteristics in pigeon coronary artery atherosclerosis. I. Cellular alterations during the initial stages of dietary cholesterol challenge. Lab Invest 1982; 46: 123-138.
  • 35 Sarphie TG. A cytochemical study of the surface properties of aortic and mitral valve endothelium from hypercholesterolemic rabbits. Exp Mol Pathol 1986; 44: 281-296.
  • 36 VanTeeffelen JW, Brands J, Vink H. Agonist-induced impairment of glycocalyx exclusion properties: contribution to coronary effects of adenosine. Cardiovasc Res 2010; 87: 311-319.
  • 37 Mulivor AW, Lipowsky HH. Inflammation- and ischemia-induced shedding of venular glycocalyx. Am J Physiol 2004; 286: H1672-1680.
  • 38 Tarbell JM, Pahakis MY. Mechanotransduction and the glycocalyx. J Int Med 2006; 259: 339-350.
  • 39 Wang L, Gill R, Pedersen TL. et al. Triglyceride-rich lipoprotein lipolysis releases neutral and oxidized FFAs that induce endothelial cell inflammation. J Lipid Res 2009; 50: 204-213.
  • 40 Bravo E, Napolitano M. Mechanisms involved in chylomicron remnant lipid up-take by macrophages. Biochem Soc Transact 2007; 35: 459-463.
  • 41 Babu N. Influence of hypercholesterolemia on deformability and shape parameters of erythrocytes in hyperglycemic subjects. Clin Hemorheol Microcirc 2009; 41: 169-177.
  • 42 Desjardins C, Duling BR. Heparinase treatment suggests a role for the endothelial cell glycocalyx in regulation of capillary hematocrit. Am J Physiol 1990; 258: H647-654.
  • 43 Secomb TW, Hsu R, Pries AR. Motion of red blood cells in a capillary with an endothelial surface layer: effect of flow velocity. Am J Physiol 2001; 281: H629-636.
  • 44 Rangaswamy S, Penn MS, Saidel GM. et al. Exogenous oxidized low-density lipo-protein injures and alters the barrier function of endothelium in rats in vivo. Circulation Res 1997; 80: 37-44.
  • 45 Wu CC, Chang SW, Chen MS. et al. Early change of vascular permeability in hypercholesterolemic rabbits. Arterioscl Thromb Vasc Biol 1995; 15: 529-533.
  • 46 Rutledge JC, Woo MM, Rezai AA. et al. Lipoprotein lipase increases lipoprotein binding to the artery wall and increases endothelial layer permeability by formation of lipolysis products. Circulation Res 1997; 80: 819-828.
  • 47 Nordestgaard BG, Wootton R, Lewis B. Selective retention of VLDL, IDL, and LDL in the arterial intima of genetically hyperlipidemic rabbits in vivo. Molecular size as a determinant of fractional loss from the intima-inner media. Arterioscl Thromb Vasc Biol 1995; 15: 534-542.
  • 48 von Eckardstein A, Rohrer L. Transendothelial lipoprotein transport and regulation of endothelial permeability and integrity by lipoproteins. Curr Opin Lip-idol 2009; 20: 197-205.
  • 49 Majno G, Palade GE. Studies on inflammation. 1. The effect of histamine and serotonin on vascular permeability: an electron microscopic study. J Biophys Biochem Cytol 1961; 11: 571-605.
  • 50 Lee WC, Chao WT, Yang VC. Effects of high-cholesterol diet on the interendothelial clefts and the associated junctional complexes in rat aorta. Atherosclerosis 2001; 155: 307-312.
  • 51 Rutledge JC, Mullick AE, Gardner G. et al. Direct visualization of lipid deposition and reverse lipid transport in a perfused artery : roles of VLDL and HDL. Circulation Res 2000; 86: 768-773.
  • 52 Nordestgaard BG, Tybjaerg-Hansen A, Lewis B. Influx in vivo of low density, intermediate density, and very low density lipoproteins into aortic intimas of genetically hyperlipidemic rabbits. Roles of plasma concentrations, extent of aortic lesion, and lipoprotein particle size as determinants. Arterioscler Thromb 1992; 12: 6-18.
  • 53 Mamo JC, Proctor SD, Smith D. Retention of chylomicron remnants by arterial tissue; importance of an efficient clearance mechanism from plasma. Atherosclerosis 1998; 141 (Suppl. 01) S63-69.
  • 54 Proctor SD, Vine DF, Mamo JC. Arterial permeability and efflux of apolipoprotein B-containing lipoproteins assessed by in situ perfusion and three-dimensional quantitative confocal microscopy. Arterioscl Thromb Vasc Biol 2004; 24: 2162-2167.
  • 55 Sivaram P, Klein MG, Goldberg IJ. Identification of a heparin-releasable lipoprotein lipase binding protein from endothelial cells. J Biol Chem 1992; 267: 16517-16522.
  • 56 Moers A, Fenselau S, Schrezenmeir J. Chylomicrons induce E-selectin and VCAM-1 expression in endothelial cells. Exp Clin Endocrinol Diabetes 1997; 105 (Suppl. 02) 35-37.
  • 57 Mohamadzadeh M, DeGrendele H, Arizpe H. et al. Proinflammatory stimuli regulate endothelial hyaluronan expression and CD44/HA-dependent primary adhesion. J Clin Invest 1998; 101: 97-108.
  • 58 Li JP, Vlodavsky I. Heparin, heparan sulfate and heparanase in inflammatory reactions. Thromb Haemost 2009; 102: 823-828.
  • 59 Meuwese MC, Mooij HL, Nieuwdorp M. et al. Partial recovery of the endothelial glycocalyx upon rosuvastatin therapy in patients with heterozygous familial hypercholesterolemia. J Lipid Res 2009; 50: 148-153.
  • 60 Lehr HA, Messmer K. The microcirculation in atherogenesis. Cardiovasc Res 1996; 32: 781-788.
  • 61 Kuo L, Davis MJ, Cannon MS. et al. Pathophysiological consequences of atherosclerosis extend into the coronary microcirculation. Restoration of endothelium-dependent responses by L-arginine. Circulation Res 1992; 70: 465-476.