Thromb Haemost 2010; 103(03): 662-676
DOI: 10.1160/TH09-06-0341
Cardiovascular Biology and Cell Signalling
Schattauer GmbH

8-pCPT-conjugated cyclic AMP analogs exert thromboxane receptor antagonistic properties

Carsten Sand*
1   Institut für Pharmakologie, Universitätsklinikum Essen, Essen, Germany
,
Maria Grandoch*
1   Institut für Pharmakologie, Universitätsklinikum Essen, Essen, Germany
,
Christof Börgermann
1   Institut für Pharmakologie, Universitätsklinikum Essen, Essen, Germany
,
Paschal A. Oude Weernink
1   Institut für Pharmakologie, Universitätsklinikum Essen, Essen, Germany
,
Yvonne Mahlke
1   Institut für Pharmakologie, Universitätsklinikum Essen, Essen, Germany
,
Benjamin Schwindenhammer
1   Institut für Pharmakologie, Universitätsklinikum Essen, Essen, Germany
,
Artur-Aron Weber
1   Institut für Pharmakologie, Universitätsklinikum Essen, Essen, Germany
,
Jens W. Fischer
1   Institut für Pharmakologie, Universitätsklinikum Essen, Essen, Germany
,
Karl H. Jakobs
1   Institut für Pharmakologie, Universitätsklinikum Essen, Essen, Germany
,
Martina Schmidt
2   Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
› Author Affiliations
Financial support:This work was supported by the Deutsche Forschungsgemeinschaft, the Interne Forschungsförderung Essen, the Fonds der Chemischen Industrie, and a Rosalind Franklin Fellowship from the University of Groningen (to M.S.).
Further Information

Publication History

Received: 02 June 2009

Accepted after major revision: 22 February 2009

Publication Date:
22 November 2017 (online)

Summary

Membrane-permeable 8-(4-chlorophenylthio)-2'-O-methyl cyclic AMP (8-pCPT-2'-O-Me-cAMP) has been shown to specifically activate cAMP-regulated Epac proteins, without direct effects on protein kinase A and protein kinase G. During isometric tension measurements in thoracic aortic rings from Wistar rats, we observed that 8-pCPT-2'-O-Me-cAMP selectively induced a rightward shift of the concentration response curve for the thromboxane mimetic U46619, without altering the contractile response to noradrenaline. We hypothesised that 8-pCPT-2'-O-Me-cAMP and similar compounds may function as direct thromboxane receptor antagonists. Indeed, in addition to 8-pCPT-2'-OMe-cAMP, also 8-pCPT-cAMP, 8-(4-chlorophenylthio)-adenosine-3',5'-cyclic monophosphorothioate, Rp-isomer (Rp-8-CPT-cAMPS) and 8-CPT-adenosine, but not 8-Bromo-2'-O-Me-cAMP, induced rightward shifts of the contractile response to U46619. Likewise, 8-pCPT-2'-O- Me-cAMP and Rp-8-CPT-cAMPS, but not 8-Bromo-2'-O-Me-cAMP, specifically reduced U46619-induced aggregation of human platelets. In addition, 8-pCPT-2'-O-Me-cAMP and Rp-8-CPT-cAMPS completely reversed U46619-induced reduction of intercellular adhesion molecule-1 expression and migration of human coronary artery endothelial cells. Most important, the cAMP analogs that reduced the contractile response to U46619 also concentration-dependently inhibited binding of the thromboxane receptor radioligand [5,6-3H]SQ29548 to human platelets. We conclude that 8-pCPT-conjugated cAMP analogs exert competitive thromboxane receptor antagonistic properties.

* These authors contributed equally to the work.


 
  • References

  • 1 Cohen P. Protein kinases – the major drug targets of the twenty-first century. Nat Rev Drug Discovery 2002; 1: 309-315.
  • 2 Zambon AC, Zhang L, Minovitsky S. et al. Gene expression patterns define key transcriptional events in cell-cycle regulation by cAMP and protein kinase A. Proc Natl Acad Sci USA 2005; 102: 8561-8566.
  • 3 Bos JL. Epac: a new cAMP target and new avenues in cAMP research. Nat Rev Mol Cell Biol 2003; 4: 733-738.
  • 4 Roscioni SS, Elzinga CRS, Schmidt M. Epac: effectors and biological functions. Naunyn Schmiedebergs Arch Pharmacol 2008; 377: 345-357.
  • 5 Borland G, Smith BO, Yarwood SJ. Epac proteins transduce diverse cellular actions of cAMP. Brit J Pharmacol 2009; 158: 70-86.
  • 6 Grandoch M, Roscioni SS, Schmidt M. The role of Epac proteins, novel cAMP mediators, in the regulation of immune, lung and neuronal function. Brit J Pharmacol. 2009 preub online doi:10.1111/j.1476–5381.2009.00458:
  • 7 Schmidt M, Sand C, Jakobs KH. et al. Epac and the cardiovascular system. Curr Opin Pharmacol 2007; 7: 193-200.
  • 8 Schmidt M, Evellin S, Oude Weernink PA. et al. A new phospholipase-C-calcium signalling pathway mediated by cyclic AMP and a Rap GTPase. Nature Cell Biol 2001; 3: 1020-1024.
  • 9 Oestreich EA, Wang H, Malik S. et al. Epac-mediated activation of phospholipase C(epsilon) plays a critical role in beta-adrenergic receptor-dependent enhancement of Ca2+ mobilization in cardiac myocytes. J Biol Chem 2007; 282: 5488-5495.
  • 10 Oestreich EA, Malik S, Goonasekera SA. et al. Epac and phospholipase Cॉ regulate Ca2+ release in the heart by activation of protein kinase Cॉ and calcium-calmodulin kinase II. J Biol Chem 2009; 284: 1514-1522.
  • 11 Pereira L, Métrich M, Fernández-Velasco M. et al. The cAMP binding protein Epac modulates Ca2+ sparks by a Ca2+/calmodulin kinase signalling pathway in rat cardiac myocytes. J Physiol 2007; 583.2: 685-694.
  • 12 Métrich M, Morel E, Berthouze M. et al. Functional characterization of the cAMP-binding proteins Epac in cardiac myocytes. Pharmacolog Rep 2009; 61: 146-153.
  • 13 Cazorla O, Lucas A, Poirier F. et al. The cAMP binding protein Epac regulates cardiac myofilament function. Proc Natl Acad Sci USA 2009; 106: 14144-14149.
  • 14 Ster J, De Bock F, Guerineau NC. et al. Exchange protein activated by cAMP (Epac) mediates cAMP activation of p38 MAPK and modulation of Ca2+-dependent K+ channels in cerebellar neurons. Proc Natl Acad Sci USA 2007; 104: 2519-2524.
  • 15 Aromataris EC, Roberts ML, Barritt GJ. et al. Glucagon activates Ca2+ and Cl-channels in rat hepatocytes. J Physiol 2006; 573: 611-625.
  • 16 Purves GI, Kamishima T, Davies LM. et al. Exchange protein activated by cAMP (Epac) mediates cAMP-dependent but protein kinase A-insensitive modulation of vascular ATP-sensitive potassium channels. J Physiol 2009; 587: 3639-3650.
  • 17 Morel E, Marcantoni A, Gastineau M. et al. cAMP-binding protein Epac induces cardiomyocytes hypertrophy. Circ Res 2005; 97: 1296-1304.
  • 18 Métrich M, Lucas A, Gastineau M. et al. Epac mediates beta-adrenergic receptor-induced cardiomyocyte hypertrophy. Circ Res 2008; 102: 959-965.
  • 19 Wang H, Oestreich EA, Maekawa N. et al. Phospholipase Cॉ modulates β-adrenergic receptor-dependent cardiac contraction and inhibits cardiac hypertrophy. Circ Res 2005; 97: 1305-1313.
  • 20 Ulucan C, Wang X, Baljinnyam E. et al. Developmental changes in gene expression of Epac and its upregulation in myocardial hypertrophy. Am J Physiol Heart Circ Physiol 2007; 293: H1662-H1672.
  • 21 Komatsu M, Ruoslathi E. R-Ras is a global regulator of vascular regeneration that suppresses intimal hyperplasia and tumor angiogenesis. Nat Med 2005; 11: 1346-1350.
  • 22 Yokoyama U, Minamisawa S, Quan H. et al. Epac1 is upregulated during neointima formation and promotes vascular smooth muscle migration. Am J Physiol Heart Circ Physiol 2008; 295: H1547-H1555.
  • 23 Yokoyama U, Minamisawa S, Quan H. et al. PGE2-activate EPAC promotes neointimal formation of the rat ductus arteriosus by a process distinct from that of PKA. J Biol Chem 2008; 283: 28702-28709.
  • 24 Fukuhara S, Sakurai A, Sano H. et al. Cyclic AMP potentiates vascular endothelial cadherin-mediated cell-cell contact to enhance endothelial barrier function through an Epac-Rap1 signaling pathway. Mol Cell Biol 2005; 25: 136-146.
  • 25 Cullere X, Shaw SK, Andersson L. et al. Regulation of vascular endothelial barrier function by Epac, a cAMP-activated exchange factor for Rap GTPases. Blood 2005; 105: 1950-1955.
  • 26 Sehrawat S, Cullere X, Patel S. et al. Role of Epac1, an exchange factor for Rap GTPases, in endothelial microtubule dynamics and barrier function. Mol Biol Cell 2008; 19: 1261-1270.
  • 27 Birukova AA, Zagranichnaya T, Fu P. et al. Prostaglandins PGE(2) and PGI(2) promote endothelial barrier enhancement via PKA- and Epac1/Rap1-dependent Rac activation. Exp Cell Res 2007; 313: 2504-2520.
  • 28 Birukova AA, Zagranichnaya T, Alekseeva E. et al. Epac/Rap and PKA are novel mechanisms of ANP-induced Rac-mediated pulmonary endothelial barrier protection. J Cell Physiol 2008; 215: 715-724.
  • 29 Lorenowicz MJ, Fernandez-Borja M, van Stalborch A-MD. et al. Microtubule dynamics and Rac-1 signaling independently regulate barrier function in lung epithelial cells. Am J Respir Cell Mol Biol 2007; 293: L1321-L1331.
  • 30 Wittchen ES, Worthylake RA, Kelly P. et al. Rap1 GTPase inhibits leukocyte trans-migration by promoting endothelial barrier function. J Biol Chem 2005; 280: 11675-11682.
  • 31 Basoni C, Nobles M, Grimshaw A. et al. Inhibitory control of TGF-β1 on the activation of Rap1, CD11b, and transendothelial migration of leukocytes. FASEB J 2005; 19: 822-824.
  • 32 Netherton SJ, Sutton JA, Wilson LS. et al. Both protein kinase A and exhcange protein activated by cAMP coordinate adhesion of human vascular endothelial cells. Circ Res 2007; 101: 768-776.
  • 33 Lorenowicz MJ, Fernandez-Borja M, Kooistra MRH. et al. PKA and Epac1 regulate endothelial integrity and migration though parallel and independent pathways. Eur J CellBiol 2008; 87: 779-792.
  • 34 Carmona G, Chavakis E, Koehl U. et al. Activation of Epac stimulates integrind-dependent homing of progenitor cells. Blood 2008; 111: 2640-2646.
  • 35 Beene DL, Scott JD. A-kinase anchoring proteins take shape. Curr Opin Cell Biol 2008; 19: 192-198.
  • 36 Wong W, Scott JD. AKAP signalling complexes: focal points in space and time. Nat Rev Mol Cell Biol 2004; 5: 959-970.
  • 37 Di Benedetto G, Zoccarato A, Lissandron V. et al. Protein kinase A Type I and II define distinct intracellular signaling compartments. Circ Res 2008; 103: 836-844.
  • 38 Dodge-Kafka KLSJ, Pare GC, Michel JJC. et al. The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways. Nature 2005; 437: 574-578.
  • 39 Nijholt IM, Dolga AM, Ostroveanu A. et al. Neuronal AKAP150 coordinates PKA and Epac mediated PKB/Akt phosphorylation. Cell Signal 2008; 20: 1715-1724.
  • 40 Enserink JM, Christensen AE, de Rooji J. et al. A novel Epac-specific cAMP analogue demonstrates independent regulation of Rap1 and ERK. Nat Cell Biol 2002; 4: 901-906.
  • 41 Christensen AE, Selheim F, de Rooji J. et al. cAMP analog mapping of Epac 1 and cAMP kinase. Discriminating analogs demonstrate that Epac and cAMP kinase act synergistically to promote PC-12 cell neurite extension. J Biol Chem 2003; 278: 35394-35402.
  • 42 Holz GG, Kang G, Harbeck M. et al. Cell physiology of cAMP sensor Epac. J Physiol 2006; 577: 5-15.
  • 43 Holz GG, Chepurny OG, Schwede F. Epac-selelctive cAMP analogs: New tools with which to evaluate the signal transduction properties of cAMP-regulated gua-nine nucleotide exchange factors. Cell Signal 2008; 20: 10-20.
  • 44 Sukhanova IF, Kozhevnikova LM, Popov EG. et al. Activators of Epac proteins induce relaxation of isolated rat aorta. Dokl Biol Sci 2006; 411: 441-444.
  • 45 Laxman S, Riechers A, Sadilek M. et al. Hydrolysis products of cAMP analogs cause transformation of Trypanosoma brucei from slender to stumpy-like forms. Proc Natl Acad Sci USA 2006; 103: 19194-19199.
  • 46 Poppe H, Rybalkin SD, Rehmann H. et al. Cyclic nucleotide analogs as probes of signaling pathways. Nat Methods 2008; 5: 277-278.
  • 47 Enyeart JA, Enyeart JJ. Metabolites of an Epac-selective cAMP anlog induce cortisol synthesis by adrenocortical cells through a cAMP-independent pathway. Plos One 2009; 4: e6088
  • 48 Li Q, Zhang L, Pfaffendorf M. et al. Comparative effects of angiotensin II and its degradation products angiotensin III and angiotensin IV in rat aorta. Brit J Pharmacol 1995; 116: 2963-2970.
  • 49 Altmann C, Meyer zu Heringdorf D, Böyükbas D. et al. Sphingosylphosphorylcholine, a naturally occuring lipid mediator, inhibits human platelet function. Brit J Pharmacol 2003; 138: 435-444.
  • 50 Marwali MR, Hu C-P, Mohandas B. et al. Modulation of ADP-induced platelet activation by aspirin and pravastatin: Role of lectin-like oxidized low-density lipo-protein receptor-1, nitric oxide, oxidative stress, and inside-out integrin signaling. J Pharmacol Exp Ther 2007; 322: 1324-1332.
  • 51 López de Jesús M, Stope MB, Oude Weernink PA. et al. Cyclic AMP-dependent and Epac-mediated activation of R-Ras by G protein-coupled receptors leads to phospholipase D stimulation. J Biol Chem 2006; 281: 21837-21847.
  • 52 Keiper M, Stope MB, Szatkowski D. et al. Epac- and Ca2+ -controlled activation of Ras and extracellular signal-regulated kinases by Gs-coupled receptors. J Biol Chem 2004; 279: 46497-46508.
  • 53 Kooistra MRH, Corada M, Dejana E. et al. Epac1 regulates integrity of endothelial cell junctions through VE-cadherin. FEBS Lett 2005; 579: 4966-4972.
  • 54 Hermann A, Schrör K, Weber A-A. CD40 ligand (CD40L) does not stimulate proliferation of vascular smooth muscle cells. Eur J CellBiol 2002; 81: 213-221.
  • 55 Grandoch M, Rose A, ter Braak M. et al. Epac inhibits migration and proliferation of human prostate carcinoma cells. Brit J Cancer. 2009 in press:
  • 56 Gräbner R, Till U, Heller R. Flow cytometric determination of E-selectin, vascular cell adhesion molecule-1, and intercellular cell adhesion molecule-1 in formaldehyde-fixed endothelial cell monolayers. Cytometry 2000; 40: 238-244.
  • 57 Herr W, Ranieri E, Olson W. et al. Mature dendritic cells pulsed wih freeze-thaw cell lysates define an effective in vitro vaccine designed to elicit EBV-specific CD4(+) and CD(+) T lymphocytes. Blood 2000; 96: 1857-1864.
  • 58 Takayasu-Okishio M, Terashita Z, Kondo K. Endothelin-1 and platelet activating factor stimulate thromboxane A2 biosytnhesis in rat vascular smooth muscle cells. Biochem Pharmacol 1990; 40: 2713-2717.
  • 59 Siess W. Molecular mechanisms of platelet activation. Physiol Rev 1989; 69: 58-178.
  • 60 Torti M, Lapetina EG. Structure and function of rap proteins in human platelets. Thromb Haemost 1994; 71: 533-543.
  • 61 Franke B, Akkerman J-W, Bos JL. Rapid Ca2+-mediated activation of Rap1 in human platelets. EMBO J 1997; 16: 252-259.
  • 62 Lorenowicz MJ, van Gils J, de Boer M. et al. Epac1-Rap1 signaling regulates monocyte adhesion and chemotaxis. J Leukoc Biol 2006; 80: 1542-1552.
  • 63 Smolenski A, Bachmann C, Reinhard K. et al. Analysis and regulation of vasodilator-stimulated phosphoprotein serin 239 phosphorylation in vitro and in intact cells using a phosphospecific monoclonal antibody. J Biol Chem 1998; 273: 20029-20035.
  • 64 Ishizuka T, Suzuki K, Kawakami M. et al. Thromboxane A2 receptor blockade suppresses intercellular adhesion molecule-1 expression by stumlated vascular endothelial cells. Eur J Pharmacol 1996; 312: 367-377.
  • 65 Ishizuka T, Kawakami M, Matsuki Y. et al. Stimulation with thromboxane A2 (TXA2) receptor agonist enhances ICAM-1, VCAM-1 or ELAM-1 expression by human vascular endothelial cells. Clin Exp Immunol 1998; 112: 464-470.
  • 66 Lu Y-T, Chen P-G, Liu SF. Time course of lung ischemia-reperfusion-induced ICAM-1 expression and its role in ischemia-reperfusion lung injury. J Appl Physiol 2002; 93: 620-628.
  • 67 Lawson C, Wolf S. ICAM-1 signaling in endothelial cells. Pharmacol Rep 2009; 61: 22-32.
  • 68 Soyka R, Guth BD, Weisenberger HM. et al. Guanidine derivatives as combined thromboxane A2 receptor antagonists and synthase inhibitors. J Med Chem 1999; 42: 1235-1249.
  • 69 Swayne GT, Maguire J, Dolan J. et al. Evidence for homogeneity of thromboxane A2 receptor using structurally different antagonists. Eur J Pharmacol 1988; 152: 311-319.
  • 70 Cimetière B, Dubuffet T, Landras C. et al. New tetrahydronapthalene derivatives as combined thromboxane receptor antagonists and thromboxane synthase inhibitors. Biorgan Med Chem Lett 1998; 8: 1381-1396.
  • 71 Hall RA, Gillard J, Guindon Y. et al. Pharmacology of L-655,240 (3-[1-(4-chlrobenzyl)-5-fluoro-3-methyl-indol-2yl]2,2-dimethylpropanoiacid); a potent, selective thromboxane/prostaglandine endoperoxide antagonist. Eur J Pharmacol 1987; 135: 193-201.
  • 72 Ogletree ML, Allen GT. Interspecies differences in thromboxane receptors: studies with thromboxane receptor antagonists in rat and guinea pigs smooth muscles. J Pharmacol Exp Ther 1992; 260: 789-794.
  • 73 Dao KK, Teigen K, Kopperud R. et al. Epac1 and cAMP-dependent protein kinase holoenzyme have similar cAMP affinity, but their cAMP domains have distinct structural features and cyclic nucleotide recognition. J Biol Chem 2006; 281: 21500-21511.