Pharmacopsychiatry 2008; 41(4): 138-145
DOI: 10.1055/s-2008-1058107
Original Paper

© Georg Thieme Verlag KG Stuttgart · New York

Behavioural Alterations in Rats Following Neonatal Hypoxia and Effects of Clozapine: Implications for Schizophrenia

M. Fendt 1 , 4 , A. Lex 1 , 5 , P. Falkai 2 , F. A. Henn 3 , 6 , A. Schmitt 2 , 3
  • 1Animal Physiology, Zoological Institute, Faculty of Biology, University of Tübingen, Tübingen, Germany
  • 2Department of Psychiatry, University of Göttingen, Göttingen, Germany
  • 3Central Institute of Mental Health, Mannheim, Germany
  • 4Present address: Novartis Institutes for BioMedical Research, Neuroscience DA, Basel, Switzerland
  • 5Present address: Animal Physiology, Biological Institute, University of Stuttgart, Stuttgart, Germany
  • 6Present address: Life Sciences, Brookhaven National Laboratory, Upton, NY, USA
Further Information

Publication History

received 08.10.2007 revised 02.01.2008

accepted 14.01.2008

Publication Date:
23 July 2008 (online)

Abstract

Introduction: As a consequence of obstetric complications hypoxia has been discussed as a possible factor in the pathophysiology of schizophrenia. The present study investigated the effects of weak chronic neonatal hypoxia in rats on different behavioural animal models of schizophrenia.

Methods: (1) After neonatal hypoxia, half of the pups were fostered by normally treated nurse animals to control for possible maternal effects. (2) The animals were tested on postnatal days (PD) 36, 86, 120 and 150 by applying three different behavioural tests: prepulse inhibition (PPI), social interaction and recognition, and motor activity in an open field. (3) Before the PD 150 test, half of the animals had been chronically treated with the antipsychotic drug clozapine (45 mg/kg/day).

Results: Rats exposed to hypoxia as neonates exhibited a deficit in locomotor activity on PD 86, 120, and 150, as well as a PPI deficit on PD 120 and 150 but not before. Chronic treatment with clozapine reverses the hypoxia induced PPI deficit, but not the decreased locomotor activity. In a second experiment, clozapine was chronically administered before PD 120 and blocked the development of the PPI deficit in the animals exposed to hypoxia.

Discussion: The time course of the hypoxia-induced PPI deficit and reversibility by clozapine supports the validity of our animal model and the hypothesis that hypoxia as an obstetric complication is an important factor in the pathophysiology of schizophrenia.

References

  • 1 Auclair AL, Kleven MS, Besnard J, Deporteere R, Newman-Tancredi A. Actions of novel antipsychotic agents on apomorphine-induced PPI disruption: influence on combined serotonin 5-HT1A receptor activation and dopamine D2 receptor blockade.  Neuropsychopharmacology. 2006;  31 1900-1909
  • 2 Bakshi VP, Swerdlow NR, Geyer MA. Clozapine antagonizes phencyclidine-induced defitits in sensorimotor gating of the startle response.  J Pharmacol Exp Ther. 1994;  271 787-794
  • 3 Braff DL, Geyer MA, Swerdlow NR. Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies.  Psychopharmacology. 2001;  156 234-258
  • 4 Braff DL, Grillon C, Geyer MA. Gating and habituation of the startle reflex in schizophrenic patients.  Arch Gen Psychiatry. 1992;  49 206-215
  • 5 Braff DL, Swerdlow NR, Geyer MA. Symptom correlates of prepulse inhibition deficits in male schizophrenic patients.  Am J Psychiatry. 1999;  156 596-602
  • 6 Bymaster FP, Calligaro DO, Falcone JF, Marsh RD, Moore NA, Tye NC, Seeman P, Wong DT. Radioreceptor binding profile of the atypical antipsychotic olanzapine.  Neuropsychopharmacology. 1996;  14 87-96
  • 7 Cannon TD, Mednick SA. Fetal neural development and adult schizophrenia: An elaboration of the paradigm. In: Mednick SA, Cannon TD, Barr CE, editors. Fetal neural development and adult schizophrenia. Cambridge: Cambridge University Press 1991: 227-237
  • 8 Cannon TD, Rosso IM, Bearden CE, Sanchez LE, Hadley T. A prospective cohort study of neurodevelopmental processes in the genesis and epigenesis of schizophrenia.  Dev Psychopathol. 1999;  11 467-485
  • 9 Cannon TD, Erp TG Van, Rosso IM, Huttunen M, Lonnqvist J, Pirkola T, Salonen O, Valanne L, Poutanen VP, Standertskjold-Nordenstam CG. Fetal hypoxia and structural brain abnormalities in schizophrenic patients, their siblings, and controls.  Arch Gen Psychiatry. 2002;  59 35-41
  • 10 Carlsson A. The neurochemical circuitry of schizophrenia.  Pharmacopsychiatry. 2006;  39 10-14
  • 11 Dalman C, Thomas HV, Davis AS, Gentz J, Lewis G, Allebeck P. Signs of asphyxia at birth and risk of schizophrenia. Population-based case-control study.  Br J Psychiatry. 2001;  179 403-408
  • 12 Dobbing J, Sands J, Gatrix CA. Cell size and cell number: a reconsideration of organ growth and catch-up potential.  Proc Nutr Soc. 1979;  38 99A
  • 13 El-Khodor BF, Boksa P. Transient birth hypoxia increases behavioral responses to repeated stress in the adult rat.  Behav Brain Res. 2000;  107 171-175
  • 14 El-Khodor BF, Boksa P. Differential vulnerability of male versus female rats to long-term effects of birth insult on brain catecholamine levels.  Exp Neurol. 2003;  182 208-219
  • 15 Goodman R. Are complications of pregnancy and birth causes of schizophrenia?.  Dev Med Child Neurol. 1988;  30 391-395
  • 16 Häfner H, an der Heiden W, Behrens S, Gattaz WF, Hambrecht M, Löffler W, Maurer K, Munk-Jorgensen P, Nowotny B, Riecher-Rössler A, Stein A. Causes and consequences of the gender difference in age at onset of schizophrenia.  Schiz Bull. 1998;  24 99-113
  • 17 Hermans RH, Longo LD. Altered catecholaminergic behavioral and hormonal responses in rats following early postnatal hypoxia.  Physiol Behav. 1994;  55 469-475
  • 18 Ikonomidou C, Mosinger JL, Salles KS, Labruyere J, Olney JW. Sensitivity of the developing rat brain to hypobaric/ischemic damage parallels sensitivity to N-methyl-aspartate neurotoxicity.  J Neurosci. 1989;  9 2809-2818
  • 19 Karow A, Schnedler D, Naber D. What would the patient choose? Subjective comparison of atypical and typical neuroleptics.  Pharmacopsychiatry. 2006;  39 47-51
  • 20 Krajnc D, Wemlinger TA, Neff NH, Hadjiconstantinou M. Neonatal hypoxia: early neurotransmitter responses and the consequences of treatment with GM1 ganglioside.  J Pharmacol Exp Ther. 1994;  271 1299-1305
  • 21 Kumari V, Sharma T. Effects of typical and atypical antipsychotics on prepulse inhibition in schizophrenia: a critical evaluation of current evidence and directions for future research.  Psychopharmacology. 2002;  162 97-101
  • 22 Kusljic S, Brosda J, Buuse M van der. Effects of haloperidol and clozapine on sensorimotor gating deficits induced by 5-hydroxytryptamine depletion in the brain.  Br J Pharmacol. 2006;  147 800-807
  • 23 Le Pen G, Moreau JL. Disruption of prepulse inhibition of startle reflex in a neurodevelopmental model of schizophrenia: reversal by clozapine, olanzapine and risperidone but not by haloperidol.  Neuropsychopharmacology. 2002;  27 1-11
  • 24 Leung A, Chue P. Sex differences in schizophrenia, a review of the literature.  Acta Psychiatr Scand Suppl. 2000;  401 3-38
  • 25 Lewis SW, Barnes TR, Davies L, Murray RM, Dunn G, Hayhurst KP, Markwick A, Lloyd H, Jones PB. Randomized controlled trial of effect of prescription of clozapine versus other second-generation antipsychotic drugs in resistant schizophrenia.  Schizophr Bull. 2006;  32 715-723
  • 26 Linn GS, Negi SS, Gerum SV, Javitt DC. Reversal of phencyclidine-induced prepulse inhibition deficits by clozapine in monkeys.  Psychopharmacology. 2003;  169 234-239
  • 27 Lipska BK, Al-Amin HA, Weinberger DR. Excitotoxic lesions of the rat medial prefrontal cortex. Effects on abnormal behaviors associated with neonatal hippocampal damage.  Neuropsychopharmacology. 1998;  19 451-464
  • 28 Lipska BK, Aultman JM, Verma A, Weinberger DR, Moghaddam B. Neonatal damage of the ventral hippocampus impairs working memory in the rat.  Neuropsychopharmacology. 2002;  27 47-54
  • 29 MacNeil TF. Obstetric factors and perinatal injuries. In Tsuang MT, Simpson JC, editors. Handbook of schizophrenia, vol 3: Nosology, epidemiology and genetics. New York: Elsevier 1988: 319-344
  • 30 MacNeil TF, Cantor-Graae E, Weinberger DR. Relationship of obstetric complications and differences in size of brain structures in monozygotic twin pairs discordant for schizophrenia.  Am J Psychiatry. 2000;  157 203-212
  • 31 Meincke U, Morth D, Voss T, Thelen B, Geyer MA, Gouzoulis-Mayfrank E. Prepulse inhibition of the acoustically evoked startle reflex in patients with an acute schizophrenic psychosis – a longitudinal study.  Eur Arch Psychiatry Clin Neurosci. 2004;  254 415-421
  • 32 Oranje B, Oel CJ van, Gispen-De Wied MN, Kahns RS. Effects of typical and atypical antipsychotics on the prepulse inhibition of the startle reflex in patients with schizophrenia.  J Clin Psychopharmacol. 2002;  22 359-365
  • 33 Pearigen P, Gwinn R, Simon RP. The effects in vivo of hypoxia on brain injury.  Brain Res. 1996;  725 184-191
  • 34 Perry W, Braff DL. Information-processing deficits and thought disorder in schizophrenia.  Am J Psychiatry. 1994;  151 363-367
  • 35 Perry W, Geyer MA, Braff DL. Sensorimotor gating and thought disturbance measured in close temporal proximity in schizophrenic patients.  Arch Gen Psychiatry. 1999;  56 277-281
  • 36 Putzhammern A, Klein HE. Quantitative analysis of motor disturbances in schizophrenic patients.  Dialogues Clin Neurosci. 2006;  8 123-130
  • 37 Romero A, Villamayor F, Grau MT, Sacristan A, Ortiz JA. Relationship between fetal weight and litter size in rats: application to reproductive toxicology studies.  Reprod Toxicol. 1992;  6 453-456
  • 38 Rung JP, Carlsson A, Ryden Markinhuhta K, Carlsson ML. MK-801 induced social withdrawal in rats; a model for negative symptoms of schizophrenia.  Prog Neuro-Psychopharmacol & Biol Psychiat. 2005;  29 827-832
  • 39 Rygula R, Abumaria N, Flügge G, Fuchs E, Ruther E, Havemann-Reinecke U. Anhedonia and motivational deficits in rats: impact of chronic social stress.  Behav Brain Res. 2005;  162 127-134
  • 40 Sams-Dodd F, Lipska BK, Weinberger DR. Neonatal lesions of the rat ventral hippocampus result in hyperlocomotion and deficits in social behaviour in adulthood.  Psychopharmacology. 1997;  132 303-310
  • 41 Sandager-Nielsen K, Andersen MB, Sager TN, Werge T, Scheel-Krüger J. Effects of postnatal anoxia on striatal dopamine metabolism and prepulse inhibition in rats.  Pharmacol Biochem Behav. 2004;  77 767-774
  • 42 Schmitt A, Fendt M, Zink M, Ebert U, Starke M, Berthold M, Herb A, Petroianu G, Falkai P, Henn FA. Altered NMDA receptor expression and behavior following postnatal hypoxia: potential relevance to schizophrenia.  J Neural Transm. 2007;  114 239-248
  • 43 Schmitt A, Zink M, Müller B, May B, Herb A, Jatzko A, Braus DF, Henn FA. Effects of long-term antipsychotic treatment on NMDA receptor binding and gene expression of subunits.  Neurochem Res. 2003;  28 235-241
  • 44 Schmitt A, Zink M, Petroianu G, May B, Braus DF, Henn FA. Decreased gene expression of glial and neuronal glutamate transporters after chronic antipsychotic treatment in rat brain.  Neurosci Lett. 2003;  347 81-84
  • 45 Schmitt U, Dahmen N, Fischer V, Weigmann H, Rao M-L, Reuss S, Hiemke C. Chronic oral haloperidol and clozapine in rats: A behavioral evaluation.  Neuropsychobiology. 1999;  39 86-91
  • 46 Schneider M, Koch M. Behavioral and morphological alterations following neonatal excitotoxic lesions of the medial prefrontal cortex in rats.  Exp Neurol. 2005;  195 185-198
  • 47 Schneider M, Koch M. Deficient social and play behavior in juvenile and adult rats after neonatal cortical lesion: effects of chronic pubertal cannabinoid treatment.  Neuropsychopharmacology. 2005;  30 944-957
  • 48 Susser ES, Lin SP. Schizophrenia after prenatal exposure to the Dutch Hunger Winter of 1944-1945.  Arch Gen Psychiatry. 1992;  49 983-988
  • 49 Swerdlow NR, Geyer MA. Clozapine and haloperidol in an animal model of sensorimotor gating deficits in schizophrenia.  Pharmacol Biochem Behav. 1993;  44 741-744
  • 50 Swerdlow NR, Geyer MA. Using an animal model of deficient sensorimotor gating to study the pathophysiology and new treatments of schizophrenia.  Schizophr Bull. 1998;  24 285-301
  • 51 Swerdlow NR, Geyer MA, Braff DL. Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges.  Psychopharmacology. 2001;  156 194-215
  • 52 Swerdlow NR, Light GA, Cadenhead KS, Sprock J, Hsieh MH, Braff DL. Startle gating deficits in a large cohort of patients with schizophrenia: relationship to medications, symptoms, neurocognition, and level of function.  Arch Gen Psychiatry. 2006;  63 1325-1335
  • 53 Thor DH, Holloway WR. Social memory of the male laboratory rat.  J Comp Physiol Psychol. 1982;  96 1000-1006
  • 54 Vaillancourt C, Boksa P. Birth insult alters dopamine-mediated behavior in a precocial species, the guinea pig. Implications for schizophrenia.  Neuropsychopharmacology. 2000;  23 654-666
  • 55 Buuse M van den, Garner B, Koch M. Neurodevelopmental animal models of schizophrenia: effects on prepulse inhibition.  Curr Mol Med. 2003;  3 459-471
  • 56 Erp TG Van, Saleh PA, Rosso IM, Huttunen M, Lonnqvist J, Pirkola T, Salonen O, Valanne L, Poutanen VP, Standertskjold-Nordenstam CG, Cannon TD. Contributions of genetic risk and fetal hypoxia to hippocampal volume in patients with schizophrenia or schizoaffective disorder, their unaffected siblings, and healthy unrelated volunteers.  Am J Psychiatry. 2002;  159 1514-1520
  • 57 Verdoux H, Geddes JR, Takei N, Lawrie SM, Bovet P, Eagles JM, Heun R, MacCreadie RG, MacNeil TF, O'Callaghan E, Stober G, Willinger MU, Wright P, Murray RM. Obstetric complications and age at onset in schizophrenia: an international collaborative meta-analysis of individual patient data.  Am J Psychiatry. 1997;  154 1220-1227
  • 58 Weike AI, Bauer U, Hamm AO. Effective neuroleptic mediaction removes prepulse inhibition deficits in schizophrenic patients.  Biol Psychiatry. 2000;  47 61-70
  • 59 Weinberger DR. Implications of normal brain development for the pathogenesis of schizophrenia.  Arch Gen Psychiatry. 1987;  44 660-669
  • 60 Weinberger DR. On the plausibility of „the neurodevelopmental hypothesis” of schizophrenia.  Neuropsychopharmacology. 1996;  14 1-11
  • 61 Weinberger DR, Lipska BK. Cortical maldevelopment, anti-psychotic drugs, and schizophrenia: a search for common ground.  Schizophr Res. 1995;  16 37-110
  • 62 Zink M, Schmitt A, May B, Müller B, Braus DF, Henn FA. Differential effects of long-term treatment with clozapine or haloperidol on GABA transporter expression.  Pharmacopsychiatry. 2004;  37 171-174
  • 63 Zink M, Schmitt A, May B, Müller B, Demirakca T, Braus DF, Henn FA. Differential effects of long-term treatment with clozapine or haloperidol on GABAA receptor binding and GAD67 expression.  Schizophr Res. 2004;  66 151-157

Correspondence

Dr. M. Fendt

Novartis Institutes of BioMedical Research

DA Neuroscience

WSJ-386.3.44

Forum 1

Novartis Campus

4056 Basel

Switzerland

Phone: +41/61/324 10 42

Fax: +41/6/324 45 02

Email: markus.fendt@novartis.com

    >