Semin Thromb Hemost 2007; 33(4): 355-364
DOI: 10.1055/s-2007-976171
Copyright © 2007 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Adverse Effects on Hemostatic Function of Drugs Used in Hematologic Malignancies

Anaadriana Zakarija1 , Hau C. Kwaan1
  • 1Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
Further Information

Publication History

Publication Date:
24 May 2007 (online)

ABSTRACT

The adverse effects of drugs used in the treatment of hematologic malignancies are among the many factors contributing to the increased risk of both thrombosis and bleeding. These effects most often occur when combination of drugs are given. Some, such as l-asparaginase, result in both bleeding and thrombosis. Consideration must be given also to the bleeding or prothrombotic risk of the underlying hematologic disorder. The commonly used drugs with adverse effects on hemostasis include l-asparaginase, corticosteroids, inhibitors of vascular endothelial growth factor, gemtuzumab ozogamicin, thalidomide, and immunomodulatory derivatives of Thalidomide, and the hematopoietic growth factors. In addition, the syndrome of thrombotic microangiopathy may be brought on by several other drugs. Thus, a full understanding of these adverse effects is necessary in treating these disorders.

REFERENCES

  • 1 Mitchell L, Hoogendoorn H, Giles A R, Vegh P, Andrew M. Increased endogenous thrombin generation in children with acute lymphoblastic leukemia: risk of thrombotic complications in L-asparaginase-induced antithrombin III deficiency.  Blood. 1994;  83 386-391
  • 2 Mitchell L, Andrew M, Hanna K et al.. Trend to efficacy and safety using antithrombin concentrate in prevention of thrombosis in children receiving L-asparaginase for acute lymphoblastic leukemia. Results of the PAARKA study.  Thromb Haemost. 2003;  90 235-244
  • 3 Mitchell L G, Halton J M, Vegh P A et al.. Effect of disease and chemotherapy on hemostasis in children with acute lymphoid leukemia.  Am J Pediatr Hematol Oncol. 1994;  16 120-126
  • 4 Kieslich M, Porto L, Lanfermann H, Jacobi G, Schwabe D, Bohles H. Cerebrovascular complications of L-asparaginase in the therapy of acute lymphoblastic leukemia.  J Pediatr Hematol Oncol. 2003;  25 484-487
  • 5 Fleischhack G, Solymosi L, Reiter A, Bender-Gotze C, Eberl W, Bode U. Imaging methods in diagnosis of cerebrovascular complications with L-asparaginase therapy.  Klin Padiatr. 1994;  206 334-341
  • 6 Kucuk O, Kwaan H C, Gunnar W, Vazquez R M. Thromboembolic complications associated with L-asparaginase therapy. Etiologic role of low antithrombin III and plasminogen levels and therapeutic correction by fresh frozen plasma.  Cancer. 1985;  55 702-706
  • 7 Isacson S. Effect of prednisolone on the coagulation and fibrinolytic systems.  Scand J Haematol. 1970;  7 212-216
  • 8 Jorgensen K A, Sorensen P, Freund L. Effect of glucocorticosteroids on some coagulation tests.  Acta Haematol. 1982;  68 39-42
  • 9 Bennett C L, Schumock G T, Desai A A et al.. Thalidomide-associated deep vein thrombosis and pulmonary embolism.  Am J Med. 2002;  113 603-606
  • 10 Ratner M. Genentech discloses safety concerns over Avastin.  Nat Biotechnol. 2004;  22 1198
  • 11 Kabbinavar F, Hurwitz H I, Fehrenbacher L et al.. Phase II. randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer.  J Clin Oncol. 2003;  21 60-65
  • 12 Hurwitz H, Fehrenbacher L, Novotny W et al.. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer.  N Engl J Med. 2004;  350 2335-2342
  • 13 Skillings J R, Johnson D H, Miller K et al.. Arterial thromboembolic events (ATEs) in a pooled analysis of 5 randomized, controlled trials of bevacizumab with chemotherapy.  J Clin Oncol. 2005;  23(suppl 1) , 196s (abst 3019)
  • 14 Pinedo H M. The role of VEGF in oncology: effects on hemostasis and thrombosis.  Pathophysiol Haemost Thromb. 2003;  33(suppl 1) 11-12
  • 15 Verheul H M, Jorna A S, Hoekman K, Broxterman H J, Gebbink M F, Pinedo H M. Vascular endothelial growth factor-stimulated endothelial cells promote adhesion and activation of platelets.  Blood. 2000;  96 4216-4221
  • 16 Kilickap S, Abali H, Celik I. Bevacizumab, bleeding, thrombosis, and warfarin.  J Clin Oncol. 2003;  21 3542-3543
  • 17 Yang J C, Haworth L, Sherry R M et al.. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer.  N Engl J Med. 2003;  349 427-434
  • 18 Sandler A, Gray R, Perry M C et al.. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer.  N Engl J Med. 2006;  355 2542-2550
  • 19 Kuenen B C, Levi M, Meijers J C et al.. Potential role of platelets in endothelial damage observed during treatment with cisplatin, gemcitabine, and the angiogenesis inhibitor SU5416.  J Clin Oncol. 2003;  21 2192-2198
  • 20 Kuenen B C, Levi M, Meijers J C et al.. Analysis of coagulation cascade and endothelial cell activation during inhibition of vascular endothelial growth factor/vascular endothelial growth factor receptor pathway in cancer patients.  Arterioscler Thromb Vasc Biol. 2002;  22 1500-1505
  • 21 Marx G M, Steer C B, Harper P, Pavlakis N, Rixe O, Khayat D. Unexpected serious toxicity with chemotherapy and antiangiogenic combinations: time to take stock!.  J Clin Oncol. 2002;  20 1446-1448
  • 22 Icli F, Karaoguz H, Dincol D et al.. Severe vascular toxicity associated with cisplatin-based chemotherapy.  Cancer. 1993;  72 587-593
  • 23 Bross P F, Beitz J, Chen G et al.. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia.  Clin Cancer Res. 2001;  7 1490-1496
  • 24 Larson R A, Sievers E L, Stadtmauer E A et al.. Final report of the efficacy and safety of gemtuzumab ozogamicin (Mylotarg) in patients with CD33-positive acute myeloid leukemia in first recurrence.  Cancer. 2005;  104 1442-1452
  • 25 Giles F J, Kantarjian H M, Kornblau S M et al.. Mylotarg (gemtuzumab ozogamicin) therapy is associated with hepatic venoocclusive disease in patients who have not received stem cell transplantation.  Cancer. 2001;  92 406-413
  • 26 Nabhan C, Rundhaugen L, Jatoi M et al.. Gemtuzumab ozogamicin (MylotargTM) is infrequently associated with sinusoidal obstructive syndrome/veno-occlusive disease.  Ann Oncol. 2004;  15 1231-1236
  • 27 Kurt M, Shorbagi A, Altundag K, Elkiran T, Gullu I, Kansu E. Possible association between Budd-Chiari Syndrome and gemtuzumab ozogamicin treatment in a patient with refractory acute myelogenous leukemia.  Am J Hematol. 2005;  80 213-215
  • 28 McKoy J M, Angelotta C, Bennett C L et al.. Gemtuzumab ozogamicin-associated sinusoidal obstructive syndrome (SOS): An overview from the research on adverse drug events and reports (RADAR) project.  Leuk Res. 2006; September 7;  , (Epub ahead of print)
  • 29 DeLeve L D, Shulman H M, McDonald G B. Toxic injury to hepatic sinusoids: sinusoidal obstruction syndrome (veno-occlusive disease).  Semin Liver Dis. 2002;  22 27-42
  • 30 Gordon L I. Gemtuzumab ozogamicin (Mylotarg) and hepatic veno-occlusive disease: take two acetaminophen, and..  Bone Marrow Transplant. 2001;  28 811-812
  • 31 Favaloro E J. Differential expression of surface antigens on activated endothelium.  Immunol Cell Biol. 1993;  71(pt 6) 571-581
  • 32 Dimopoulos M A, Eleutherakis-Papaiakovou V. Adverse effects of thalidomide administration in patients with neoplastic diseases.  Am J Med. 2004;  117 508-515
  • 33 Kyle R A, Rajkumar S V. Multiple myeloma.  N Engl J Med. 2004;  351 1860-1873
  • 34 Singhal S, Mehta J. Thalidomide in cancer.  Biomed Pharmacother. 2002;  56 4-12
  • 35 Osman K, Comenzo R, Rajkumar S V. Deep venous thrombosis and thalidomide therapy for multiple myeloma.  N Engl J Med. 2001;  344 1951-1952
  • 36 Zangari M, Siegel E, Barlogie B et al.. Thrombogenic activity of doxorubicin in myeloma patients receiving thalidomide: implications for therapy.  Blood. 2002;  100 1168-1171
  • 37 Steurer M, Sudmeier I, Stauder R, Gastl G. Thromboembolic events in patients with myelodysplastic syndrome receiving thalidomide in combination with darbepoetin-alpha.  Br J Haematol. 2003;  121 101-103
  • 38 Desai A A, Vogelzang N J, Rini B I, Ansari R, Krauss S, Stadler W M. A high rate of venous thromboembolism in a multi-institutional phase II trial of weekly intravenous gemcitabine with continuous infusion fluorouracil and daily thalidomide in patients with metastatic renal cell carcinoma.  Cancer. 2002;  95 1629-1636
  • 39 Barlogie B, Desikan R, Eddlemon P et al.. Extended survival in advanced and refractory multiple myeloma after single-agent thalidomide: identification of prognostic factors in a phase 2 study of 169 patients.  Blood. 2001;  98 492-494
  • 40 Cavo M, Zamagni E, Cellini C et al.. Deep-vein thrombosis in patients with multiple myeloma receiving first-line thalidomide-dexamethasone therapy.  Blood. 2002;  100 2272-2273
  • 41 Rajkumar S V, Hayman S R, Lacy M Q et al.. Combination therapy with lenalidomide plus dexamethasone (Rev/Dex) for newly diagnosed myeloma.  Blood. 2005;  106 4050-4053
  • 42 Rajkumar S V, Blood E. Lenalidomide and venous thrombosis in multiple myeloma.  N Engl J Med. 2006;  354 2079-2080
  • 43 Zonder J A, Barlogie B, Durie B G, McCoy J, Crowley J, Hussein M A. Thrombotic complications in patients with newly diagnosed multiple myeloma treated with lenalidomide and dexamethasone: benefit of aspirin prophylaxis.  Blood. 2006;  108 403 , (author reply 404)
  • 44 Baz R, Li L, Kottke-Marchant K et al.. The role of aspirin in the prevention of thrombotic complications of thalidomide and anthracycline-based chemotherapy for multiple myeloma.  Mayo Clin Proc. 2005;  80 1568-1574
  • 45 Zangari M, Barlogie B, Anaissie E et al.. Deep vein thrombosis in patients with multiple myeloma treated with thalidomide and chemotherapy: effects of prophylactic and therapeutic anticoagulation.  Br J Haematol. 2004;  126 715-721
  • 46 Anderson K C. The role of immunomodulatory drugs in multiple myeloma.  Semin Hematol. 2003;  40 23-32
  • 47 Anderson K C, Prince H M. Lenalidomide and thalidomide: an evolving paradigm for the management of multiple myeloma.  Semin Hematol. 2005;  42 S1-S2
  • 48 Podar K, Tai Y T, Davies F E et al.. Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration.  Blood. 2001;  98 428-435
  • 49 Davies F E, Raje N, Hideshima T et al.. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma.  Blood. 2001;  98 210-216
  • 50 Hideshima T, Chauhan D, Shima Y et al.. Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy.  Blood. 2000;  96 2943-2950
  • 51 Gupta D, Treon S P, Shima Y et al.. Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications.  Leukemia. 2001;  15 1950-1961
  • 52 Lentzsch S, LeBlanc R, Podar K et al.. Immunomodulatory analogs of thalidomide inhibit growth of Hs Sultan cells and angiogenesis in vivo.  Leukemia. 2003;  17 41-44
  • 53 Anderson K C. Moving disease biology from the lab to the clinic.  Cancer. 2003;  97 796-801
  • 54 Anderson K C, Pazdur R, Farrell A T. Development of effective new treatments for multiple myeloma.  J Clin Oncol. 2005;  23 7207-7211
  • 55 Chauhan D, Uchiyama H, Akbarali Y et al.. Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa B.  Blood. 1996;  87 1104-1112
  • 56 Urashima M, Ogata A, Chauhan D et al.. Transforming growth factor-beta1: differential effects on multiple myeloma versus normal B cells.  Blood. 1996;  87 1928-1938
  • 57 Hideshima T, Chauhan D, Schlossman R, Richardson P, Anderson K C. The role of tumor necrosis factor alpha in the pathophysiology of human multiple myeloma: therapeutic applications.  Oncogene. 2001;  20 4519-4527
  • 58 Hideshima T, Chauhan D, Richardson P, Anderson K C. Identification and validation of novel therapeutic targets for multiple myeloma.  J Clin Oncol. 2005;  23 6345-6350
  • 59 Kwaan H C, Parmar S, Wang J. Pathogenesis of increased risk of thrombosis in cancer.  Semin Thromb Hemost. 2003;  29 283-290
  • 60 Corso A, Lorenzi A, Terulla V et al.. Modification of thrombomodulin plasma levels in refractory myeloma patients during treatment with thalidomide and dexamethasone.  Ann Hematol. 2004;  83 588-591
  • 61 Zangari M, Barlogie B, Thertulien R et al.. Thalidomide and deep vein thrombosis in multiple myeloma: risk factors and effect on survival.  Clin Lymphoma. 2003;  4 32-35
  • 62 Chen S J, Zelent A, Tong J H et al.. Rearrangements of the retinoic acid receptor alpha and promyelocytic leukemia zinc finger genes resulting from t(11;17)(q23;q21) in a patient with acute promyelocytic leukemia.  J Clin Invest. 1993;  91 2260-2267
  • 63 Licht J D, Shaknovich R, English M A et al.. Reduced and altered DNA-binding and transcriptional properties of the PLZF-retinoic acid receptor-alpha chimera generated in t(11;17)-associated acute promyelocytic leukemia.  Oncogene. 1996;  12 323-336
  • 64 Chen A, Licht J D, Wu Y, Hellinger N, Scher W, Waxman S. Retinoic acid is required for and potentiates differentiation of acute promyelocytic leukemia cells by nonretinoid agents.  Blood. 1994;  84 2122-2129
  • 65 Dong S, Tong J H, Huang W et al.. Molecular study on the chromosome 15 breakpoints in the translocation t(15; 17) in acute promyelocytic leukemia (APL).  Sci China B. 1993;  36 1101-1109
  • 66 Dong S, Tong J, Wu Y et al.. Molecular study of the mechanism of chromosomal translocation (15;17) in acute promyelocytic leukemia (APL).  Yi Chuan Xue Bao.. 1993;  20 381-388
  • 67 Geng J P, Tong J H, Dong S et al.. Localization of the chromosome 15 breakpoints and expression of multiple PML-RAR alpha transcripts in acute promyelocytic leukemia: a study of 28 Chinese patients.  Leukemia. 1993;  7 20-26
  • 68 Wang Z Y, Chen Z, Huang W et al.. Problems existing in differentiation therapy of acute promyelocytic leukemia (APL) with all-trans retinoic acid (ATRA).  Blood Cells. 1993;  19 633-641 , (discussion 642-637)
  • 69 Schneider W, Runde V, Aul C. From fatal hemorrhagic diathesis to life-threatening thrombosis risk. New complications of a “gentle” treatment of acute promyelocytic leukemias with all-trans-retinoic acid.  Dtsch Med Wochenschr. 1991;  116 1971-1975
  • 70 Runde V, Aul C, Heyll A, Schneider W. All-trans retinoic acid: not only a differentiating agent, but also an inducer of thromboembolic events in patients with M3 leukemia.  Blood. 1992;  79 534-535
  • 71 Tallman M S, Andersen J W, Schiffer C A et al.. All-trans-retinoic acid in acute promyelocytic leukemia.  N Engl J Med. 1997;  337 1021-1028
  • 72 Tallman M S. Retinoic acid syndrome: a problem of the past?.  Leukemia. 2002;  16 160-161
  • 73 Fenaux P, De Botton S. Retinoic acid syndrome. Recognition, prevention and management.  Drug Saf. 1998;  18 273-279
  • 74 Escudier S M, Kantarjian H M, Estey E H. Thrombosis in patients with acute promyelocytic leukemia treated with and without all-trans retinoic acid.  Leuk Lymphoma. 1996;  20 435-439
  • 75 de Lacerda J F, do Carmo J A, Guerra M L, Geraldes J, de Lacerda J M. Multiple thrombosis in acute promyelocytic leukaemia after tretinoin.  Lancet. 1993;  342 114-115
  • 76 Goldschmidt N, Gural A, Ben Yehuda D. Extensive splenic infarction, deep vein thrombosis and pulmonary emboli complicating induction therapy with all-trans-retinoic acid (ATRA) for acute promyelocytic leukemia.  Leuk Lymphoma. 2003;  44 1433-1437
  • 77 Brown J E, Olujohungbe A, Chang J et al.. All-trans retinoic acid (ATRA) and tranexamic acid: a potentially fatal combination in acute promyelocytic leukaemia.  Br J Haematol. 2000;  110 1010-1012
  • 78 Hashimoto S, Koike T, Tatewaki W et al.. Fatal thromboembolism in acute promyelocytic leukemia during all-trans retinoic acid therapy combined with antifibrinolytic therapy for prophylaxis of hemorrhage.  Leukemia. 1994;  8 1113-1115
  • 79 Kwaan H C, Wang J, Boggio L N. Abnormalities in hemostasis in acute promyelocytic leukemia.  Hematol Oncol. 2002;  20 33-41
  • 80 Falanga A, Marchetti M, Barbui T. All-trans-retinoic acid and bleeding/thrombosis.  Pathophysiol Haemost Thromb. 2003;  33(suppl 1) 19-21
  • 81 Douer D, Tallman M S. Arsenic trioxide: new clinical experience with an old medication in hematologic malignancies.  J Clin Oncol. 2005;  23 2396-2410
  • 82 Soignet S L, Maslak P, Wang Z G et al.. Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide.  N Engl J Med. 1998;  339 1341-1348
  • 83 Niu C, Yan H, Yu T et al.. Studies on treatment of acute promyelocytic leukemia with arsenic trioxide: remission induction, follow-up, and molecular monitoring in 11 newly diagnosed and 47 relapsed acute promyelocytic leukemia patients.  Blood. 1999;  94 3315-3324
  • 84 Bohlius J, Wilson J, Seidenfeld J et al.. Recombinant human erythropoietins and cancer patients: updated meta-analysis of 57 studies including 9353 patients.  J Natl Cancer Inst. 2006;  98 708-714
  • 85 Besarab A, Bolton W K, Browne J K et al.. The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin.  N Engl J Med. 1998;  339 584-590
  • 86 Drueke T B, Locatelli F, Clyne N et al.. Normalization of hemoglobin level in patients with chronic kidney disease and anemia.  N Engl J Med. 2006;  355 2071-2084
  • 87 Singh A K, Szczech L, Tang K et al.. Correction of anemia with epoetin alfa in chronic kidney disease.  N Engl J Med. 2006;  355 2085-2098
  • 88 Luksenburg H, Weir A, Wager R. FDA briefing document. Oncologic Drugs Advisory Committee. Safety concerns associated with Aranesp (darbepoetin alfa) Amgen, Inc and Procrit (epoetin alfa) Ortho Biotech, L.P., for the treatment of anemia associated with cancer chemotherapy.  http://Available at: www.fda.gov/ohrms/dockets/ac/04/briefing/4037B2_04_FDA-Aranesp-Procrit.htm , Accessed December 6, 2006
  • 89 Stohlawetz P J, Dzirlo L, Hergovich N et al.. Effects of erythropoietin on platelet reactivity and thrombopoiesis in humans.  Blood. 2000;  95 2983-2989
  • 90 Terpos E, Mougiou A, Kouraklis A et al.. Prolonged administration of erythropoietin increases erythroid response rate in myelodysplastic syndromes: a phase II trial in 281 patients.  Br J Haematol. 2002;  118 174-180
  • 91 Raza A, Meyer P, Dutt D et al.. Thalidomide produces transfusion independence in long-standing refractory anemias of patients with myelodysplastic syndromes.  Blood. 2001;  98 958-965
  • 92 Rizzo J D, Lichtin A E, Woolf S H et al.. Use of epoetin in patients with cancer: evidence-based clinical practice guidelines of the American Society of Clinical Oncology and the American Society of Hematology.  J Clin Oncol. 2002;  20 4083-4107
  • 93 Barbui T, Finazzi G, Grassi A, Marchioli R. Thrombosis in cancer patients treated with hematopoietic growth factors-a meta-analysis. On behalf of the Subcommittee on Haemostasis and Malignancy of the Scientific and Standardization Committee of the ISTH.  Thromb Haemost. 1996;  75 368-371
  • 94 Grem J L, McAtee N, Murphy R F et al.. Phase I and pharmacokinetic study of recombinant human granulocyte-macrophage colony-stimulating factor given in combination with fluorouracil plus calcium leucovorin in metastatic gastrointestinal adenocarcinoma.  J Clin Oncol. 1994;  12 560-568
  • 95 LeBlanc R, Roy J, Demers C, Vu L, Cantin G. A prospective study of G-CSF effects on hemostasis in allogeneic blood stem cell donors.  Bone Marrow Transplant. 1999;  23 991-996
  • 96 Falanga A, Marchetti M, Evangelista V et al.. Neutrophil activation and hemostatic changes in healthy donors receiving granulocyte colony-stimulating factor.  Blood. 1999;  93 2506-2514
  • 97 Topcuoglu P, Arat M, Dalva K, Ozcan M. Administration of granulocyte-colony-stimulating factor for allogeneic hematopoietic cell collection may induce the tissue factor-dependent pathway in healthy donors.  Bone Marrow Transplant. 2004;  33 171-176
  • 98 Gordon L I, Kwaan H C. Thrombotic microangiopathy manifesting as thrombotic thrombocytopenic purpura/hemolytic uremic syndrome in the cancer patient.  Semin Thromb Hemost. 1999;  25 217-221
  • 99 Kwaan H C, Gordon L I. Thrombotic microangiopathy in the cancer patient.  Acta Haematol. 2001;  106 52-56
  • 100 Medina P J, Sipols J M, George J N. Drug-associated thrombotic thrombocytopenic purpura-hemolytic uremic syndrome.  Curr Opin Hematol. 2001;  8 286-293
  • 101 Ravandi-Kashani F, Cortes J, Talpaz M, Kantarjian H M. Thrombotic microangiopathy associated with interferon therapy for patients with chronic myelogenous leukemia: coincidence or true side effect?.  Cancer. 1999;  85 2583-2588
  • 102 Al-Zahrani H, Gupta V, Minden M D, Messner H A, Lipton J H. Vascular events associated with alpha interferon therapy.  Leuk Lymphoma. 2003;  44 471-475
  • 103 Humphreys B D, Sharman J P, Henderson J M et al.. Gemcitabine-associated thrombotic microangiopathy.  Cancer. 2004;  100 2664-2670
  • 104 Vesely S K, George J N, Lammle B et al.. ADAMTS13 activity in thrombotic thrombocytopenic purpura-hemolytic uremic syndrome: relation to presenting features and clinical outcomes in a prospective cohort of 142 patients.  Blood. 2003;  102 60-68
  • 105 Zheng X L, Kaufman R M, Goodnough L T, Sadler J E. Effect of plasma exchange on plasma ADAMTS13 metalloprotease activity, inhibitor level, and clinical outcome in patients with idiopathic and nonidiopathic thrombotic thrombocytopenic purpura.  Blood. 2004;  103 4043-4049
  • 106 Veyradier A, Obert B, Houllier A, Meyer D, Girma J P. Specific von Willebrand factor-cleaving protease in thrombotic microangiopathies: a study of 111 cases.  Blood. 2001;  98 1765-1772
  • 107 Fung M C, Storniolo A M, Nguyen B, Arning M, Brookfield W, Vigil J. A review of hemolytic uremic syndrome in patients treated with gemcitabine therapy.  Cancer. 1999;  85 2023-2032
  • 108 Walter R B, Joerger M, Pestalozzi B C. Gemcitabine-associated hemolytic-uremic syndrome.  Am J Kidney Dis. 2002;  40 E16
  • 109 Al Aly Z, Philoctete Ashley J M, Gellens M E, Gonzalez E A. Thrombotic thrombocytopenic purpura in a patient treated with imatinib mesylate: true association or mere coincidence?.  Am J Kidney Dis. 2005;  45 762-768
  • 110 George J N, Li X, McMinn J R, Terrell D R, Vesely S K, Selby G B. Thrombotic thrombocytopenic purpura-hemolytic uremic syndrome following allogeneic HPC transplantation: a diagnostic dilemma.  Transfusion.. 2004;  44 294-304
  • 111 Iacopino P, Pucci G, Arcese W et al.. Severe thrombotic microangiopathy: an infrequent complication of bone marrow transplantation. Gruppo Italiano Trapianto Midollo Osseo (GITMO).  Bone Marrow Transplant. 1999;  24 47-51
  • 112 Elliott M A, Nichols Jr W L, Plumhoff E A et al.. Posttransplantation thrombotic thrombocytopenic purpura: a single-center experience and a contemporary review.  Mayo Clin Proc. 2003;  78 421-430
  • 113 Wiener Y, Nakhleh R E, Lee M W et al.. Prognostic factors and early resumption of cyclosporin A in renal allograft recipients with thrombotic microangiopathy and hemolytic uremic syndrome.  Clin Transplant. 1997;  11 157-162
  • 114 McCauley J, Bronsther O, Fung J, Todo S, Starzl T E. Treatment of cyclosporin-induced haemolytic uraemic syndrome with FK506.  Lancet. 1989;  2 1516

Hau C KwaanM.D. 

Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University

303 East Chicago Ave., Chicago, IL 60611

Email: h-kwaan@northwestern.edu

    >