Semin Thromb Hemost 2003; 29(3): 301-308
DOI: 10.1055/s-2003-40968
Copyright © 2003 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Role of Coagulation and Fibrinolytic System in Prostate Cancer

Manish Kohli1 , Varsha Kaushal2 , Paulette Mehta2
  • 1Staff Physician, Division of Hematology/Oncology, Department of Medicine, Central Arkansas Veterans Healthcare System, and Assistant Professor of Medicine, Division of Hematology/Oncology, University of Arkansas for Medical Sciences
  • 2Central Arkansas Veterans Healthcare System and Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
Further Information

Publication History

Publication Date:
30 July 2003 (online)

ABSTRACT

Patients with prostate carcinoma paradoxically have both a hypercoagulable state and a bleeding diathesis. Hypercoagulability manifested by venous and arterial thrombosis has been documented in several large clinical trials. However, many investigators have reported a high risk of postoperative bleeding in prostate cancer patients. Disseminated intravascular coagulopathy has also been commonly noted at different clinical stages of this indolent cancer. In this article we review clinical, laboratory, and experimental evidence for abnormalities of various components of the coagulation and plasminogen pathways and analyze their contribution in prostate cancer growth, progression, and angiogenesis. Finally, we propose potential therapeutic antiangiogenic strategies in patients with prostate cancer.

REFERENCES

  • 1 The Veterans Administration Co-operative Urological Research Group. Treatment and survival of patients with cancer of the prostate.  Surg Gynecol Obstet . 1967;  124 1011-1101
  • 2 De Voogt J H, Smith P H, Pavone-Macaluso M. et al . Cardiovascular side effects of diethylstilbesterol, cyproterone acetate, medroxyprogesterone acetate and estramustine phosphate used for the treatment of advanced prostatic cancer: results from European Organization for Research on Treatment of Cancer trials 30761 and 30762.  J Urol . 1986;  135 303-307
  • 3 Adamson A S, Witheerow R O, Francis J L, Snell M E. Coagulopathy in the prostate cancer patient: prevalence and clinical relevance.  Ann R Coll Surg Engl . 1993;  75 100-104
  • 4 Sack G H, Levin J, Bell W R. Trousseau's syndrome and other manifestations of chronic disseminated coagulopathy in patients with neoplasms: clinical, pathophysiologic, and therapeutic features.  Medicine (Baltimore) . 1977;  56 1-37
  • 5 Blombäck M, Hedlund P O, Sawe U. Changes in blood coagulation and fibrinolysis in patients on different treatment regimens for prostatic cancer. Predictors for cardiovascular complications?.  Thromb Res . 1988;  49(Suppl) 111-121
  • 6 Carlsson L A, Bottiger L E. Risk factors of ischemic heart disease in men and women. Results of the 19 year old follow up of the Stockholm prospective study.  Acta Med Scand . 1985;  218 207-211
  • 7 Aro J, Haapiaainen R, Sane T. et al . Effects of orchiectomy and polyestradiol phosphate on serum lipoprotein lipids and glucose tolerance in prostatic cancer patients.  Eur Urol . 1990;  17 229-235
  • 8 von Schoultz B, Carlstrom J, Collste L. et al . Estrogen therapy and liver function-metabolic effects of oral and parenteral administration.  Prostate . 1989;  14 389-395
  • 9 Elkik F, Gompel A, Mercier B C. et al . Effects of percutaneous estradiol and conjugated estrogens on the level of plasma proteins and triglycerides in post-menopausal women.  Am J Obstet Gynecol . 1982;  143 888-892
  • 10 Geenen R WF, Delaere K PJ, Van Wersch W J J. Hematological variables in prostate carcinoma patients.  Acta Urol Belg . 1996;  64 21-26
  • 11 Kohli M, Fink L, Spencer H J, Zent C S. Advanced prostate cancer activates coagulation: a controlled study comparing activation markers of coagulation in ambulatory patients with advanced prostate cancer to age and healthy male controls.  Blood Coagul Fibrinolysis . 2002;  13 1-5
  • 12 Wojtukiewicz M Z, Zacharski L R, Memoli V A. et al . Fibrin formation on vessel walls in hyperplastic and malignant prostate tissue.  Cancer . 1991;  67 1377-1383
  • 13 Abdlkadir S A, Carvalhal G F, Kaleem Z. et al . Tissue factor expression and angiogenesis in human prostate carcinoma.  Hum Pathol . 2000;  31 443-447
  • 14 Lwaleed B A, Francis J L, Chisholm M. Urinary tissue factor levels in patients with bladder and prostate cancer.  Eur J Surg Oncol . 2000;  26 44-49
  • 15 Adamson A S, Francis J L, Witherow R, Snell M E. Urinary tissue factor levels in transitional cell carcinoma of the bladder.  J Urol . 1992;  148(2 Pt 1) 449-452
  • 16 Bromberg M E, Capello M. Cancer and blood coagulation: molecular aspects.  Cancer J Sci Am . 1999;  5 132-138
  • 17 Stone M J, Ruf W, Miles D J, Edington T S, Wright P E. Recombinant soluble human tissue factor secreted by Saccharomyces cerevisiae and refolded from Escherichia coli inclusion bodies: glycosylation of mutants, activity and physical characterization.  Biochem J . 1995;  310(Pt 2) 605-614
  • 18 Rao L MV, Rapaport S I. Studies of a mechanism inhibiting the initiation of the extrinsic pathway of coagulation.  Blood . 1987;  69 645-651
  • 19 Kataoka H, Uchino H, Asada Y. et al . Analysis of tissue factor and tissue factor pathway inhibitor expression in human colorectal carcinoma cell lines and metastatic sublines to the liver.  Int J Cancer . 1997;  72 878-884
  • 20 Werling R W, Zacharski L R, Kisiel W. et al . Distribution of tissue factor pathway inhibitor in normal and malignant human tissues.  Thromb Haemost . 1993;  69 366-369
  • 21 Petersen L C, Sprecher C A, Foster D C. et al . Inhibitory properties of a novel human Kunitz-type protease inhibitor homologous to tissue factor pathway inhibitor.  Biochemistry . 1996;  35 266-272
  • 22 Konduri S D, Tasiou A, Chandrasekhar N, Rao J S. Overexpression of tissue factor pathway inhibitor-2 (TFPI-2) decreases the invasiveness of prostate cancer cells in vitro.  Int J Oncol . 2001;  18 127-131
  • 23 Carrel A, Burrows M T. Cultivation in vitro of malignant tumors.  J Exp Med . 1911;  13 571-575
  • 24 Cliffton E E, Grossi C E. Fibrinolytic activity of human tumors as measured by the fibrin plate method.  Cancer . 1955;  8 1146-1154
  • 25 Goldhaber P, Corman I, Ormsbee R A. Experimental alteration of the ability of tumor cells to lyse plasma clots in vitro.  Proc Soc Exp Biol Med . 1947;  66 590-595
  • 26 Tagnon H J, Whitmore W F, Schulman P, Kravitc H C. The significance of fibrinolysis occurring in patients with metastatic prostate cancer.  Cancer . 1953;  6 63-67
  • 27 Thurston A V, Briant S L. Aspirin and post-prostatectomy hemorrhage.  Br J Urol . 1993;  71 574-576
  • 28 Carroll V A, Binder B R. The role of the plasminogen activation system in cancer.  Semin Thromb Hemost . 1999;  25 183-197
  • 29 Plow E F, Felez J, Miles L A. Cellular regulation of fibrinolysis.  Thromb Haemost . 1991;  66 32-36
  • 30 Åstedt B, Holmberg L. Immunological identity of urokinase and ovarian carcinoma plasminogen activator released in tissue culture.  Nature . 1976;  261 595-597
  • 31 Kirchheimer J C, Pflueger H, Ritschl P, Hienert G, Binder B R. Plasminogen activator activity in bone metastases of prostatic carcinomas as compared to primary tumors.  Invasion Metastasis . 1985;  5 344-355
  • 32 Kirchheimer J C, Binder B R, Pflueger H, Hienert G. Does plasma urokinase antigen reflect tumor urokinase in prostatic carcinoma?.  Thromb Haemost . 1985;  54 729
  • 33 Duffy M J, O'Grady P, Devaney D. et al . Urokinase-plasminogen activator, a marker for aggressive breast carcinomas. Preliminary report.  Cancer . 1988;  62 531-533
  • 34 Sappino A P, Busso N, Belin D, Vassali J D. Increase of urokinase-type plasminogen activator gene expression in human lung and breast carcinomas.  Cancer Res . 1987;  47 4043-4046
  • 35 Corasanti J G, Celik C, Camiolo S M. et al . Plasminogen activator content of human colon tumors and normal mucosae: separation of enzymes and partial purification.  J Natl Cancer Inst . 1980;  65 345-351
  • 36 De Bruin A P, Griffioen G, Verspaget H W, Verheijen J H, Lamers C B. Plasminogen activators and tumor development in the human colon: activity levels in normal mucosa, adenomatous polyps, and adenocarcinomas.  Cancer Res . 1987;  47 4654-4657
  • 37 Nekarda H, Schmitt M, Ulm K. et al . Prognostic impact of urokinase-type plasminogen activator and its inhibitor PAI-1 in completely resected gastric cancer.  Cancer Res . 1994;  54 2900-2907
  • 38 Hasui Y, Suzumiya J, Marutsuka K. et al . Comparative study of plasminogen activators in cancers and normal mucosae of human urinary bladder.  Cancer Res . 1989;  49 1067-1070
  • 39 Hofmann R, Lehmer A, Hartung R. et al . Prognostic value of urokinase plasminogen activator and plasminogen activator inhibitor-1 in renal cell cancer.  J Urol . 1996;  155 858-862
  • 40 Hofmann R, Lehmer A, Buresch M, Hartung R, Ulm K. Clinical relevance of urokinase plasminogen activator, its receptor, and its inhibitor in patients with renal cell carcinoma.  Cancer . 1996;  78 487-492
  • 41 Camiolo S M, Markus G, Piver M S. Plasminogen activator content of gynecological tumors and their metastases.  Gynecol Oncol . 1987;  26 364-373
  • 42 Soszka T, Olszewski K. Plasminogen activators and their inhibitors in normal, hyperplastic and carcinomatous human endometrium.  Thromb Res . 1986;  42(Suppl) 835-846
  • 43 Wilson E L, Jacobs P, Francis G E. et al . Secretion of plasminogen activators by normal bone marrow cells and leukemic myeloid cells.  Fibrinolysis . 1992;  6 77-79
  • 44 Duffy M J, O'Grady P, Devaney D. et al . Tissue-type plasminogen activator, a new prognostic marker in breast cancer.  Cancer Res . 1988;  48 1348-1349
  • 45 Gaylis F D, Keer H N, Wilson M J. et al . Plasminogen activators in human prostate cancer cell lines and tumors: correlation with the aggressive phenotype.  J Urol . 1989;  142 193-198
  • 46 Keer H N, Gaylis F D, Kozlowski J M. et al . Heterogeneity in plasminogen activator (PA) levels in human prostate cancer cell lines: increased PA activity correlates with biologically aggressive behavior.  Prostate . 1991;  18 201-214
  • 47 Achbarou A, Kaiser S, Tremblay G. et al . Urokinase overproduction results in increased skeletal metastasis by prostate cancer cells in vivo.  Cancer Res . 1994;  54 2372-2377
  • 48 Rabbani S A, Harakidas P, Davidson D J, Henkin J, Mazar A P. Prevention of prostate-cancer metastasis in vivo by a novel synthetic inhibitor of urokinase-type plasminogen activator (uPA).  Int J Cancer . 1995;  63 840-845
  • 49 Goltzman D, Bolivar I, Moroz L A, Rabbani S A. Studies on the pathogenesis of osteoblastic metastases by prostate cancer.  Adv Exp Med Biol . 1992;  324 165-171
  • 50 Hollas W, Hoosein N, Chung L WK. et al . Expression of urokinase and its receptor in invasive and non-invasive prostate cancer cell lines.  Thromb Haemost . 1992;  68 662-666
  • 51 Pedersen H, Schmitt M, Ronne E. et al . A ligand-free, soluble urokinase receptor is present in the ascitic fluid from patients with ovarian cancer.  J Clin Invest . 1993;  92 2160-2167
  • 52 Miyake H, Hara I, Yamanaka K. et al . Elevation of serum levels of urokinase-type plasminogen activator and its receptor is associated with disease progression and prognosis in patients with prostate cancer.  Prostate . 1999;  39 123-129
  • 53 Hienert G, Kirchheimer J C, Pflueger H, Binder B R. Urokinase-type plasminogen activator as a marker for the formation of distant metastases in prostatic carcinomas.  J Urol . 1988;  140 1466-1469
  • 54 Levin E G, Santell L. Association of a plasminogen activator inhibitor (PAI-1) with the growth substratum and membrane of human endothelial cells.  J Cell Biol . 1987;  105(6 Pt 1) 2543-2549
  • 55 Laiho M, Saksela O, Andreasen P A, Keski O J. Enhanced production and extracellular deposition of the endothelial-type plasminogen activator inhibitor in cultured human lung fibroblasts by transforming growth factor-beta.  J Cell Biol . 1986;  103(6 Pt 1) 2403-2410
  • 56 Cubellis M V, Wun T C, Blsi F. Receptor-mediated internalization and degradation of urokinase is caused by its specific inhibitor PAI-1.  EMBO J . 1990;  9 1079-1085
  • 57 Del Rosso M, Fibbi G, Dini G. et al . Modulation of surface associated urokinase in different cell lines: evidence for urokinase interiorization and degradation.  Semin Thromb Hemost . 1991;  17 262-267
  • 58 Soff G A, Sanderowitz J, Gately S. et al . Expression of plasminogen activator inhibitor type 1 by human prostate carcinoma cells inhibits primary tumor growth, tumor-associated angiogenesis, and metastasis to lung and liver in an athymic mouse model.  J Clin Invest . 1995;  96 2593-2600
  • 59 Swiercz R, Keck R W, Skrzypczak J E, Selman S H, Jankun J. Recombinant PAI-1 inhibits angiogenesis and reduces size of LNCaP prostate cancer xenografts in SCID mice.  Oncol Rep . 2001;  8 463-470
  • 60 Kwaan H C, Wang J, Svoboda K, Declerck P J. Plasminogen activator inhibitor 1 may promote tumor growth through inhibition of apoptosis.  Br J Cancer . 2000;  82 1702-1708
  • 61 Foekens J A, Portengen H, Look M P. et al . Plasminogen activator inhibitor-1 and prognosis in primary breast cancer.  J Clin Oncol . 1994;  12 1648-1658
  • 62 Janicke F, Pache L, Schmitt M. et al . Both the cytosols and detergent extracts of breast cancer tissues are suited to evaluate the prognostic impact of the urokinase-type plasminogen activator and its inhibitor, plasminogen activator inhibitor type 1.  Cancer Res . 1994;  54 2527-2530
  • 63 Geeenen R WF, Delaere K PJ, van Wersch W J. Hematological variables in prostatic carcinoma patients.  Acta Urol Belg . 1996;  64 21-26
  • 64 Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other diseases.  Review Nat Med . 1995;  1 27-31
  • 65 Ferrer F A, Miller L J, Andrawis R I. et al . Vascular endothelial growth factor (VEGF) expression in human prostate cancer: in situ and in vitro expression of VEGF by human prostate cancer cells.  J Urol . 1997;  157 2329-2333
  • 66 Huss W J, Hanrahan C F, Barrios R J. et al . Angiogenesis and prostate cancer: identification of a molecular progression switch.  Cancer Res . 2001;  61 2736-2743
  • 67 Jones A, Fujiyama C, Turner K. et al . Elevated serum vascular endothelial growth factor in patients with hormone-escaped prostate cancer.  BJU Int . 2000;  85 276-280
  • 68 Duque J LF, Loughlin K R, Adam R M. et al . Plasma levels of vascular endothelial growth factor are increased in patients with metastatic prostate cancer.  Urology . 1999;  54 523-537
  • 69 Haggstrom S, Bergh A, Damber J. Vascular endothelial growth factor content in metastasizing and non metastasizing Dunning prostate carcinoma.  Prostate . 2000;  45 42-50
  • 70 Wynendaele W, Derua R, Hoylaerts M F. et al . Vascular endothelial growth factor measured in platelet poor plasma allows optimal separation between cancer patients and volunteers: a key to study an angiogenic marker in vivo?.  Ann Oncol . 1999;  10 965-971
  • 71 Grand R JA, TurnellAS, Grabham P W. Cellular consequences of thrombin receptor activation.  Biochem J . 1996;  313 353-368
  • 72 Coughlin S R. Thrombin signaling and protease-activated receptors.  Nature . 2000;  407 258-264
  • 73 Brass S. Platelets and proteases.  Nature . 2000;  413 26-27
  • 74 Griffin C T, Srinivasan Y, Zheng Y W, Huang W, Coughlin S R. A role of thrombin receptor signaling in endothelial cells during embryonic development.  Science . 2001;  293 1666-1670
  • 75 Rudroff C, Striegler S, Schilli M, Scheele J. Thrombin enhances adhesion in pancreatic cancer in vitro through the activation of the thrombin receptor PAR 1.  Eur J Surg Oncol . 2001;  27 472-476
  • 76 Klepfish A, Greco M A, Karpatkin S. Thrombin stimulates melanoma tumor-cell binding to endothelial cells and subendothelial matrix.  Int J Cancer . 1993;  53 978-982
  • 77 Nierodzik M L, Bain R M, Liu L X. et al . Presence of seven transmembrane thrombin receptors on human tumor cells: effect of activation on tumor adhesion to platelets and tumor tyrosine phosphorylation.  Br J Hematol . 1996;  92 452-457
  • 78 Nierodzik M L, Kajumo F, Karpatkin S. Effect of thrombin treatment of tumor cells on adhesion of tumor cells to platelets in-vitro and metastasis in vivo.  Cancer Res . 1992;  52 3267-3272
  • 79 Harlabopolous G C, Grant D S, Kleinman H K. et al . Thrombin promotes endothelial cell alignment in matrigel in vitro and angiogenesis in vivo.  Am J Physiol . 1997;  273 239-245
  • 80 Herbert J M, Dupuy E, Laplace M C. et al . Thrombin induces endothelial growth via both a proteolytic and a non proteolytic pathway.  Biochem J . 1994;  303 227-231
  • 81 Tsopanoglou N E, Maragoudakis M E. On the endothelial growth factor activity on endothelial cells by up-regulation of its receptors.  J Biol Chem . 1999;  274 23969-23976
  • 82 Maragoudakis M E, Tsopanoglou N E, Andriopoulou P, Maragoudakis M M. Effects of thrombin/thrombosis in angiogenesis and tumour progression.  Matrix Biol . 2000;  19 345-351
  • 83 Huang Y Q, Li J J, Hu L, Lee M, Karpatkin S. Thrombin induces increased expression and secretion of VEGF from human FS4 fibroblast, DU 145 prostate cells and CHRF megakaryocytes.  Thromb Hemost . 2001;  86 1094-1098
  • 84 Gately S, Twardowski P, Stack M S. et al . Human prostate carcinoma cells express enzymatic activity that converts human plasminogen to the angiogenesis inhibitor, angiostatin.  Cancer Res . 1996;  56 4887-4890
    >