Nervenheilkunde 2014; 33(11): 790-796
DOI: 10.1055/s-0038-1627742
Mikroglia
Schattauer GmbH

Ist eine Aktivierung von Mikrogliazellen von pathophysiologischer Bedeutung?

Patienten mit Schizophrenie, Depression oder SuizidalitätIs activated microglia of pathophysiological significance in patients with schizophrenia, depression or suicidality?
J. Steiner
1   Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Magdeburg
2   Center for Behavioral Brain Sciences, Magdeburg
,
T. Gos
1   Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Magdeburg
3   Institut für Rechtsmedizin, Medizinische Universität Danzig, Polen
,
I. Handerer
1   Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Magdeburg
,
H.-G. Bernstein
1   Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Magdeburg
,
B. Bogerts
1   Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Magdeburg
2   Center for Behavioral Brain Sciences, Magdeburg
› Author Affiliations
Further Information

Publication History

eingegangen am: 01 July 2014

angenommen am: 15 September 2014

Publication Date:
24 January 2018 (online)

Zusammenfassung

Störungen des Immunsystems wurden bei Patienten mit Schizophrenie und depressiven Störungen beschrieben. Dazu gehört eine gesteigerte numerische Dichte von Mikrogliazellen in bestimmten Hirnarealen – neben leichtgradig vermehrten Monozytenzahlen und einer erhöhten Konzentration proinflammatorischer Zytokine im peripheren Blut. Interessanterweise wurden ähnliche Veränderungen des Immunsystems bei Suizid-Patienten beobachtet – unabhängig von ihrer zugrunde liegenden psychiatrischen Diagnose. Diese Übersichtsarbeit fasst wichtige Daten aus Studien zusammen, die peripheres Blut, Liquor cerebrospinalis und humanes Hirngewebe (Post-mortem-Histologie und In-vivo-Positronenemissionstomografie) untersucht haben, um das mononukleäre Phagozytensystem (MPS) bei diesen psychisch kranken Patienten zu bewerten. Wir diskutieren, ob die Ergebnisse eher dafür sprechen, dass Mikrogliose und eine Aktivierung des MPS mit der Akuität bzw. einem besonderen Schweregrad der Erkrankung verknüpft sind, oder ob sie auf eine eigenständige Neurobiologie der Suizidalität hinweisen. Dabei ist zu bedenken, dass sich pathophysiologische Mechanismen im langfristigen Verlauf von psychiatrischen Erkrankungen ändern könnten. Möglicherweise spielen also bei neu erkrankten andere Immunmechanismen als bei chronisch kranken Patienten eine Rolle.

Summary

Immune alterations have been described in patients suffering from schizophrenia or affective disorders. These include an increased numerical density of microglial cells in certain brain areas, slightly elevated monocyte counts and increased levels of proinflammatory cytokines in the peripheral blood. Interestingly, similar immune alterations have been observed in suicide patients regardless of their underlying psychiatric diagnosis. This review summarizes relevant data from previous studies that have examined peripheral blood, cerebrospinal fluid and human brains (postmortem histology and in vivo positron emission tomography) to evaluate the mononuclear phagocyte system (MPS) in these psychiatrically ill patients. We discuss if the findings indicating MPS activation are rather associated with disease acuity/severity or with a distinct neurobiology of suicide. It is important to keep in mind that pathophysiological mechanisms could change during the long-term course of psychiatric diseases. Thus, different immune mechanisms may be involved in the pathophysiology of newly diseased patients compared to those with chronic disease stages.

 
  • Literatur

  • 1 Hor K, Taylor M. Suicide and schizophrenia: a sys- tematic review of rates and risk factors. J Psycho- pharmacol 2010; 24 (Suppl. 04) 81-90.
  • 2 Richards D. Prevalence and clinical course of de- pression: a review. Clinical psychology review 2011; 31 (07) 1117-25.
  • 3 Steiner J, Bogerts B, Sarnyai Z, Walter M, Gos T, Bernstein HG. et al. Bridging the gap between the immune and glutamate hypotheses of schizo- phrenia and major depression: Potential role of glial NMDA receptor modulators and impaired blood-brain barrier integrity. World J Biol Psy- chiatry 2012; 13 (07) 482-92.
  • 4 Steiner J, Bielau H, Brisch R, Danos P, Ullrich O, Mawrin C. et al. Immunological aspects in the neurobiology of suicide: Elevated microglial density in schizophrenia and depression is associated with suicide. J Psychiatr Res 2008; 42 (02) 151-7.
  • 5 Steiner J, Mawrin C, Ziegeler A, Bielau H, Ullrich O, Bernstein HG. et al. Distribution of HLA-DR- positive microglia in schizophrenia reflects im- paired cerebral lateralization. Acta Neuropathol 2006; 112 (03) 305-16.
  • 6 Steiner J, Walter M, Gos T, Guillemin GJ, Bernstein HG, Sarnyai Z. et al. Severe depression is as- sociated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: evi- dence for an immune-modulated glutamatergic neurotransmission?. J Neuroinflammation 2011; 08: 94.
  • 7 Beumer W, Gibney SM, Drexhage RC, Pont-Lezica L, Doorduin J, Klein HC. et al. The immune theory of psychiatric diseases: a key role for activated microglia and circulating monocytes. J Leukoc Biol. 2012 Epub 2012/08/10.
  • 8 Busse S, Busse M, Schiltz K, Bielau H, Gos T, Brisch R. et al. Different distribution patterns of lymphocytes and microglia in the hippocampus of patients with residual versus paranoid schizo- phrenia: Further evidence for disease course-related immune alterations?. Brain Behav Immun. 2012 Epub 2012/08/25.
  • 9 Steiner J, Bogerts B, Sarnyai Z, Walter M, Gos T, Bernstein HG. et al. Bridging the gap between the immune and glutamate hypotheses of schizophrenia and major depression: Potential role of glial NMDA receptor modulators and impaired blood-brain barrier integrity. World J Biol Psychiatry 2012; 13 (07) 482-92.
  • 10 Steiner J, Gos T, Bogerts B, Bielau H, Drexhage HA, Bernstein HG. Possible impact of microglial cells and the monocyte-macrophage system on suicidal behavior. CNS Neurol Disord Drug Targets 2013; 12 (07) 971-9.
  • 11 Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B. Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry 2011; 70 (07) 663-71.
  • 12 Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subju- gates the brain. Nat Rev Neurosci 2008; 09 (01) 46-56.
  • 13 Drexhage RC, Knijff EM, Padmos RC, Heul-Nieuwenhuijzen L, Beumer W, Versnel MA. et al. The mononuclear phagocyte system and its cytokine inflammatory networks in schizophrenia and bipolar disorder. Expert Rev Neurother 2010; 10 (01) 59-76.
  • 14 Myint AM, Leonard BE, Steinbusch HW, Kim YK. Th1, Th2, and Th3 cytokine alterations in major depression. J Affect Disord 2005; 88 (02) 167-73.
  • 15 Kaestner F, Hettich M, Peters M, Sibrowski W, Hetzel G, Ponath G. et al. Different activation pat- terns of proinflammatory cytokines in melancholic and non-melancholic major depression are associated with HPA axis activity. J Affect Disord 2005; 87 2-3 305-11.
  • 16 Miller AH, Maletic V, Raison CL. Inflammation and its discontents: the role of cytokines in the pa- thophysiology of major depression. Biol Psychiatry 2009; 65 (09) 732-41.
  • 17 Zorrilla EP, Luborsky L, McKay JR, Rosenthal R, Houldin A, Tax A. et al. The relationship of de- pression and stressors to immunological assays: a meta-analytic review. Brain Behav Immun 2001; 15 (03) 199-226.
  • 18 Padmos RC, Hillegers MH, Knijff EM, Vonk R, Bouvy A, Staal FJ. et al. A discriminating messenger RNA signature for bipolar disorder formed by an aberrant expression of inflammatory genes in monocytes. Arch Gen Psychiatry 2008; 65 (04) 395-407.
  • 19 Lindqvist D, Janelidze S, Hagell P, Erhardt S, Samuelsson M, Minthon L. et al. Interleukin-6 is elevated in the cerebrospinal fluid of suicide attempters and related to symptom severity. Biol Psychiatry 2009; 66 (03) 287-92.
  • 20 Janelidze S, Mattei D, Westrin A, Traskman-Bendz L, Brundin L. Cytokine levels in the blood may distinguish suicide attempters from depressed patients. Brain Behav Immun 2011; 25 (02) 335-9.
  • 21 Pandey GN, Rizavi HS, Ren X, Fareed J, Hoppen-steadt DA, Roberts RC. et al. Proinflammatory cytokines in the prefrontal cortex of teenage suicide victims. J Psychiatr Res 2012; 46 (01) 57-63.
  • 22 Tonelli LH, Stiller J, Rujescu D, Giegling I, Schneider B, Maurer K. et al. Elevated cytokine expression in the orbitofrontal cortex of victims of suicide. Acta Psychiatr Scand 2008; 117 (03) 198-206.
  • 23 Rothermundt M, Arolt V, Weitzsch C, Eckhoff D, Kirchner H. Immunological dysfunction in schizophrenia: a systematic approach. Neuropsychobiology 1998; 37 (04) 186-93.
  • 24 Carlton E, Falcone T, Batra A, Fazio V, Janigro D. Do systemic inflammation and blood-brain bar- rier failure play a role in pediatric psychosis?. Cleve Clin J Med 2009; 76 (Suppl. 02) S93a.
  • 25 Nikkilä HV, Müller K, Ahokas A, Miettinen K, Rimon R, Andersson LC. Accumulation of macrophages in the CSF of schizophrenic patients during acute psychotic episodes. Am J Psychiatry 1999; 156 (11) 1725-9.
  • 26 Maes M, Van der Planken M, Stevens WJ, Peeters D, DeClerck LS, Bridts CH. et al. Leukocytosis, monocytosis and neutrophilia: hallmarks of severe depression. J Psychiatr Res 1992; 26 (02) 125-34.
  • 27 Seidel A, Arolt V, Hunstiger M, Rink L, Behnisch A, Kirchner H. Major depressive disorder is as- sociated with elevated monocyte counts. Acta Psy- chiatr Scand 1996; 94 (03) 198-204.
  • 28 Lee BH, Lee SW, Yoon D, Lee HJ, Yang JC, Shim SH. et al. Increased plasma nitric oxide metabolites in suicide attempters. Neuropsychobiology 2006; 53 (03) 127-32.
  • 29 Kim YK, Paik JW, Lee SW, Yoon D, Han C, Lee BH. Increased plasma nitric oxide level associated with suicide attempt in depressive patients. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30 (06) 1091-6.
  • 30 Beumer W, Gibney SM, Drexhage RC, Pont-Lezica L, Doorduin J, Klein HC. et al. The immune theory of psychiatric diseases: a key role for activated microglia and circulating monocytes. J Leukoc Biol 2012; 92 (05) 959-75.
  • 31 Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010; 330 6005 841-5.
  • 32 Alliot F, Godin I, Pessac B. Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res 1999; 117 (02) 145-52.
  • 33 Schlegelmilch T, Henke K, Peri F. Microglia in the developing brain: from immunity to behaviour. Current opinion in neurobiology 2011; 21 (01) 5-10.
  • 34 Tremblay ME, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A. The role of microglia in the healthy brain. J Neurosci 2011; 31 (45) 16064-9.
  • 35 Mallat M, Marin-Teva JL, Cheret C. Phagocytosis in the developing CNS: more than clearing the corpses. Current opinion in neurobiology 2005; 15 (01) 101-7.
  • 36 Antony JM, Paquin A, Nutt SL, Kaplan DR, Miller FD. Endogenous microglia regulate development of embryonic cortical precursor cells. J Neurosci Res 2011; 89 (03) 286-98.
  • 37 Walton NM, Sutter BM, Laywell ED, Levkoff LH, Kearns SM, Marshall GP. et al. Microglia instruct subventricular zone neurogenesis. Glia 2006; 54 (08) 815-25.
  • 38 Aarum J, Sandberg K, Haeberlein SL, Persson MA. Migration and differentiation of neural precursor cells can be directed by microglia. Proc Natl Acad Sci USA 2003; 100 (26) 15983-8.
  • 39 Chamak B, Dobbertin A, Mallat M. Immunohistochemical detection of thrombospondin in microglia in the developing rat brain. Neuroscience 1995; 69 (01) 177-87.
  • 40 Sierra A. et al. Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell stem cell 2010; 07 (04) 483-95.
  • 41 Bechter K. Updating the mild encephalitis hypothesis of schizophrenia. Prog Neuropsychopharma- col Biol Psychiatry. 2012 Epub 2012/07/07.
  • 42 Bechter K, Reiber H, Herzog S, Fuchs D, Tumani H, Maxeiner HG. Cerebrospinal fluid analysis in affective and schizophrenic spectrum disorders: identification of subgroups with immune responses and blood-CSF barrier dysfunction. J Psychiatr Res 2010; 44 (05) 321-30.
  • 43 Bayer TA, Buslei R, Havas L, Falkai P. Evidence for activation of microglia in patients with psychiatric illnesses. Neurosci Lett 1999; 271 (02) 126-8.
  • 44 Radewicz K, Garey LJ, Gentleman SM, Reynolds R. Increase in HLA-DR immunoreactive microglia in frontal and temporal cortex of chronic schizophrenics. J Neuropathol Exp Neurol 2000; 59 (02) 137-50.
  • 45 Wierzba-Bobrowicz T, Lewandowska E, Lecho-wicz W, Stepien T, Pasennik E. Quantitative analysis of activated microglia, ramified and damage of processes in the frontal and temporal lobes of chronic schizophrenics. Folia Neuropathol 2005; 43 (02) 81-9.
  • 46 Arnold SE, Trojanowski JQ, Gur RE, Blackwell P, Han LY, Choi C. Absence of neurodegeneration and neural injury in the cerebral cortex in a sample of elderly patients with schizophrenia. Arch Gen Psychiatry 1998; 55 (03) 225-32.
  • 47 Togo T, Akiyama H, Kondo H, Ikeda K, Kato M, Iseki E. et al. Expression of CD40 in the brain of Alzheimer’s disease and other neurological diseases. Brain Res 2000; 885 (01) 117-21.
  • 48 Falke E, Han LY, Arnold SE. Absence of neurodegeneration in the thalamus and caudate of elderly patients with schizophrenia. Psychiatry Res 2000; 93 (02) 103-10.
  • 49 Cosenza-Nashat M. et al. Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain. Neuropathol Appl Neurobiol 2009; 35 (03) 306-28.
  • 50 Doorduin J, de Vries EF, Dierckx RA, Klein HC. PET imaging of the peripheral benzodiazepine re- ceptor: monitoring disease progression and therapy response in neurodegenerative disorders. Curr Pharm Des 2008; 14 (31) 3297-315.
  • 51 Doorduin J, de Vries EF, Willemsen AT, de Groot JC, Dierckx RA, Klein HC. Neuroinflammation in schizophrenia-related psychosis: a PET study. J Nucl Med 2009; 50 (11) 1801-7.
  • 52 van Berckel BN, Bossong MG, Boellaard R, Kloet R, Schuitemaker A, Caspers E. et al. Microglia acti- vation in recentonset schizophrenia: a quanti- tative (R)-[11C]PK11195 positron emission tomography study. Biol Psychiatry 2008; 64 (09) 820-2.
  • 53 Jollant F, Bellivier F, Leboyer M, Astruc B, Torres S, Verdier R. et al. Impaired decision making in suicide attempters. Am J Psychiatry 2005; 162 (02) 304-10.
  • 54 van Heeringen K. The neurobiology of suicide and suicidality. Can J Psychiatry 2003; 48 (05) 292-300.
  • 55 Nowak G, Ordway GA, Paul IA. Alterations in the N-methyl-D-aspartate (NMDA) receptor complex in the frontal cortex of suicide victims. Brain Res 1995; 675 1-2 157-64.
  • 56 Alonso R, Chaudieu I, Diorio J, Krishnamurthy A, Quirion R, Boksa P. Interleukin-2 modulates evoked release of [3H]dopamine in rat cultured mesencephalic cells. J Neurochem 1993; 61 (04) 1284-90.
  • 57 Zalcman et al. Cytokine-specific central monoamine alterations induced by interleukin-1, -2 and-6. Brain Res 1994; 643 1-2 40-9.
  • 58 Labuzek K, Kowalski J, Gabryel B, Herman ZS. Chlorpromazine and loxapine reduce interleukin- 1beta and interleukin-2 release by rat mixed glial and microglial cell cultures. Eur Neuropsychopharmacol 2005; 15 (01) 23-30.
  • 59 Baron DA, Hardie T, Baron SH. Possible association of interleukin-2 treatment with depression and suicide. J Am Osteopath Assoc 1993; 93 (07) 799-800.
  • 60 Walker LG, Walker MB, Heys SD, Lolley J, Wesnes K, Eremin O. The psychological and psychiatric effects of rIL-2 therapy: a controlled clinical trial. Psychooncology 1997; 06 (04) 290-301.
  • 61 Yamada K, Noda Y, Nakayama S, Komori Y, Sugi-hara H, Hasegawa T. et al. Role of nitric oxide in learning and memory and in monoamine metabolism in the rat brain. Br J Pharmacol 1995; 115 (05) 852-8.
  • 62 Linden DR, El-Fakahany EE. Microglial derived nitric oxide decreases serotonin content in rat basophilic leukemia (RBL-2H3) cells. Eur J Pharmacol 2002; 436 1-2 53-6.
  • 63 Bernstein HG, Bogerts B, Keilhoff G. The many faces of nitric oxide in schizophrenia. A review. Schizophr Res 2005; 78 (01) 69-86.
  • 64 Bernstein HG. et al. Hypothalamic nitric oxide synthase in affective disorder: focus on the suprachiasmatic nucleus. Cell Mol Biol (Noisy-le-grand) 2005; 51 (03) 279-84.
  • 65 Erhardt S, Lim CK, Linderholm KR, Janelidze S, Lindqvist D, Samuelsson M. Connecting inflammation with glutamate agonism in suicidality. Neuropsychopharmacology. 2012 Epub 2013/01/10
  • 66 Tyring S, Gottlieb A, Papp K, Gordon K, Leonardi C, Wang A. et al. Etanercept and clinical outcomes, fatigue, and depression in psoriasis: double-blind placebo-controlled randomised phase III trial. Lancet 2006; 367 9504 29-35.
  • 67 Ekdahl CT, Kokaia Z, Lindvall O. Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 2009; 158 (03) 1021-9.
  • 68 Lai AY, Todd KG. Hypoxia-activated microglial mediators of neuronal survival are differentially regulated by tetracyclines. Glia 2006; 53 (08) 809-16.
  • 69 Molina-Hernandez M, Tellez-Alcantara NP, Perez-Garcia J, Olivera-Lopez JI, Jaramillo-Jaimes MT. Antidepressant-like actions of minocycline com with several glutamate antagonists. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32 (02) 380-6.
  • 70 Myint AM, Kim YK, Verkerk R, Scharpe S, Steinbusch H, Leonard B. Kynurenine pathway in major depression: evidence of impaired neuroprotection. J Affect Disord 2007; 98 1-2 143-51.
  • 71 Raison CL, Dantzer R, Kelley KW, Lawson MA, Woolwine BJ, Vogt G. et al. CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-alpha: relationship to CNS immune responses and depression. Mol Psy- chiatry 2010; 15 (04) 393-403.
  • 72 Griffin MO, Fricovsky E, Ceballos G, Villarreal F. Tetracyclines: a pleitropic family of compounds with promising therapeutic properties. Review of the literature. Am J Physiol Cell Physiol 2010; 299 (03) C539-48.
  • 73 Akhondzadeh S, Tabatabaee M, Amini H, Ahmadi SAAbhari, Abbasi SH, Behnam B. Celecoxib as adjunctive therapy in schizophrenia: a doubleblind, randomized and placebo-controlled trial. Schizophr Res 2007; 90 1-3 179-85.
  • 74 Müller N. COX-2 inhibitors as antidepressants and antipsychotics: clinical evidence. Curr Opin Inves- tig Drugs 2010; 11 (01) 31-42.
  • 75 Price RB, Nock MK, Charney DS, Mathew SJ. Effects of intravenous ketamine on explicit and implicit measures of suicidality in treatmentresistant depression. Biol Psychiatry 2009; 66 (05) 522-6.
  • 76 Zarate C. et al. A randomized trial of an N-methyl- D-aspartate antagonist in treatmentresistant major depression. Arch Gen Psychiatry 2006; 63 (08) 856-64.
  • 77 Diazgranados N. et al. A randomized add-on trial of an N-methyl-D-aspartate antagonist in treatment-resistant bipolar depression. Arch Gen Psy- chiatry 2010; 67 (08) 793-802.
  • 78 Zarate CA. et al. Replication of ketamine’s antide- pressant efficacy in bipolar depression: a randomized controlled add-on trial. Biol Psychiatry 2012; 71 (11) 939-46.