Arthritis und Rheuma 2007; 27(04): 211-219
DOI: 10.1055/s-0037-1619710
Facetten der Arthrosetherapie
Schattauer GmbH

Zell- und gentherapeutische Ansätze zur Knorpelreparatur und potenziellen Arthrosetherapie

Gene therapy approaches for cartilage injury and osteoarthritis
K. Gelse
1   Orthopädisch-Rheumatologische Abteilung der Friedrich-Alexander Universität Erlangen-Nürnberg (Leiter: Prof. Dr. med. B. Swoboda)
2   Abteilung für Unfallchirurgie der Universitätsklinik Erlangen (Leiter: Prof. Dr. med. F. Hennig)
,
D. Pfander
1   Orthopädisch-Rheumatologische Abteilung der Friedrich-Alexander Universität Erlangen-Nürnberg (Leiter: Prof. Dr. med. B. Swoboda)
3   Abteilung für Orthopädische Rehabilitation, Medical Park Clinic, Bad Rodach (Leiter: Priv.-Doz. Dr. med. D. Pfander)
,
B. Swoboda
1   Orthopädisch-Rheumatologische Abteilung der Friedrich-Alexander Universität Erlangen-Nürnberg (Leiter: Prof. Dr. med. B. Swoboda)
› Author Affiliations
Further Information

Publication History

Publication Date:
24 December 2017 (online)

Zusammenfassung

Mögliche Strategien zur Arthrosebehandlung basieren auf einer Hemmung des Matrixabbaus oder vielmehr der Steigerung des Knorpelanabolismus im erkrankten Gelenk. Die Applikation antikataboler oderantiinflammatorischerZyto- kine hat sich in Studien bereits als günstig erwiesen. Der breite klinische Einsatz dieser Ansätze wird jedoch durch die enormen Kosten aufgrund der kurzen Halbwertszeit der Proteine im Gelenk eingeschränkt. Mittels Gentransfer könnten auch über längere Zeit die erforderlichen therapeutischen Proteinkonzentrationen im erkrankten Gewebe erzielt werden. Größere Knorpelschäden und fortgeschrittene Arthrosestadien erfordern die Bildung von neuem hyalinen Knorpelgewebe. Mittels chirurgischer Verfahren gelingt es oft nicht, die Gelenkoberflächewiederherzustellen; meistens führen sie nurzur Faserknorpelbildung. In experimentellen Studien konnte durch Einsatz bestimmter Wachstums- und Differenzierungsfaktoren die Chondrogenese effizient stimuliert und hyalines knorpelähnliches Reparaturgewebe generiert werden. Zielgerichteter zellvermittelter Gentransfer könnte in idealer Weise die Bereitstellung von Knorpel(vorläufer-)zellen mit der Produktion therapeutischer Faktoren kombinieren.

Summary

Potential therapeutic strategies for cartilage injuries and osteoarthritis aim at an inhibition of matrix degradation or the stimulation of cartilage anabolism in the diseased joint. In a number ofstudies, the administration of anti-catabolic or anti-inflammatory cytokines to joints affected by cartilage destruction has proven to be beneficial. However, the clinical utility of this strategy is limited by the enormous costs dueto the short half-lives of these proteins in vivo. The transfer of the respective genes may provide a more sustained delivery of such molecules at the desired location. Lesions with substantial loss of cartilage tissue and final stages of osteoarthritis require the generation of new hyaline cartilage. Surgical approaches often fail to restore the articular surface, facing the problem of incomplete chondrogenesis. In experimental studies, certain growth and differentiation factors have proven their potential to stimulate chondrogenesis and the formation of a hyaline cartilagelike repair tissue. Targeted cell-mediated gene transfer couldideally combine thesupply of chondroprogenitorcells with the production of therapeutic factors.

 
  • Literatur

  • 1 Poole AR. Immunology of Cartilage. In: Moskowitz RW, Howell DS, Goldberg VM, Mankin HJ, Hrsg. Osteoarthritis: Medical/Surgical Management. Philadelphia: WB Saunders 1992; 155-189.
  • 2 Goldring MB. Anticytokine therapy for osteoarthritis. Expert Opin Biol Ther 2001; 1 (05) 2-817.
  • 3 Bau B, Gebhard PM, Haag J. et al. Relative messenger RNA expression profiling of collagenases and aggrecanases in human articular chondrocytes in vivo and in vitro. Arthritis Rheum 2002; 46 (10) 2-2648.
  • 4 Goldring MB. The role of the chondrocyte in osteoarthritis. Arthritis Rheum 2000; 43 (09) 2-1916.
  • 5 Attur MG, Dave M, Cipolletta C. et al. Reversal of autocrine and paracrine effects of interleukin 1 (IL-1) in human arthritis by type IIIL-1 decoy receptor.Potential for pharmacological intervention. J Biol Chem 2000; 275 (51) 2-40307.
  • 6 Smith RJ, Chin JE, Sam LM, Justen JM. .Biologic effects of an interleukin-1 receptor antagonist protein on interleukin-1-stimulated cartilage erosion and chondrocyte responsiveness. Arthritis Rheum 1991; 34 (01) 78-83.
  • 7 Bendele AM, Chlipala ES, Scherrer J. et al. Combination benefit of treatment with the cytokine inhibitors interleukin-1 receptor antagonist and PE-Gylated soluble tumor necrosis factor receptor type I in animal models of rheumatoid arthritis. Arthritis Rheum 2000; 43 (12) 2-2648.
  • 8 Gouze JN, Gouze E, Palmer GD. et al. A comparative study of the inhibitory effects of interleukin-1 receptor antagonist following administration as a recombinant protein or by gene transfer. Arthritis Res Ther 2003; 5 (05) 2-301.
  • 9 Pelletier JP, Caron JP, Evans C. et al. In vivo suppression of early experimental osteoarthritis by interleukin-1 receptor antagonist using gene therapy. Arthritis Rheum 1997; 40 (06) 1-1012.
  • 10 van de Putte LB, Atkins C, Malaise M. et al. Efficacy and safety of adalimumab as monotherapy in patients with rheumatoid arthritis for whom previous disease modifying antirheumatic drug treattreatment has failed. Ann Rheum Dis 2004; 63 (05) 508-516.
  • 11 Maini R, St Clair EW, Breedveld F. et al. Infliximab (chimeric anti-tumour necrosis factor alpha monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial. ATTRACT Study Group. Lancet 1999; 354 9194 1-1932.
  • 12 Ghivizzani SC, Lechman ER, Kang R. et al. Direct adenovirus-mediated gene transfer of interleukin 1 and tumor necrosis factor alpha soluble receptors to rabbit knees with experimental arthritis has local and distal anti-arthritic effects. Proc Natl Acad Sci US A 1998; 95 (08) 1-4613.
  • 13 Muller-Ladner U, Evans CH, Franklin BN. et al. Gene transfer of cytokine inhibitors into human synovial fibroblasts in the SCID mouse model. Arthritis Rheum 1999; 42 (03) 1-490.
  • 14 Wallis RS, Broder MS, Wong JY, Hanson ME, Beenhouwer DO. Granulomatous infectious diseases associated with tumor necrosis factor antagonists. Clin Infect Dis 2004; 38 (09) 2-1261.
  • 15 Alaaeddine N, Di Battista JA, Pelletier JP. et al. Inhibition of tumor necrosis factor alpha-induced prostaglandin E2 production by the antiinflammatory cytokines interleukin-4, interleukin-10, and interleukin-13 in osteoarthritic synovial fibroblasts: distinct targeting in the signaling pathways. Arthritis Rheum 1999; 42 (04) 1-710.
  • 16 van Roon JA, Lafeber FP, Bijlsma JW. Synergistic activity of interleukin-4 and interleukin-10 in suppression of inflammation and joint destruction in rheumatoid arthritis. Arthritis Rheum 2001; 44 (01) 2-3.
  • 17 Gebhard PM, Gehrsitz A, Bau B. et al. Quantification of expression levels of cellular differentiation markers does not support a general shift in the cellular phenotype of osteoarthritic chondrocytes. J Orthop Res 2003; 21 (01) 96-101.
  • 18 Aigner T, Vornehm SI, Zeiler G. et al. Suppression of cartilage matrix gene expression in upper zone chondrocytes of osteoarthritic cartilage. Arthritis Rheum 1997; 40 (03) 1-562.
  • 19 Mankin HJ, Lippiello L. The glycosaminoglycans of normal and arthritic cartilage. J Clin Invest 1971; 50 (08) 1-1712.
  • 20 Stewart MC, Saunders KM, Burton-Wurster N, Macleod JN. Phenotypic stability of articular chondrocytes in vitro: the effects of culture models, bone morphogenetic protein 2, and serum supplementation. J Bone Miner Res 2000; 15 (01) 2-166.
  • 21 Fan Z, Chubinskaya S, Rueger DC. et al. Regulation of anabolic and catabolic gene expression in normal and osteoarthritic adult human articular chondrocytes by osteogenic protein-1. Clin Exp Rheumatol 2004; 22 (01) 2-103.
  • 22 Fortier LA, Lust G, Mohammed HO, Nixon AJ. Coordinate upregulation of cartilage matrix synthesis in fibrin cultures supplemented with exogenous insulin-like growth factor-I. J Orthop Res 1999; 17 (04) 467-474.
  • 23 Shuler FD, Georgescu HI, Niyibizi C. et al. Increased matrix synthesis following adenoviral transfer of a transforming growth factor beta 1 gene into articular chondrocytes. J Orthop Res 2000; 18 (04) 2-585.
  • 24 Gelse K, Jiang QJ, Aigner T. et al. Fibroblast-mediated delivery of growth factor complementary DNA into mouse joints induces chondrogenesis but avoids the disadvantages of direct viral gene transfer. Arthritis Rheum 2001; 44 (08) 2-1943.
  • 25 Martel-Pelletier J, Di Battista JA, Lajeunesse D, Pelletier JP. IGF/IGFBP axis in cartilage and bone in osteoarthritis pathogenesis. Inflamm Res 1998; 47 (03) 1-90.
  • 26 Mi Z, Ghivizzani SC, Lechman ER. et al. Adenovirus-mediated gene transfer of insulin-like growth factor 1 stimulates proteoglycan synthesis in rabbit joints. Arthritis Rheum 2000; 43 (11) 2-2563.
  • 27 van Beuningen HM, van der Kraan PM, Arntz OJ, van den Berg WB. Transforming growth factorbeta 1 stimulates articular chondrocyte proteoglycan synthesis and induces osteophyte formation in the murine knee joint. Lab Invest 1994; 71 (02) 1-279.
  • 28 Martin JA, Buckwalter JA. Aging, articular cartilage chondrocyte senescence and osteoarthritis. Biogerontology 2002; 3 (05) 2-257.
  • 29 Piera-Velazquez S, Jimenez SA, Stokes D. Increased life span of human osteoarthritic chondrocytes by exogenous expression of telomerase. Arthritis Rheum 2002; 46 (03) 2-683.
  • 30 Murray MM, Zurakowski D, Vrahas MS. The death of articular chondrocytes after intra-articular fracture in humans. J Trauma 2004; 56 (01) 2-128.
  • 31 Pelletier JP, Jovanovic D, Fernandes JC. et al. Reduced progression of experimental osteoarthritis in vivo by selective inhibition of inducible nitric oxide synthase. Arthritis Rheum 1998; 41 (07) 1-1275.
  • 32 Gelse K, Soder S, Eger W. et al. Osteophyte development - molecular characterization of differentiation stages. Osteoarthritis Cartilage 2003; 11 (02) 2-141.
  • 33 Adachi N, Sato K, Usas A. et al. Muscle derived, cell based ex vivo gene therapy for treatment of full thickness articular cartilage defects. J Rheumatol 2002; 29 (09) 2-1920.
  • 34 Nishimura K, Solchaga LA, Caplan AI. et al. Chondroprogenitor cells of synovial tissue. Arthritis Rheum 1999; 42 (12) 1-2631.
  • 35 Park J, Gelse K, Frank S. et al. Transgene-activated mesenchymal cells for articular cartilage repair: a comparison of primary bone marrow-, perichondrium/periosteum- and fat-derived cells. J Gene Med 2006; 8 (01) 112-125.
  • 36 Nehrer S, Spector M, Minas T. Histologic analysis of tissue after failed cartilage repair procedures. Clin Orthop 1999; 365: 149-162.
  • 37 Gruber R, Mayer C, Bobacz K. et al. Effects of cartilage-derived morphogenetic proteins and osteogenic protein-1 on osteochondrogenic differentiation of periosteum-derived cells. Endocrinology 2001; 142 (05) 2-2087.
  • 38 Joyce ME, Roberts AB, Sporn MB, Bolander ME. Transforming growth factor-beta and the initiation of chondrogenesis and osteogenesis in the rat femur. J Cell Biol 1990; 110 (06) 1-2195.
  • 39 Mason JM, Breitbart AS, Barcia M. et al. Cartilage and bone regeneration using gene-enhanced tissue engineering. Clin Orthop 2000; (Suppl. 379) S171-S178.
  • 40 Hidaka C, Goodrich LR, Chen CT. et al. Acceleration of cartilage repair by genetically modified chondrocytes over expressing bone morphogenetic protein-7. JOrthop Res 2003; 21 (04) 2-573.
  • 41 Gelse K, von der Mark K, Aigner T. et al. Articular Cartilage Repair by Gene Therapy Using Growth Factor-Producing Mesenchymal Cells. Arthritis Rheum 2003; 48: 430-441.
  • 42 Zehentner BK, Dony C, Burtscher H. The transcription factor Sox9 is involved in BMP-2 signaling. JBone Miner Res 1999; 14 (10) 1734-1741.
  • 43 Kolettas E, Muir HI, Barrett JC, Hardingham TE. Chondrocyte phenotype and cell survival are regulated by culture conditions and by specif ic cytokines through the expression of Sox-9 transcripti on factor. Rheumatology (Oxford) 2001; 40 (10) 2-1146.
  • 44 Lefebvre V, Li P, de Crombrugghe B. A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. Embo J 1998; 17 (19) 1-5718.
  • 45 Zhang P, Jimenez SA, Stokes DG. Regulation of Human COL9A1 Gene Expression. ACTIVATION OF THE PROXIMAL PROMOTER REGION BY SOX9. J Biol Chem 2003; 278 (01) 2-117.
  • 46 Sekiya I, Tsuji K, Koopman P. et al. SOX9 enhances aggrecan gene promoter/enhancer activity and is up-regulated by retinoic acid in a cartilage-derived cell line, TC6. J Biol Chem 2000; 275 (15) 2-10738.
  • 47 Tsuchiya H, Kitoh H, Sugiura F, Ishiguro N. Chondrogenesis enhanced by overexpression of sox9 gene in mouse bone marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun 2003; 301 (02) 2-338.
  • 48 von der Mark K, Gauss V, von der Mark H, Muller P. Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature 1977; 267 5611 1-531.
  • 49 von der Mark K, Kirsch T, Nerlich A. et al. Type X collagen synthesis inhuman osteoarthritic cartilage.Indication of chondrocyte hypertrophy. Arthritis Rheum 1992; 35 (07) 1-806.