Klin Monbl Augenheilkd 2015; 232(4): 438-441
DOI: 10.1055/s-0035-1545814
Experimentelle Studie
Georg Thieme Verlag KG Stuttgart · New York

Precision of the Retinal Tomograph as a Screening Device

Präzision des Retina Tomografen als Screeninginstrument
C. Bergin
Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Foundation Asile des Aveugles, Lausanne, Switzerland
,
J. Oleszczuk
Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Foundation Asile des Aveugles, Lausanne, Switzerland
,
E. Sharkawi
Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Foundation Asile des Aveugles, Lausanne, Switzerland
› Author Affiliations
Further Information

Publication History

Publication Date:
22 April 2015 (online)

Abstract

Purpose: To assess the diagnostic accuracy of the Heidelberg Retinal Tomograph 3 (HRT3) as a screening device in comparison with the reference standard of Octopus standard automated perimetry results (SAP) combined with clinical findings. Methods: All patients underwent screening examinations and investigations within a single day. Abnormal screening results were classified as follows: The HRT3: Either “borderline” or “outside normal limits” using the global Moorfields classification (MFC); SAP and clinical exam: A mean defect > 2.4 dB or “outside normal limits” clear text analysis of SAP; and one of the following i) IOP > 21 mmHg, ii) Van Herrick < ¼, iii) cup disc ratio > 0.55, iv) optic nerve head abnormality, v) narrow iridocorneal angle or vi) evidence of peripheral anterior synechiae on gonioscopy. Results: The mean age of the participants was 59.9 years (± 14.8 [21, 91]). Twenty-three subjects (16 %) were classified as abnormal on SAP and clinical exam. The HRT3 classification had a sensitivity of 30 % (95 % CI [16 %, 51 %]) with associated specificity of 58 % (95 % CI [49 %, 66 %]). Of the sixty subjects classified as borderline or outside normal limits with the HRT MFC global result, seven subjects were also abnormal according to SAP and clinical exam. Conclusion: The results suggest that the HRT3 may not be suitable as a sole screening device; however, further investigation is necessary.

Zusammenfassung

Einleitung: Ziel der Studie war die Einschätzung der diagnostischen Sicherheit des Heidelberg Retinal Tomograph 3 (HRT3) als Screeninginstrument im Vergleich zu den Resultaten der standardisierten, automatischen Perimetrie des Octopus (SAP), als aktuellem Referenzstandard, in Kombination mit klinischen Befunden. Methodik: Alle Patienten erhielten am gleichen Tag eine Screeninguntersuchung und Abklärungen. Abnormale Screeningresultate wurden wie folgt eingeteilt: Kriterium 1: Im HRT3: entweder „borderline“ oder „outside normal limits“, in der globalen Moorfields-Klassifikation (MFC); Kriterium 2: ein mittlerer Defekt von > 2.4 dB oder „outside normal limits“ in der Klartextanalyse des SAP; und einer der folgenden Punkte i) IOD > 21 mmHg, ii) Van Herrick-Einteilung < ¼, iii) Papillenexkavation > 0.55, iv) glaukomsuspekte Papillenveränderungen, v) enger Kammerwinkel oder vi) Nachweis von peripheren anterioren Synechien in der klinischen Untersuchung. Resultate: Das Durchschnittsalter der Teilnehmer lag bei 59,9 Jahren (± 14,8 [21, 91]). 23 Personen (16 %) wurde als abnormal durch das Kriterium 1 bewertet. Das Kriterium 1 hatte eine Sensivität von 30 % (95 % CI [16 %, 51 %]) mit einer Spezifität von 58 % (95 % CI [49 %, 66 %]). Von den 60 Personen, die durch das HRT-MFC als „borderline“ oder „outside normal limits“ klassifiziert wurden, waren 7 Personen ebenfalls abnormal gemäß dem Kriterium 1. Konklusion: Die Resultate dieser Studie deuten darauf hin, dass das HRT3 nicht als alleiniges Screeninginstrument geeignet ist, es sind jedoch weitere Untersuchungen nötig.

 
  • References

  • 1 Nemesure B, Honkanen R, Hennis A et al. Incident open-angle glaucoma and intraocular pressure. Ophthalmology 2007; 114: 1810-1815
  • 2 Leske MC, Wu SY, Hennis A et al. Risk factors for incident open-angle glaucoma: the Barbados Eye Studies. Ophthalmology 2008; 115: 85-93
  • 3 Leske MC. Open-angle glaucoma – an epidemiologic overview. Ophthalmic Epidemiol 2007; 14: 166-172
  • 4 Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 2006; 90: 262-267
  • 5 Henson DB, Thampy R. Preventing blindness from glaucoma. Br Med J 2005; 331: 120-121
  • 6 Wu J, Coffey M, Reidy A et al. Impaired motion sensitivity as a predictor of subsequent field loss in glaucoma suspects: the Roscommon Glaucoma Study. Br J Ophthalmol 1998; 82: 534-537
  • 7 Grant WM, Burke jr JF. Why do some people go blind from glaucoma?. Ophthalmology 1982; 89: 991-998
  • 8 Mowatt G, Burr JM, Cook JC et al. OAG screening project group. Screening tests for detecting open angle glaucoma: systematic review and meta-analysis. Invest Ophthalmol Vis Sci 2008; 49: 5373-5385
  • 9 Wollstein G, Garway-Heath DF, Hitchings RA. Identification of early glaucoma cases with the scanning laser ophthalmoscope. Ophthalmology 1998; 105: 1557-1563
  • 10 Swindale NV, Stjepanovic G, Chin A et al. Automated analysis of normal and glaucomatous optic nerve head topography images. Invest Ophthalmol Vis Sci 2000; 41: 1730-1742
  • 11 Whiting P, Rutjes AW, Reitsma JB et al. The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol 2003; 3: 25
  • 12 Benchimol EI, Manuel DG, To T et al. Development and use of reporting guidelines for assessing the quality of validation studies of health administrative data. J Clin Epidemiol 2011; 64: 821-829
  • 13 Newcomb RG. Interval estimation for the difference between independent proportions: comparison of eleven methods. Statist Med 1998; 17: 873-890
  • 14 Simel DL, Samsa GP, Matchar DB. Likelihood ratios with confidence: sample size estimation for diagnostic test studies. J Clin Epidemiol 1991; 44: 763-770
  • 15 Armitage P, Berry G. Statistical Methods in Medical Research. 3rd. ed. London: Blackwell; 1994: 108-109
  • 16 Gaasterland DE, Blackwell B, Dally LG et al. The Advanced Glaucoma Intervention Study (AGIS): 10. Variability among academic glaucoma subspecialists in assessing optic disc notching. Trans Am Ophthalmol Soc 2001; 99: 177-185
  • 17 Reus NJ, de Graaf M, Lemij HG. Accuracy of GDx VCC, HRT I, and clinical assessment of stereoscopic optic nerve head photographs for diagnosing glaucoma. Br J Ophthalmol 2007; 91: 313-318
  • 18 Toth M, Kothy P, Hollo G. Accuracy of scanning laser polarimetry, scanning laser tomography, and their combination in a glaucoma screening trial. J Glaucoma 2008; 17: 639-646
  • 19 Ohkubo S, Takeda H, Higashide T et al. A pilot study to detect glaucoma with confocal scanning laser ophthalmoscopy compared with nonmydriatic stereoscopic photography in a community health screening. J Glaucoma 2007; 16: 531-538
  • 20 Kothy P, Vargha P, Hollo G. Glaucoma-screening with the Heidelberg Retina Tomograph II. Klin Monbl Augenheilkd 2003; 220: 540-544
  • 21 Robin T, Muller A, Rait J et al. Performance of community-based glaucoma screening using the Frequency Doubling Technology and Heidelberg Retinal Tomography. Ophthalmic Epidem 2005; 12: 167-178
  • 22 Shah N, Bowd C, Mederios F et al. Combining structural and functional testing for detection of glaucoma. Ophthalmology 2006; 113: 1593-1602
  • 23 Deleon-Ortega JE, Arthur SN, McGwin Jr G et al. Discrimination between glaucomatous and nonglaucomatous eyes using quantitative imaging devices and subjective optic nerve head assessment. Invest Ophthalmol Vis Sci 2006; 47: 3374-3380
  • 24 Wollstein G, Garway-Heath DF, Fontana L et al. Identifying early glaucomatous changes. Comparison between expert clinical assessment of optic disc photographs and confocal scanning ophthalmoscopy. Ophthalmology 2000; 107: 2272-2277
  • 25 Badala F, Nouri-Mahdavi K, Raoof DA et al. Optic disk and nerve fiber layer imaging to detect glaucoma. Am J Ophthalmol 2007; 144: 724-732
  • 26 Pablo LE, Ferreras A, Fogagnolo P et al. Optic nerve head changes in early glaucoma: a comparison between stereophotography and Heidelberg retina tomography. Eye 2010; 24: 123-130
  • 27 Reus NJ, Lemij HG, Garway-Heath DF et al. Clinical assessment of stereoscopic optic disc photographs for glaucoma: the European Optic Disc Assessment Trial. Ophthalmology 2010; 117: 717-723
  • 28 Correnti AJ, Wollstein G, Price LL et al. Comparison of optic nerve head assessment with a digital stereoscopic camera (discam), scanning laser ophthalmoscopy, and stereophotography. Ophthalmology 2003; 110: 1499-1505
  • 29 Ohkubo S, Takeda H, Higashide T et al. A pilot study to detect glaucoma with confocal scanning laser ophthalmoscopy compared with nonmydriatic stereoscopic photography in a community health screening. J Glaucoma 2007; 16: 531-538
  • 30 Mardin C, Peters A, Horn F et al. Improving glaucoma diagnosis by the combination of perimetry and HRT measurements. J Glaucoma 2006; 15: 299-305
  • 31 Tacconelli E. Systematic reviews: CRDʼs guidance for undertaking reviews in health care. Centre for Reviews and Dissemination, University of York, January 2009; Chapter 2.2.
  • 32 Riegelman RK. Studying a study and testing a test: how to read the medical literature. 5th ed. Philadelphia, PA: Lippincott, Williams and Wilkins; 2005
  • 33 Alonzo TA, Pepe MS. Using a combination of reference tests to assess the accuracy of a new diagnostic test. Stat Med 1999; 18: 2987-3003