Klin Monbl Augenheilkd 2015; 232(4): 509-513
DOI: 10.1055/s-0035-1545795
Klinische Studie
Georg Thieme Verlag KG Stuttgart · New York

Painless Indirect Argon Laser in High Risk Proliferative Diabetic Retinopathy

Schmerzfreie indirekte Argon Laser Therapie bei proliferativer diabetischer Retinopathie in Hochrisiko-Patienten
A. Ambresin
Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Fondation Asile des Aveugles, Medical Retina Unit, Lausanne, Switzerland
,
V. Strueven
Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Fondation Asile des Aveugles, Medical Retina Unit, Lausanne, Switzerland
,
J.-A. C. Pournaras
Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Fondation Asile des Aveugles, Medical Retina Unit, Lausanne, Switzerland
› Author Affiliations
Further Information

Publication History

Publication Date:
22 April 2015 (online)

Abstract

Background: Proliferative retinopathy is an important cause of vision loss in diabetic patients. Incomplete panretinal photocoagulation (PRP) can lead to recurrent proliferation of new vessels. Patients and Methods: We retrospectively analysed the outcome of patients with high risk proliferative diabetic retinopathy (PDR) previously treated with slit lamp PRP who underwent indirect fill in argon laser treatment with scleral indentation under anesthesia for persistent neovascular proliferation. Results: Seventeen eyes of ten patients were included. The mean age at diabetes onset was 17.3 years SD 16.2 (range 2–44). All patients reported long standing poor glycemic control (mean HbA1c: 8.5 % SD 1.3 range 5.9–10.2). The area of retinal ischemia decreased significantly from 15 ± 7.5 disk areas (DA) before fill-in laser to 3.2 ± 4.2 DA after fill-in laser (p = 0.001). The new vessels also regressed significantly after laser treatment 8.6 ± 6.1 DA before treatment versus 6.5 ± 6.4 DA after laser treatment, (p = 0.044). Quiescent PDR was reached in 10 eyes (58.8 %) at the last visit. Conclusions: Fill-in indirect argon laser under general anesthesia should be considered to achieve further new vessels regression in high risk PDR patients. Scleral indentation and absence of pain may allow for more extensive laser application.

Zusammenfassung

Hintergrund: Die proliferative Retinopathie ist die Hauptursache eines Visusverlusts bei diabetischen Patienten. Unvollständige panretinale Photocoagulation (PRP) kann zu wiederholter Gefäßproliferation führen. Patienten und Methoden: Wir untersuchten retrospektiv die Resultate aller Patienten mit Hochrisiko proliferativer diabetischer Retinopathie (PDR), die trotz vorgängiger Spaltlampen PRP eine ergänzende indirekte Argon-Laserbehandlung mit skleraler Eindellung unter Vollnarkose erhielten wegen persistierender neovaskulärer Proliferation. Ergebnisse: Siebzehn Augen von 10 Patienten wurden eingeschlossen. Die mittlere Dauer seit Diagnose des Diabetes lag bei 17.3 Jahren, SD 16,2 (zwischen 2 und 44 Jahren). Die Kontrolle des Blutzuckerspiegels war im Mittel nicht zufriedenstellend (mittlerer Wert des HbA1c 8,5 %, SD 1,3, zwischen 5,9–10,2). Die Netzhaut-Ischämie-Fläche wurde signifikant kleiner von 15 ± 7,5 Papillenoberflächen vor der ergänzenden Laserbehandlung auf 3,2 ± 4,2 nach der ergänzenden Laserbehandlung (p = 0,001). Die Gefäßneubildungen entwickelten sich auch signifikant zurück von 8,6 ± 6,1 auf 6,5 ± 6,4 (p = 0,044). Bei der Abschlussuntersuchung war die PDR bei 10 Augen (58,8 %) als ruhig eingestuft. Schlussfolgerungen: Die ergänzende indirekte Laserbehandlung unter Vollnarkose sollte in Betracht gezogen werden, um eine verbesserte Regression der retinalen Gefäßneubildungen bei refraktärer Hochrisiko-PDR zu erreichen. Die sklerale Eindellung und die Schmerzfreiheit können zu einer großflächigeren Applikation des Lasers verhelfen.

 
  • References

  • 1 Lee PP, Feldman ZW, Ostermann J et al. Longitudinal prevalence of major eye diseases. Arch Ophthalmol 2003; 121: 1303-1310
  • 2 Okun E, Johnston GP, Boniuk I et al. Xenon arc photocoagulation of proliferative diabetic retinopathy (a review of 2688 consecutive eyes in the format of the diabetic retinopathy study–DRS). Trans Am Ophthalmol Soc 1983; 81: 229-245
  • 3 [Anonym] Techniques for scatter and local photocoagulation treatment of diabetic retinopathy: Early Treatment Diabetic Retinopathy Study Report no. 3. The Early Treatment Diabetic Retinopathy Study Research Group. Int Ophthalmol Clin 1987; 27: 254-264
  • 4 [Anonym] Treatment techniques and clinical guidelines for photocoagulation of diabetic macular edema. Early Treatment Diabetic Retinopathy Study Report Number 2. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology 1987; 94: 761-774
  • 5 Evans JR, Michelessi M, Virgili G. Laser photocoagulation for proliferative diabetic retinopathy. Cochrane Database Syst Rev 2014; (11) CD011234
  • 6 Muqit MM, Sanghvi C, McLauchlan R et al. Study of clinical applications and safety for Pascal(R) laser photocoagulation in retinal vascular disorders. Acta Ophthalmol 2012; 90: 155-161
  • 7 Modi D, Chiranand P, Akduman L. Efficacy of patterned scan laser in treatment of macular edema and retinal neovascularization. Clin Ophthalmol 2009; 3: 465-470
  • 8 Chappelow AV, Tan K, Waheed NK et al. Panretinal photocoagulation for proliferative diabetic retinopathy: pattern scan laser versus argon laser. Am J Ophthalmol 2012; 153: 137-142
  • 9 Nagpal M, Marlecha S, Nagpal K. Comparison of laser photocoagulation for diabetic retinopathy using 532-nm standard laser versus multispot pattern scan laser. Retina 2010; 30: 452-458
  • 10 Muqit MM, Marcellino GR, Gray JC et al. Pain responses of Pascal 20 ms multi-spot and 100 ms single-spot panretinal photocoagulation: Manchester Pascal Study, MAPASS report 2. Br J Ophthalmol 2010; 94: 1493-1498
  • 11 Kumar CM, Eke T, Dodds C et al. Local anaesthesia for ophthalmic surgery – new guidelines from the Royal College of Anaesthetists and the Royal College of Ophthalmologists. Eye (Lond) 2012; 26: 897-898
  • 12 Haut J, Romeo C, Lepvrier-Guibal N et al. [Responsibility of incomplete retinal photocoagulation in the indication of vitrectomy in proliferative diabetic retinopathy]. J Fr Ophtalmol 1996; 19: 190-198
  • 13 Zaninetti M, Petropoulos IK, Pournaras CJ. [Proliferative diabetic retinopathy: vitreo-retinal complications are often related to insufficient retinal photocoagulation]. J Fr Ophtalmol 2005; 28: 381-384
  • 14 Avery RL. Regression of retinal and iris neovascularization after intravitreal bevacizumab (Avastin) treatment. Retina 2006; 26: 352-354
  • 15 Avery RL, Pearlman J, Pieramici DJ et al. Intravitreal bevacizumab (Avastin) in the treatment of proliferative diabetic retinopathy. Ophthalmology 2006; 113: 1695.e1-1695.e15
  • 16 Guthrie G, Magill H, Steel DH. 23-gauge versus 25-gauge vitrectomy for proliferative diabetic retinopathy: a comparison of surgical outcomes. Ophthalmologica 2015; 233: 104-111
  • 17 [Anonym] Early photocoagulation for diabetic retinopathy. ETDRS report number 9. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology 1991; 98: 766-785
  • 18 Jain A, Blumenkranz MS, Paulus Y et al. Effect of pulse duration on size and character of the lesion in retinal photocoagulation. Arch Ophthalmol 2008; 126: 78-85
  • 19 Blumenkranz MS, Yellachich D, Andersen DE et al. Semiautomated patterned scanning laser for retinal photocoagulation. Retina 2006; 26: 370-376
  • 20 Sanghvi C, McLauchlan R, Delgado C et al. Initial experience with the Pascal photocoagulator: a pilot study of 75 procedures. Br J Ophthalmol 2008; 92: 1061-1064
  • 21 Muqit MM, Marcellino GR, Henson DB et al. Pascal panretinal laser ablation and regression analysis in proliferative diabetic retinopathy: Manchester Pascal Study Report 4. Eye (Lond) 2011; 25: 1447-1456
  • 22 Alasil T, Waheed NK. Pan retinal photocoagulation for proliferative diabetic retinopathy: pattern scan laser versus argon laser. Curr Opin Ophthalmol 2014; 25: 164-170
  • 23 Little HL. Treatment of proliferative diabetic retinopathy. Long-term results of argon laser photocoagulation. Ophthalmology 1985; 92: 279-283
  • 24 Bailey CC, Sparrow JM, Grey RH et al. The National Diabetic Retinopathy Laser Treatment Audit. III. Clinical outcomes. Eye (Lond) 1999; 13 (Pt 2) 151-159
  • 25 Al-Hussainy S, Dodson PM, Gibson JM. Pain response and follow-up of patients undergoing panretinal laser photocoagulation with reduced exposure times. Eye (Lond) 2008; 22: 96-99
  • 26 Aylward GW, Pearson RV, Jagger JD et al. Extensive argon laser photocoagulation in the treatment of proliferative diabetic retinopathy. Br J Ophthalmol 1989; 73: 197-201
  • 27 Diabetic Retinopathy Clinical Research Network. Brucker AJ, Qin H et al. Observational study of the development of diabetic macular edema following panretinal (scatter) photocoagulation given in 1 or 4 sittings. Arch Ophthalmol 2009; 127: 132-140
  • 28 Zlotcavitch L, Flynn jr. HW, Avery RL et al. Progression to macula-off tractional retinal detachment after a contralateral intraoperative intravitreal bevacizumab injection for proliferative diabetic retinopathy. Clin Ophthalmol 2015; 9: 69-71
  • 29 Rajendram R, Fraser-Bell S, Kaines A et al. A 2-year prospective randomized controlled trial of intravitreal bevacizumab or laser therapy (BOLT) in the management of diabetic macular edema: 24-month data: report 3. Arch Ophthalmol 2012; 130: 972-979