Rofo 2015; 187(08): 662-675
DOI: 10.1055/s-0034-1399540
Review
© Georg Thieme Verlag KG Stuttgart · New York

Lung Volume Reduction in Pulmonary Emphysema from the Radiologist’s Perspective

Lungenvolumenreduktion beim Lungenemphysem aus der Sicht des Radiologen
F. Doellinger
1   Department of Radiology, Charité Universitätsmedizin Berlin, Germany
,
R. H. Huebner
2   Department of Internal Medicine/Infectious and Respiratory Diseases, Charité Universitätsmedizin Berlin, Germany
,
J. M. Kuhnigk
3   Institute for Medical Image Computing, Fraunhofer MEVIS, Bremen, Germany
,
A. Poellinger
1   Department of Radiology, Charité Universitätsmedizin Berlin, Germany
› Author Affiliations
Further Information

Publication History

13 April 2014

13 March 2015

Publication Date:
10 June 2015 (online)

Abstract

Pulmonary emphysema causes decrease in lung function due to irreversible dilatation of intrapulmonary air spaces, which is linked to high morbidity and mortality. Lung volume reduction (LVR) is an invasive therapeutical option for pulmonary emphysema in order to improve ventilation mechanics. LVR can be carried out by lung resection surgery or different minimally invasive endoscopical procedures. All LVR-options require mandatory preinterventional evaluation to detect hyperinflated dysfunctional lung areas as target structures for treatment. Quantitative computed tomography can determine the volume percentage of emphysematous lung and its topographical distribution based on the lung’s radiodensity. Modern techniques allow for lobebased quantification that facilitates treatment planning. Clinical tests still play the most important role in post-interventional therapy monitoring, but CT is crucial in the detection of postoperative complications and foreshadows the method’s high potential in sophisticated experimental studies. Within the last ten years, LVR with endobronchial valves has become an extensively researched minimally-invasive treatment option. However, this therapy is considerably complicated by the frequent occurrence of functional interlobar shunts. The presence of “collateral ventilation” has to be ruled out prior to valve implantations, as the presence of these extraanatomical connections between different lobes may jeopardize the success of therapy. Recent experimental studies evaluated the automatic detection of incomplete lobar fissures from CT scans, because they are considered to be a predictor for the existence of shunts. To date, these methods are yet to show acceptable results.

Key points:

• Today, surgical and various minimal invasive methods of lung volume reduction are in use.

• Radiological and nuclear medical examinations are helpful in the evaluation of an appropriate lung area.

• Imaging can detect periinterventional complications.

• Reduction of lung volume has not yet been conclusively proven to be effective and is a therapeutical option with little scientifc evidence.

Citation Format:

• Doellinger F, Huebner RH, Kuhnigk JM et al. Lung Volume Reduction in Pulmonary Emphysema from the Radiologist’s Perspective. Fortschr Röntgenstr 2015; 187: 662 – 675

Zusammenfassung

Beim Lungenemphysem kommt es durch die irreversible Erweiterung intrapulmonaler Lufträume zu einer Einschränkung der Lungenfunktion, die mit hoher Morbidität und Mortalität einhergeht. Die Lungenvolumenreduktion (LVR) stellt eine invasive Therapieoption des Lungenemphysems dar, durch die eine Verbesserung der Atemmechanik erzielt werden soll. Eine LVR kann chirurgisch mittels Lungenteilresektionen oder durch verschiedene minimalinvasive, endoskopisch vermittelte, Techniken erfolgen. Allen Verfahren ist gemein, dass die zu behandelnden Lungenabschnitte vor Therapiebeginn evaluiert werden müssen, um insbesondere chronisch überblähte, dysfunktionale, Areale behandeln zu können. Mit quantitativer Computertomografie können der relative Anteil der emphysematischen Lungenareale am gesamten Lungenvolumen und ihre topografische Verteilung anhand ihrer Röntgendichte reproduzierbar ermittelt werden. Moderne Techniken ermöglichen eine lappengetrennte Quantifizierung des Lungenemphysems, mit der die Therapie geplant werden kann. Im postinterventionellen Therapiemonitoring haben weiterhin klinische Parameter entscheidenden Stellenwert, die CT dient jedoch der Detektion postinterventioneller Komplikationen und lässt in experimentellen Studien ihr Potenzial erahnen. Die in den letzten 10 Jahren ausführlich erforschte minimalinvasive LVR mit endoskopisch implantierbaren endobronchialen Ventilen ist durch das häufige Vorkommen funktioneller interlobärer Shuntverbindungen erheblich verkompliziert. Das Vorliegen einer solchen „kollateralen Ventilation“ muss vor der Implantation der Ventile in einen Ziellappen ausgeschlossen werden, da die extraanatomische Verbindung einzelner Lappen sonst den Therapieerfolg gefährden kann. Experimentelle Studien beschäftigen sich mit der automatisierten Detektion inkompletter Fissuren aus CT-Untersuchungen, da diese als ein Prädiktor der Shunts angesehen werden. Dies gelingt aktuell jedoch noch nicht auf akzeptable Weise.

Deutscher Artikel/German Article

 
  • References

  • 1 Vestbo J, Hurd S, Agustí AG et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 2013; 187: 347-365
  • 2 Vogelmeier C, Buhl R, Criée CP. Guidelines for the diagnosis and therapy of COPD issued by Deutsche Atemwegsliga and Deutsche Gesellschaft für Pneumologie und Beatmungsmedizin. Pneumologie 2007; 661: 551
  • 3 Snider GL. Chronic obstructive pulmonary disease: a definition and implications of structural determinants of airflow obstruction for epidemiology. Am Rev Respir Dis 1989; 140: S3-S8
  • 4 Uppaluri R, Mitsa T, Sonka M et al. Quantification of pulmonary emphysema from lung computed tomography images. Am J Respir Crit Care Med 1997; 156: 248-254
  • 5 Thabut G, Dauriat G, Stern JB et al. Pulmonary hemodynamics in advanced COPD candidates for lung volume reduction surgery or lung transplantation. Chest 2005; 127: 1531-1536
  • 6 Gompelmann D, Eberhardt R, Herth F. Endoscopic Volume Reduction in COPD – a Critical Review. Dtsch Arztebl Int 2014; 111: 827-833
  • 7 Lacasse Y, Wong E, Guyatt GH et al. Meta-analysis of respiratory rehabilitation in chronic obstructive pulmonary disease. Lancet 1996; 348: 1115-1119
  • 8 Geldmacher H, Biller H, Herbst A et al. The prevalence of chronic obstructive pulmonary disease (COPD) in Germany. Results of the BOLD study. Dtsch medizinische Wochenschrift 2008; 133: 2609-2614
  • 9 Sciurba FC, Rogers RM, Keenan RJ et al. Improvement in pulmonary function and elastic recoil after lung-reduction surgery for diffuse emphysema. N Engl J Med 1996; 334: 1095-1099
  • 10 Fessler HE, Scharf SM, Ingenito EP et al. Physiologic basis for improved pulmonary function after lung volume reduction. Proc Am Thorac Soc 2008; 5: 416-420
  • 11 Brantigan OC, Mueller E, Kress MB. A surgical approach to pulmonary emphysema. Am Rev Respir Dis 1959; 80: 194-206
  • 12 Cooper JD, Patterson GA, Sundaresan RS et al. Results of 150 consecutive bilateral lung volume reduction procedures in patients with severe emphysema. J Thorac Cardiovasc Surg 1996; 112: 1319-1329 ; discussion 1329–1330
  • 13 McKenna RJ, Brenner M, Fischel RJ et al. Patient selection criteria for lung volume reduction surgery. J Thorac Cardiovasc Surg 1997; 114: 957-964 ; discussion 964-967
  • 14 Fishman A, Martinez F, Naunheim K et al. A randomized trial comparing lung-volume-reduction surgery with medical therapy for severe emphysema. N Engl J Med 2003; 348: 2059-2073
  • 15 Weder W, Tutic M, Bloch KE. Lung volume reduction surgery in nonheterogeneous emphysema. Thorac Surg Clin Elsevier 2009; 19: 193-139
  • 16 Weder W, Tutic M, Lardinois D et al. Persistent benefit from lung volume reduction surgery in patients with homogeneous emphysema. Ann Thorac Surg Elsevier 2009; 87: 229-237
  • 17 Snell GI, Holsworth L, Borrill ZL et al. The potential for bronchoscopic lung volume reduction using bronchial prostheses: a pilot study. Chest 2003; 124: 1073-1080
  • 18 Toma TP, Hopkinson NS, Hillier J et al. Bronchoscopic volume reduction with valve implants in patients with severe emphysema. Lancet 2003; 361: 931-933
  • 19 Sciurba FC, Ernst A, Herth FJ et al. A randomized study of endobronchial valves for advanced emphysema. N Engl J Med 2010; 363: 1233-1244
  • 20 Ninane V, Geltner C, Bezzi M et al. Multicentre european study for the treatment of advanced emphysema with bronchial valves. Eur Respir J 2012; 39: 1319-1325
  • 21 Wood DE, Nader DA, Springmeyer SC et al. The IBV Valve trial: a multicenter, randomized, double-blind trial of endobronchial therapy for severe emphysema. J Bronchology Interv Pulmonol 2014; 21: 288-297
  • 22 Eberhardt R, Gompelmann D, Schuhmann M et al. Complete unilateral vs partial bilateral endoscopic lung volume reduction in patients with bilateral lung emphysema. Chest 2012; 142: 900-908
  • 23 Gompelmann D, Herth FJF, Slebos DJ et al. Pneumothorax following endobronchial valve therapy and its impact on clinical outcomes in severe emphysema. Respiration 2014; 87: 485-491
  • 24 Cetti EJ, Moore AJ, Geddes DM. Collateral ventilation. Thorax 2006; 61: 371-373
  • 25 Higuchi T, Reed A, Oto T et al. Relation of interlobar collaterals to radiological heterogeneity in severe emphysema. Thorax 2006; 61: 409-413
  • 26 Herth FJ, Eberhardt R, Gompelmann D et al. Bronchoscopic lung volume reduction with a dedicated coil: a clinical pilot study. Ther Adv Respir Dis 2010; 4: 225-231
  • 27 Shah PL, Zoumot Z, Singh S et al. Endobronchial coils for the treatment of severe emphysema with hyperinflation (RESET): a randomised controlled trial. Lancet Respir Med 2013; 1: 233-240
  • 28 Slebos DJ, Klooster K, Ernst A et al. Bronchoscopic lung volume reduction coil treatment of patients with severe heterogeneous emphysema. Chest 2012; 142: 574-582
  • 29 Gompelmann D, Eberhardt R, Ernst A. The localized inflammatory response to bronchoscopic thermal vapor ablation. Respiration 2013; 86: 324-331
  • 30 Snell GI, Hopkins P, Westall G et al. A feasibility and safety study of bronchoscopic thermal vapor ablation: a novel emphysema therapy. Ann Thorac Surg 2009; 88: 1993-1998
  • 31 Snell G, Herth FJF, Hopkins P et al. Bronchoscopic thermal vapour ablation therapy in the management of heterogeneous emphysema. Eur Respir J 2012; 39: 1326-1333
  • 32 Magnussen H, Kramer MR, Kirsten AM et al. Effect of fissure integrity on lung volume reduction using a polymer sealant in advanced emphysema. Thorax 2012; 67: 302-308
  • 33 Herth FJF, Gompelmann D, Stanzel F et al. Treatment of advanced emphysema with emphysematous lung sealant (AeriSeal®). Respiration 2011; 82: 36-45
  • 34 Shah PL, Slebos DJ, Cardoso PFG et al. Bronchoscopic lung-volume reduction with Exhale airway stents for emphysema (EASE trial): randomised, sham-controlled, multicentre trial. Lancet 2011; 378: 997-1005
  • 35 Sanders C, Nath PH, Bailey WC. Detection of emphysema with computed tomography. Correlation with pulmonary function tests and chest radiography. Invest Radiol 1988; 23: 262-266
  • 36 Jacobi V, Thalhammer A, Vogl T. Erkrankungen der Atemwege. Thorax. Berlin, Heidelberg, New York: Springer Verlag; 2003
  • 37 Rubin GD, Napel S, Leung AN. Volumetric analysis of volumetric data: achieving a paradigm shift. Radiology 1996; 200: 312-317
  • 38 Kuhnigk JM, Dicken V, Zidowitz S et al. New tools for computer assistance in thoracic CT. Part 1. Functional analysis of lungs, lung lobes, and bronchopulmonary segments. Radiographics 2005; 25: 525-536
  • 39 Bankier AA, De Maertelaer V, Keyzer C et al. Pulmonary emphysema: subjective visual grading versus objective quantification with macroscopic morphometry and thin-section CT densitometry. Radiology 2000; 211: 851-858
  • 40 Preteux F, Capderou A, Fetita C et al. Modeling, segmentation, and caliber estimation of bronchi in high resolution computerized tomography. J Electron Imaging 1999; 8: 36-45
  • 41 Kuhnigk JM, Hahn HK, Hindennach M et al. Lung lobe segmentation by anatomy-guided 3D watershed transform. Proc SPIE 2003; 5032: 1482-1490
  • 42 Mueller NL, Staples CA, Miller RR et al. Density mask. An objective method to quantitate emphysema using computed tomography. Chest 1988; 94: 782-787
  • 43 Van Rikxoort EM, Goldin JG, Galperin-Aizenberg M et al. A method for the automatic quantification of the completeness of pulmonary fissures: evaluation in a database of subjects with severe emphysema. Eur Radiol 2012; 22: 302-309
  • 44 Reymond E, Jankowski A, Pison C et al. Prediction of lobar collateral ventilation in 25 patients with severe emphysema by fissure analysis with CT. Am J Roentgenol 2013; 201: W571-W575
  • 45 Chong D, Brown MS, Kim HJ et al. Reproducibility of volume and densitometric measures of emphysema on repeat computed tomography with an interval of 1 week. Eur Radiol 2012; 22: 287-294
  • 46 Lynch DA, Al-Qaisi MA. Quantitative computed tomography in chronic obstructive pulmonary disease. J Thorac Imaging 2013; 28: 284-290
  • 47 Parr DG, Stoel BC, Stolk J et al. Validation of computed tomographic lung densitometry for monitoring emphysema in alpha1-antitrypsin deficiency. Thorax 2006; 61: 485-490
  • 48 Stoel BC, Putter H, Bakker ME et al. Volume correction in computed tomography densitometry for follow-up studies on pulmonary emphysema. Proc Am Thorac Soc 2008; 5: 919-924
  • 49 Ley-Zaporozhan J, Ley S, Eberhardt R et al. Assessment of the relationship between lung parenchymal destruction and impaired pulmonary perfusion on a lobar level in patients with emphysema. Eur J Radiol 2007; 63: 76-83
  • 50 Selle D, Preim B, Schenk A et al. Analysis of vasculature for liver surgical planning. IEEE Trans Med Imaging 2002; 21: 851-856
  • 51 Gevenois PA, Scillia P, de Maertelaer V et al. The effects of age, sex, lung size, and hyperinflation on CT lung densitometry. Am J Roentgenol 1996; 167: 1169-1173
  • 52 Kim EY, Seo JB, Lee HJ et al. Detailed analysis of the density change on chest CT of COPD using non-rigid registration of inspiration/expiration CT scans. Eur Radiol 2015; 25: 541-549
  • 53 Wielpütz MO, Eberhardt R, Puderbach M et al. Simultaneous assessment of airway instability and respiratory dynamics with low-dose 4D-CT in chronic obstructive pulmonary disease: a technical note. Respiration 2014; 87: 294-300
  • 54 Jögi J, Markstad H, Tufvesson E et al. The added value of hybrid ventilation/perfusion SPECT/CT in patients with stable COPD or apparently healthy smokers. Cancer-suspected CT findings in the lungs are common when hybrid imaging is used. Int J Chron Obstruct Pulmon Dis 2015; 10: 25-30
  • 55 Bajc M, Markstad H, Jarenbäck L et al. Grading obstructive lung disease using tomographic pulmonary scintigraphy in patients with chronic obstructive pulmonary disease (COPD) and long-term smokers. Ann Nucl Med 2015; 29: 91-99
  • 56 Terry PB, Traystman RJ, Newball HH et al. Collateral ventilation in man. N Engl J Med 1978; 298: 10-15
  • 57 Cronin P, Gross BH, Kelly AM et al. Normal and accessory fissures of the lung: evaluation with contiguous volumetric thin-section multidetector CT. Eur J Radiol 2010; 75: e1-e8
  • 58 Gompelmann D, Eberhardt R, Herth FJF. Collateral ventilation. Respiration 2013; 85: 515-520
  • 59 Morrell NW, Wignall BK, Biggs T et al. Collateral ventilation and gas exchange in emphysema. Am J Respir Crit Care Med 1994; 150: 635-641
  • 60 Medlar EM. Variations in interlobar fissures. Am J Roentgenol Radium Ther 1947; 57: 723-725
  • 61 Aziz A, Ashizawa K, Nagaoki K et al. High resolution CT anatomy of the pulmonary fissures. J Thorac Imaging 2004; 19: 186-191
  • 62 Herth FJF, Noppen M, Valipour A. Efficacy predictors of lung volume reduction with Zephyr valves in a european cohort. Eur Respir J 2012; 39: 1334-1342
  • 63 Shah PL, Herth FJF. Current status of bronchoscopic lung volume reduction with endobronchial valves. Thorax 2014; 69: 280-286
  • 64 Herth FJF, Eberhardt R, Gompelmann D et al. Radiological and clinical outcomes of using ChartisTM to plan endobronchial valve treatment. Eur Respir J 2013; 41: 302-308
  • 65 Gompelmann D, Eberhardt R, Michaud G et al. Predicting atelectasis by assessment of collateral ventilation prior to endobronchial lung volume reduction: a feasibility study. Respiration 2010; 80: 419-425
  • 66 Gompelmann D, Eberhardt R, Slebos D-J et al. Diagnostic performance comparison of the Chartis System and high-resolution computerized tomography fissure analysis for planning endoscopic lung volume reduction. Respirology 2014; 19: 524-530
  • 67 Hopkinson NS, Toma TP, Hansell DM et al. Effect of bronchoscopic lung volume reduction on dynamic hyperinflation and exercise in emphysema. Am J Respir Crit Care Med 2005; 171: 453-460
  • 68 Gompelmann D, Heussel CP, Eberhardt R et al. Efficacy of bronchoscopic thermal vapor ablation and lobar fissure completeness in patients with heterogeneous emphysema. Respiration 2012; 83: 400-406
  • 69 Magnussen H, Kramer MR, Kirsten AM et al. Effect of fissure integrity on lung volume reduction using a polymer sealant in advanced emphysema. Thorax 2012; 67: 302-308
  • 70 Gompelmann D, Eberhardt R, Herth FJF. Endoscopic lung volume reduction. A European perspective. Ann Am Thorac Soc 2013; 10: 657-666