Klin Monbl Augenheilkd 2015; 232(4): 471-476
DOI: 10.1055/s-0034-1396330
Klinische Studie
Georg Thieme Verlag KG Stuttgart · New York

Comparing Short-Duration Electro-Oculograms with and without Mydriasis in Healthy Subjects

Vergleich eines kurzzeitigen Elektro-Oculograms mit und ohne Mydriase bei gesunden Probanden
C. Türksever
Department of Ophthalmology, University Hospital Basel, Switzerland (Chairman a. i.: Dr. sc. nat. Norbert Spirig)
,
S. Orgül
Department of Ophthalmology, University Hospital Basel, Switzerland (Chairman a. i.: Dr. sc. nat. Norbert Spirig)
,
M. G. Todorova
Department of Ophthalmology, University Hospital Basel, Switzerland (Chairman a. i.: Dr. sc. nat. Norbert Spirig)
› Author Affiliations
Further Information

Publication History

Publication Date:
22 April 2015 (online)

Abstract

Background: In order to obtain artifact-free electro-oculogram recordings the subjectʼs cooperation is necessary. The aim of our study is to evaluate the recording characteristics of short-duration EOG and to compare the effect of mydriasis on electro-oculogram recordings in a cohort of controls. Patients and Methods: Electro-oculogram recordings were performed on a light-emitting diode stimulus screen using a RETI-port gamma plus2 system (RETIscan™, Roland Consult). Fast oscillations were set at 1.5 sec (6 cycles; total duration 75 sec).The dark phase included: pre-adaptation (6 min), alternate fixation (4 min), fixation-rest (20 sec), 100 sweeps. The light phase included: light adaptation (4 min), alternate fixation (10 min), fixation-rest (20 sec), 250 sweeps. The amplifier band pass was filtered at 0.1 ÷ 50 Hz. The background illumination in mydriasis was 100 cd/m2 and in miosis – 450 cd/m2. Results: A total of 55 controls participated and were divided into three age groups [number; mean (years, y); ± SD]: group 1: 18–20 years (19; 19.49 years; ± 0.89); group 2: 20–40 years (18; 27.91 years; ± 5.39) and group 3: 40–60 years (18; 48.66 years; ± 4.00). The Arden ratio, dark-trough and light-peak did not differ between recordings with or without mydriasis (p = 0.914; p = 0.880; p = 0.680, linear mixed-effects model). The age did not influence the Arden ratio, dark-trough, light-peak (p = 0.206; p = 0.112; p = 0.155). Arden ratio, dark-trough, light-peak were comparable between tested eyes (p = 0.934; p = 0.193; p = 0.270). Conclusions: Short-duration electro-oculograms allow successful recording, furthermore, the application of mydriasis does not influence the quality of the recording.

Zusammenfassung

Hintergrund: Um Artefakt-freie Elektrooculogramm Aufnahmen zu erhalten, ist die Kooperation des Patienten nötig. Das Ziel unserer Studie war es, die Merkmale von kurzzeitigen EOG Aufnahmen zu bewerten und den Effekt der Mydriase zu evaluieren. Patienten und Methoden: Elektrooculogramm Aufnahmen wurden auf einen Leuchtdioden Stimulus Bildschirm bei Gebrauch eines RETI-port gamma plus2 System (RETIscanTM, Roland Consult) gewonnen. Schnelle Schwingungen waren auf 1.5 sek (6 Zyklen; Totale Dauer 75 sek) eingestellt. Dunkelphase inbegriffen: Präadaptation (6 min), alternierte Fixation (4 min), Fixationsruhe (20 sek), 100 Sweeps. Lichtphase inbegriffen: Licht Adaptation (4 min), alternierte Fixation (10 min), Fixationsruhe (20 sek), 250 Sweeps. Im Verstärker wurde ein Bandbreitenfilter für 0.1 ÷ 50 Hz eingestellt. Die Hintergrundbeleuchtung mit Mydriase war 100 cd/m2 und ohne Mydriase 450 cd/m2. Ergebnisse: 55 gesunde Probanden in 3 Altersgruppen nahmen teil (Anzahl; mittleres Alter [Jahre, y]; ± SD): Gruppe 1: 18–20 y (19; 19,49 y; ± 0,89); Gruppe 2: 20–40 y (18; 27,91 y; ± 5,39) und Gruppe 3: 40–60 y (18; 48,66 y; ± 4,00). Arden-Quotient, Dunkeltalwerte, Hellgipfelwerte unterschieden sich nicht zwischen den Aufnahmen mit und ohne Mydriase (p = 0,914; p = 0,880; p = 0,680, Lineare Regression). Das Alter hatte keinen Einfluss auf den Arden-Quotient, Dunkeltalwerte und Hellgipfelwerte (p = 0,206; p = 0,112; p = 0,155). Arden-Quotient, Dunkeltalwerte und Hellgipfelwerte waren vergleichbar unter den getesteten Augen (p = 0,934; p = 0,193; p = 0,270). Schlussfolgerung: Kurzzeit-Elektrooculogramms können mit guten Resultaten erhoben werden und zeigen keine Beeinträchtigung durch eine Mydriase.

 
  • References

  • 1 Arden GB, Kelsey JH. Changes produced by light in the standing potential of the human eye. J Physiol 1962; 161: 189-204
  • 2 Arden GB, Barrada A, Kelsey JH. New clinical test of retinal function based upon the standing potential of the eye. Br J Ophthalmol 1962; 46: 449-467
  • 3 Griff ER, Steinberg RH. Origin of the light peak: in vitro study of Gekko gekko. J Physiol 1982; 331: 637-652
  • 4 Constable PA. A perspective on the mechanism of the light-rise of the electrooculogram. Invest Ophthalmol Vis Sci 2014; 55: 2669-2673
  • 5 Arden GB, Constable PA. The electro-oculogram. Prog Retin Eye Res 2006; 25: 207-248
  • 6 Barricks ME. Vitelliform lesions developing in normal fundi. Am J Ophthalmol 1977; 83: 324-327
  • 7 Cross HE, Bard L. Electro-oculography in Bestʼs macular dystrophy. Am J Ophthalmol 1974; 77: 46-50
  • 8 Theischen M, Schilling H, Steinhorst UH. EOG in adult vitelliform macular degeneration, butterfly-shaped pattern dystrophy and Best disease. Ophthalmologe 1997; 94: 230-233
  • 9 Weleber RG. Fast and slow oscillations of the electro-oculogram in Bestʼs macular dystrophy and retinitis pigmentosa. Arch Ophthalmol 1989; 107: 530-537
  • 10 Leguire LE, Pappa KS, McGregor ML et al. Electro-oculogram in vitamin A deficiency associated with cystic fibrosis. Ophthalmic Paediatr Genet 1992; 13: 187-189
  • 11 Constable PA, Lawrenson JG, Arden GB. Light and alcohol evoked electro-oculograms in cystic fibrosis. Doc Ophthalmol 2006; 113: 133-143
  • 12 Salu P, Uvijls A, van den Brande P et al. Normalization of generalized retinal function and progression of maculopathy after cessation of therapy in a case of severe hydroxychloroquine retinopathy with 19 years follow-up. Doc Ophthalmol 2010; 120: 251-264
  • 13 Hardus P, Verduin W, Berendschot T et al. Vigabatrin: longterm follow-up of electrophysiology and visual field examinations. Acta Ophthalmol Scand 2003; 81: 459-465
  • 14 Kawasaki K, Mukoh S, Yonemura D et al. Acetazolamide-induced changes of the membrane potentials of the retinal pigment epithelial cell. Doc Ophthalmol 1986; 63: 375-381
  • 15 Shirao Y, Steinberg RH. Mechanisms of effects of small hyperosmotic gradients on the chick RPE. Invest Ophthalmol Vis Sci 1987; 28: 2015-2025
  • 16 Arndt C, Sari A, Ferre M et al. Electrophysiological effects of corticosteroids on the retinal pigment epithelium. Invest Ophthalmol Vis Sci 2001; 42: 472-475
  • 17 Bialek S, Quong JN, Yu K et al. Nonsteroidal anti-inflammatory drugs alter chloride and fluid transport in bovine retinal pigment epithelium. Am J Physiol 1996; 270: C1175-C1189
  • 18 Steinberg RH. Monitoring communications between photoreceptors and pigment epithelial cells: effects of “mild” systemic hypoxia. Friedenwald lecture. Invest Ophthalmol Vis Sci 1987; 28: 1888-1904
  • 19 Marmor MF, Donovan WJ, Gaba DM. Effects of hypoxia and hyperoxia on the human standing potential. Doc Ophthalmol 1985; 60: 347-352
  • 20 Arden GB, Wolf JE. The human electro-oculogram: interaction of light and alcohol. Invest Ophthalmol Vis Sci 2000; 41: 2722-2729
  • 21 Marmor MF, Brigell MG, McCulloch DL et al. ISCEV standard for clinical electro-oculography (2010 update). Doc Ophthalmol 2011; 122: 1-7
  • 22 Arden GB, Kelsey JH. Some observations on the relationship between the standing potential of the human eye and the bleaching and regeneration of visual purple. J Physiol 1962; 161: 205-226
  • 23 Lessel MR, Thaler A, Scheiber V et al. The dark trough in clinical electro-oculography. Influence of preadaptation on amplitudes and latencies. Doc Ophthalmol 1993; 84: 31-38
  • 24 Kooijman AC, Damhof A. A portable ERG system with an automatic driven LED Ganzfeld stimulation contact lens. Ophthalmologica 1981; 182: 224-228
  • 25 Hawlina M, De Villiers PL. Light-emitting diodes and half-cell electrodes in experimental recording of electroretinogram c-wave. Doc Ophthalmol 1992; 81: 227-237
  • 26 Lessel MR, Thaler A, Scheiber V et al. Comparison of electro-oculogram recording methods. Ophthalmic Res 1993; 25: 245-252
  • 27 Marmor MF, Fulton AB, Holder GE et al. ISCEV Standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol 2009; 118: 69-77
  • 28 Odom JV, Bach M, Brigell M et al. ISCEV standard for clinical visual evoked potentials (2009 update). Doc Ophthalmol 2010; 120: 111-119
  • 29 ISCEV Committee for Pediatric Clinical Electrophysiology Guidelines. Fulton AB, Brecelj J et al. Pediatric clinical visual electrophysiology: a survey of actual practice. Doc Ophthalmol 2006; 113: 193-204
  • 30 Trick GL, Nesher R, Cooper DG et al. The human pattern ERG: alteration of response properties with aging. Optom Vis Sci 1992; 69: 122-128
  • 31 Wright CE, Williams DE, Drasdo N et al. The influence of age on the electroretinogram and visual evoked potential. Doc Ophthalmol 1985; 59: 365-384
  • 32 Gerth C, Garcia SM, Ma L et al. Multifocal electroretinogram: age-related changes for different luminance levels. Graefes Arch Clin Exp Ophthalmol 2002; 240: 202-208
  • 33 Gerth C, Sutter EE, Werner JS. mfERG response dynamics of the aging retina. Invest Ophthalmol Vis Sci 2003; 44: 4443-4450