Horm Metab Res 2013; 45(09): 629-639
DOI: 10.1055/s-0033-1343462
Original Basic
© Georg Thieme Verlag KG Stuttgart · New York

Clock Gene Expression in the Liver of Streptozotocin-induced and Spontaneous Type 1 Diabetic Rats

K. Hofmann
1   Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle (Saale), Germany
,
U. Schönerstedt
1   Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle (Saale), Germany
,
E. Mühlbauer
2   Saxon Academy of Sciences Leipzig, Leipzig, Germany
,
D. Wedekind
3   Institute of Laboratory Animal Science, Hannover Medical School, Hannover, Germany
,
E. Peschke
1   Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle (Saale), Germany
› Author Affiliations
Further Information

Publication History

received 16 January 2013

accepted 27 March 2013

Publication Date:
30 April 2013 (online)

Abstract

Several investigations have shown a relation between diabetes and alterations of the liver circadian clock. We investigated the diurnal expression of clock genes and clock-controlled genes (CCGs) in 3-hour intervals for a 24-h period in the livers of male streptozotocin (STZ)-treated rats, male spontaneous type 1 diabetic LEW.1AR1-iddm (Iddm) rats, and Iddm rats treated for 10 days with insulin. Hepatic mRNA was extracted, and the relative expression of clock genes (Per1, Per2, Bmal1, Clock, Cry1), as well as CCGs (Dbp, E4bp4, RevErbα, Rorα, Pparγ), was analyzed by reverse transcription followed by real-time polymerase chain reaction. Diabetic STZ and Iddm rats, as well as insulin-substituted Iddm rats, exhibited a significant diurnal expression pattern of clock genes as determined by Cosinor analysis; however, the MESOR (midline estimating statistic of rhythm) of Bmal1, Per2, and Clock transcript expression was altered in Iddm and insulin-substituted Iddm rats. The hepatic expression of the CCGs Dbp and RevErbα revealed a diurnal rhythm in all investigated groups. Insulin administration to Iddm rats normalized the enhanced MESOR in the expression of Dbp, RevErbα, and E4bp4 to the levels of normoglycemic controls. Cosinor analysis indicated no diurnal rhythm of Pparγ expression in the livers of diabetic STZ or Iddm rats or in those of insulin-substituted Iddm rats. Also, insulin substitution could not reverse the decreased MESOR of Pparγ expression in Iddm rats. In consequence of the diabetic disease, changes in the expression of clock genes and CCGs suggest alterations in the hepatic peripheral clock mechanism.

 
  • References

  • 1 Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 2010; 72: 517-549
  • 2 Ralph MR, Foster RG, Davis FC, Menaker M. Transplanted suprachiasmatic nucleus determines circadian period. Science 1990; 247: 975-978
  • 3 Lowrey PL, Takahashi JS. Genetics of the mammalian circadian system: Photic entrainment, circadian pacemaker mechanisms, and posttranslational regulation. Annu Rev Genet 2000; 34: 533-562
  • 4 Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M. Entrainment of the circadian clock in the liver by feeding. Science 2001; 291: 490-493
  • 5 Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Siepka SM, Hong HK, Oh WJ, Yoo OJ, Menaker M, Takahashi JS. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci USA 2004; 101: 5339-5346
  • 6 Muhlbauer E, Wolgast S, Finckh U, Peschke D, Peschke E. Indication of circadian oscillations in the rat pancreas. FEBS Lett 2004; 564: 91-96
  • 7 Green CB, Takahashi JS, Bass J. The meter of metabolism. Cell 2008; 134: 728-742
  • 8 Pando MP, Morse D, Cermakian N, Sassone-Corsi P. Phenotypic rescue of a peripheral clock genetic defect via SCN hierarchical dominance. Cell 2002; 110: 107-117
  • 9 Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 2000; 14: 2950-2961
  • 10 Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature 2002; 418: 935-941
  • 11 Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, Schibler U. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 2002; 110: 251-260
  • 12 Sato TK, Panda S, Miraglia LJ, Reyes TM, Rudic RD, McNamara P, Naik KA, FitzGerald GA, Kay SA, Hogenesch JB. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 2004; 43: 527-537
  • 13 Gachon F, Olela FF, Schaad O, Descombes P, Schibler U. The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification. Cell Metab 2006; 4: 25-36
  • 14 Mitsui S, Yamaguchi S, Matsuo T, Ishida Y, Okamura H. Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism. Genes Dev 2001; 15: 995-1006
  • 15 Sundvold H, Lien S. Identification of a novel peroxisome proliferator-activated receptor (PPAR) gamma promoter in man and transactivation by the nuclear receptor RORalpha1. Biochem Biophys Res Commun 2001; 287: 383-390
  • 16 Liu AC, Tran HG, Zhang EE, Priest AA, Welsh DK, Kay SA. Redundant function of REV-ERBalpha and beta and non-essential role for Bmal1 cycling in transcriptional regulation of intracellular circadian rhythms. PLoS Genet 2008; 4: e1000023
  • 17 Scott EM, Carter AM, Grant PJ. Diabetes and cardiovascular disease: related disorders created by disturbances in the endogenous clock. J Indian Med Assoc 2008; 106: 736-738, 740
  • 18 Scott EM, Carter AM, Grant PJ. Association between polymorphisms in the Clock gene, obesity and the metabolic syndrome in man. Int J Obes 2008; 32: 658-662
  • 19 Young ME, Wilson CR, Razeghi P, Guthrie PH, Taegtmeyer H. Alterations of the circadian clock in the heart by streptozotocin-induced diabetes. J Mol Cell Cardiol 2002; 34: 223-231
  • 20 Lee J, Kim MS, Li R, Liu VY, Fu L, Moore DD, Ma K, Yechoor VK. Loss of Bmal1 leads to uncoupling and impaired glucose-stimulated insulin secretion in beta-cells. Islets 2011; 3: 381-388
  • 21 Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, Ivanova G, Omura C, Mo S, Vitaterna MH, Lopez JP, Philipson LH, Bradfield CA, Crosby SD, JeBailey L, Wang X, Takahashi JS, Bass J. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 2010; 466: 627-631
  • 22 Herichova I, Zeman M, Stebelova K, Ravingerova T. Effect of streptozotocin-induced diabetes on daily expression of per2 and dbp in the heart and liver and melatonin rhythm in the pineal gland of Wistar rat. Mol Cell Biochem 2005; 270: 223-229
  • 23 Kuriyama K, Sasahara K, Kudo T, Shibata S. Daily injection of insulin attenuated impairment of liver circadian clock oscillation in the streptozotocin-treated diabetic mouse. FEBS Lett 2004; 572: 206-210
  • 24 Peschke E, Wolgast S, Bazwinsky I, Ponicke K, Muhlbauer E. Increased melatonin synthesis in pineal glands of rats in streptozotocin induced type 1 diabetes. J Pineal Res 2008; 45: 439-448
  • 25 Peschke E, Hofmann K, Bahr I, Streck S, Albrecht E, Wedekind D, Muhlbauer E. The insulin-melatonin antagonism: studies in the LEW.1AR1-iddm rat (an animal model of human type 1 diabetes mellitus). Diabetologia 2011; 54: 1831-1840
  • 26 Lenzen S, Tiedge M, Elsner M, Lortz S, Weiss H, Jorns A, Kloppel G, Wedekind D, Prokop CM, Hedrich HJ. The LEW.1AR1/Ztm-iddm rat: a new model of spontaneous insulin-dependent diabetes mellitus. Diabetologia 2001; 44: 1189-1196
  • 27 Wang PY. Palmitic acid as an excipient in implants for sustained release of insulin. Biomaterials 1991; 12: 57-62
  • 28 Muhlbauer E, Gross E, Labucay K, Wolgast S, Peschke E. Loss of melatonin signalling and its impact on circadian rhythms in mouse organs regulating blood glucose. Eur J Pharmacol 2009; 606: 61-71
  • 29 Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29: e45
  • 30 Hung MS, Avner P, Rogner UC. Identification of the transcription factor ARNTL2 as a candidate gene for the type 1 diabetes locus Idd6. Hum Mol Genet 2006; 15: 2732-2742
  • 31 Jackson R, Rassi N, Crump T, Haynes B, Eisenbarth GS. The BB diabetic rat. Profound T-cell lymphocytopenia. Diabetes 1981; 30: 887-889
  • 32 Kikutani H, Makino S. The murine autoimmune diabetes model: NOD and related strains. Adv Immunol 1992; 51: 285-322
  • 33 Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 2001; 50: 537-546
  • 34 Rudic RD, McNamara P, Curtis AM, Boston RC, Panda S, Hogenesch JB, Fitzgerald GA. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol 2004; 2: e377
  • 35 Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee-Olson S, Easton A, Jensen DR, Eckel RH, Takahashi JS, Bass J. Obesity and metabolic syndrome in circadian Clock mutant mice. Science 2005; 308: 1043-1045
  • 36 Bostwick J, Nguyen D, Cornelissen G, Halberg F, Hoogerwerf WA. Effects of acute and chronic STZ-induced diabetes on clock gene expression and feeding in the gastrointestinal tract. Mol Cell Biochem 2010; 338: 203-213
  • 37 Oishi K, Kasamatsu M, Ishida N. Gene- and tissue-specific alterations of circadian clock gene expression in streptozotocin-induced diabetic mice under restricted feeding. Biochem Biophys Res Commun 2004; 317: 330-334
  • 38 Motosugi Y, Ando H, Ushijima K, Maekawa T, Ishikawa E, Kumazaki M, Fujimura A. Tissue-dependent alterations of the clock gene expression rhythms in leptin-resistant zucker diabetic Fatty rats. Chronobiol Internat 2011; 28: 968-972
  • 39 Yamajuku D, Inagaki T, Haruma T, Okubo S, Kataoka Y, Kobayashi S, Ikegami K, Laurent T, Kojima T, Noutomi K, Hashimoto S, Oda H. Real-time monitoring in three-dimensional hepatocytes reveals that insulin acts as a synchronizer for liver clock. Sci Rep 2012; 2: 439
  • 40 Ogawa Y, Koike N, Kurosawa G, Soga T, Tomita M, Tei H. Positive autoregulation delays the expression phase of mammalian clock gene Per2. PLoS One 2011; 6: e18663
  • 41 Carvas JM, Vukolic A, Yepuri G, Xiong Y, Popp K, Schmutz I, Chappuis S, Albrecht U, Ming XF, Montani JP, Yang Z. Period2 gene mutant mice show compromised insulin-mediated endothelial nitric oxide release and altered glucose homeostasis. Front Physiol 2012; 3: 337
  • 42 Hirota T, Okano T, Kokame K, Shirotani-Ikejima H, Miyata T, Fukada Y. Glucose down-regulates Per1 and Per2 mRNA levels and induces circadian gene expression in cultured Rat-1 fibroblasts. J Biol Chem 2002; 277: 44244-44251
  • 43 Balsalobre A, Marcacci L, Schibler U. Multiple signaling pathways elicit circadian gene expression in cultured Rat-1 fibroblasts. Curr Biol 2000; 10: 1291-1294
  • 44 Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC, Wong WH, Weitz CJ. Extensive and divergent circadian gene expression in liver and heart. Nature 2002; 417: 78-83
  • 45 Ueda HR, Hayashi S, Chen W, Sano M, Machida M, Shigeyoshi Y, Iino M, Hashimoto S. System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet 2005; 37: 187-192
  • 46 Su W, Xie Z, Guo Z, Duncan MJ, Lutshumba J, Gong MC. Altered clock gene expression and vascular smooth muscle diurnal contractile variations in type 2 diabetic db/db mice. Am J Physiol Heart Circ Physiol 2011; 302: H621-H633
  • 47 Tahara Y, Otsuka M, Fuse Y, Hirao A, Shibata S. Refeeding after fasting elicits insulin-dependent regulation of Per2 and Rev-erbalpha with shifts in the liver clock. J Biol Rhythms 2011; 26: 230-240
  • 48 Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995; 378: 785-789
  • 49 Yin L, Wang J, Klein PS, Lazar MA. Nuclear receptor Rev-erbalpha is a critical lithium-sensitive component of the circadian clock. Science 2006; 311: 1002-1005
  • 50 Tong X, Muchnik M, Chen Z, Patel M, Wu N, Joshi S, Rui L, Lazar MA, Yin L. Transcriptional repressor E4-binding protein 4 (E4BP4) regulates metabolic hormone fibroblast growth factor 21 (FGF21) during circadian cycles and feeding. J Biol Chem 2010; 285: 36401-36409
  • 51 Ohno T, Onishi Y, Ishida N. The negative transcription factor E4BP4 is associated with circadian clock protein PERIOD2. Biochem Biophys Res Commun 2007; 354: 1010-1015
  • 52 Venegas C, Garcia JA, Doerrier C, Volt H, Escames G, Lopez LC, Reiter RJ, Acuna-Castroviejo D. Analysis of the daily changes of melatonin receptors in the rat liver. J Pineal Res 2013; 54: 313-321
  • 53 Yang X, Downes M, Yu RT, Bookout AL, He W, Straume M, Mangelsdorf DJ, Evans RM. Nuclear receptor expression links the circadian clock to metabolism. Cell 2006; 126: 801-810
  • 54 Akashi M, Takumi T. The orphan nuclear receptor RORalpha regulates circadian transcription of the mammalian core-clock Bmal1. Nat Struct Mol Biol 2005; 12: 441-448
  • 55 Solt LA, Kojetin DJ, Burris TP. The REV-ERBs and RORs: molecular links between circadian rhythms and lipid homeostasis. Future Med Chem 2011; 3: 623-638
  • 56 Yang G, Jia Z, Aoyagi T, McClain D, Mortensen RM, Yang T. Systemic PPARgamma Deletion Impairs Circadian Rhythms of Behavior and Metabolism. PLoS One 2012; 7: e38117
  • 57 Wang N, Yang G, Jia Z, Zhang H, Aoyagi T, Soodvilai S, Symons JD, Schnermann JB, Gonzalez FJ, Litwin SE, Yang T. Vascular PPARgamma controls circadian variation in blood pressure and heart rate through Bmal1. Cell Metab 2008; 8: 482-491
  • 58 Takahashi S, Inoue I, Nakajima Y, Seo M, Nakano T, Yang F, Kumagai M, Komoda T, Awata T, Ikeda M, Katayama S. A promoter in the novel exon of hPPARgamma directs the circadian expression of PPARgamma. J Atheroscler Thromb 2010; 17: 73-83
  • 59 Xue J, Ding W, Liu Y. Anti-diabetic effects of emodin involved in the activation of PPARgamma on high-fat diet-fed and low dose of streptozotocin-induced diabetic mice. Fitoterapia 2010; 81: 173-177
  • 60 Mulligan JD, Stewart AM, Saupe KW. Downregulation of plasma insulin levels and hepatic PPARgamma expression during the first week of caloric restriction in mice. Exp Gerontol 2008; 43: 146-153
  • 61 Iynedjian PB, Gjinovci A, Renold AE. Stimulation by insulin of glucokinase gene transcription in liver of diabetic rats. J Biol Chem 1988; 263: 740-744
  • 62 Sindhu RK, Koo JR, Sindhu KK, Ehdaie A, Farmand F, Roberts CK. Differential regulation of hepatic cytochrome P450 monooxygenases in streptozotocin-induced diabetic rats. Free Radic Res 2006; 40: 921-928
  • 63 Ishida H, Yamashita C, Kuruta Y, Yoshida Y, Noshiro M. Insulin is a dominant suppressor of sterol 12 alpha-hydroxylase P450 (CYP8B) expression in rat liver: possible role of insulin in circadian rhythm of CYP8B. J Biochem 2000; 127: 57-64
  • 64 Malaisse WJ, Malaisse-Lagae F, Sener A, Pipeleers DG. Determinants of the selective toxicity of alloxan to the pancreatic B cell. Proc Natl Acad Sci USA 1982; 79: 927-930
  • 65 Kang HS, Angers M, Beak JY, Wu X, Gimble JM, Wada T, Xie W, Collins JB, Grissom SF, Jetten AM. Gene expression profiling reveals a regulatory role for ROR alpha and ROR gamma in phase I and phase II metabolism. Physiol Genom 2007; 31: 281-294
  • 66 Le Martelot G, Claudel T, Gatfield D, Schaad O, Kornmann B, Sasso GL, Moschetta A, Schibler U. REV-ERBalpha participates in circadian SREBP signaling and bile acid homeostasis. PLoS Biol 2009; 7: e1000181