Zentralbl Chir 2015; 140(03): 294-303
DOI: 10.1055/s-0032-1328561
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Bedeutung mesenchymaler Stammzellen in der Viszeralmedizin

Significance of Mesenchymal Stem Cells in Gastrointestinal Disorders
S. Gamba
1   Chirurgische Klinik und Poliklinik, Campus Großhadern, Klinikum der Universität München, Deutschland
,
Y. Zhao
1   Chirurgische Klinik und Poliklinik, Campus Großhadern, Klinikum der Universität München, Deutschland
,
L. Zhao
1   Chirurgische Klinik und Poliklinik, Campus Großhadern, Klinikum der Universität München, Deutschland
,
Y. Wang
1   Chirurgische Klinik und Poliklinik, Campus Großhadern, Klinikum der Universität München, Deutschland
,
B. Schwarz
1   Chirurgische Klinik und Poliklinik, Campus Großhadern, Klinikum der Universität München, Deutschland
,
S. Primo
1   Chirurgische Klinik und Poliklinik, Campus Großhadern, Klinikum der Universität München, Deutschland
,
K.-W. Jauch
1   Chirurgische Klinik und Poliklinik, Campus Großhadern, Klinikum der Universität München, Deutschland
,
P. J. Nelson
2   Medizinische Klinik und Poliklinik IV, Nephrologisches Zentrum und Arbeitsgruppe Klinische Biochemie, Campus Innenstadt, Klinikum der Universität München, Deutschland
,
D. P. Modest
3   Medizinische Klinik und Poliklinik III, Campus Großhadern, Klinikum der Universität München, Deutschland
,
H. Nieß
1   Chirurgische Klinik und Poliklinik, Campus Großhadern, Klinikum der Universität München, Deutschland
,
C. Bruns
1   Chirurgische Klinik und Poliklinik, Campus Großhadern, Klinikum der Universität München, Deutschland
› Author Affiliations
Further Information

Publication History

Publication Date:
08 July 2013 (online)

Zusammenfassung

In dieser Übersichtsarbeit wird der aktuelle Stand der experimentellen und klinischen Anwendung mesenchymaler Stammzellen (MSCs) in der Viszeralmedizin dargestellt. Neben dem Einsatz im regenerativen und immunologischen Kontext weckt diese Zellpopulation ebenso große Erwartungen im Bereich der Tumortherapie. Während in klinischen Studien zu chronisch-entzündlichen Darmerkrankungen und degenerativen Leberschäden bereits ein günstiger Effekt mesenchymaler Stammzellen demonstriert werden konnte, bildet die recht gegensätzliche Studienlage zu gastrointestinalen Tumoren das Potenzial anti-neoplastischer Therapieansätze durch MSCs noch nicht zufriedenstellend ab. Mesenchymale Stammzellen verfügen über ein breites Differenzierungspotenzial und sind in der Lage, über para- und endokrine Mechanismen den Vorgang der Wundheilung zu beeinflussen und immunologische Prozesse zu regulieren. Weiterhin bieten sie nach Transfektion die Möglichkeit einer zellbasierten Gentherapie. Zusammen mit der Fähigkeit zur tumorgerichteten Migration ergibt sich damit die Option einer gezielten Behandlung solider Tumoren mittels lokal exprimierter Substanzen, die zur Apoptose von Tumorzellen führen kann. In Hinblick auf die Vielfalt therapeutischer Optionen wird in dieser Übersichtsarbeit die Distribution exogen zugeführter MSCs im Organismus erläutert, die Möglichkeit einer Visualisierung der Verteilungsdynamik diskutiert und die Bedeutung unterschiedlicher Applikationsformen geklärt. Abschließend werden die Risiken mesenchymaler Stammzellen und damit die derzeitige Zurückhaltung der breiten klinischen Anwendung dargelegt.

Abstract

In this review we summarise the recent developments regarding the experimental and clinical use of mesenchymal stem cells (MSCs), focusing mainly on the treatment of gastrointestinal disorders. Next to their relevance in the field of regenerative medicine and immunology, this population of cells has also raised great expectations for possible applications in cancer therapy. While clinical trials were able to demonstrate the efficacy of MSCs in cases of inflammatory bowel disease and degenerative conditions of the liver, controversial results have been presented regarding their antineoplastic potential in gastrointestinal tumours. MSCs can differentiate into a large variety of specialised cells. They are capable of regulating both wound healing and immune responses through paracrine and endocrine signalling. Moreover, MSCs can be transfected with a great number of different therapeutic genes – considering their ability to selectively migrate towards neoplastic tissues, this feature allows for targeted therapy of solid tumours. Transfected genes can be designed so that they are expressed exclusively in the vicinity of the tumour, eventually triggering apoptosis in cancer cells. In this review, we demonstrate the natural distribution of exogenously applied MSCs in the host. Furthermore, we mention various methods of tracking MSCs in vivo and different parameters of administration that tend to influence therapeutic outcome (e.g., origin of MSCs, mode of application, or the potency of transfected genes). Finally, this review points out the hazards of MSC therapy, emphasising the risks related to their widespread clinical use.

 
  • Literaturangaben

  • 1 Shi C. Recent progress toward understanding the physiological function of bone marrow mesenchymal stem cells. Immunology 2012; 136: 133-138
  • 2 Pittenger MF, Mackay AM, Beck SC et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143-147
  • 3 Dominici M, Le Blanc K, Mueller I et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8: 315-317
  • 4 Keating A. Mesenchymal stromal cells: new directions. Cell Stem Cell 2012; 10: 709-716
  • 5 Skalnikova H, Motlik J, Gadher SJ et al. Mapping of the secretome of primary isolates of mammalian cells, stem cells and derived cell lines. Proteomics 2011; 11: 691-708
  • 6 Plumas J, Chaperot L, Richard MJ et al. Mesenchymal stem cells induce apoptosis of activated T cells. Leukemia 2005; 19: 1597-1604
  • 7 Li H, Guo Z, Jiang X et al. Mesenchymal stem cells alter migratory property of T and dendritic cells to delay the development of murine lethal acute graft-versus-host disease. Stem Cells 2008; 26: 2531-2541
  • 8 Ghannam S, Pene J, Torcy-Moquet G et al. Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J Immunol 2010; 185: 302-312
  • 9 Jiang XX, Zhang Y, Liu B et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 2005; 105: 4120-4126
  • 10 Zhang Z, Lin H, Shi M et al. Human umbilical cord mesenchymal stem cells improve liver function and ascites in decompensated liver cirrhosis patients. J Gastroenterol Hepatol 2012; 27 (Suppl. 02) 112-120
  • 11 Wei J, Blum S, Unger M et al. Embryonic endothelial progenitor cells armed with a suicide gene target hypoxic lung metastases after intravenous delivery. Cancer Cell 2004; 5: 477-488
  • 12 Kidd S, Spaeth E, Klopp A et al. The (in) auspicious role of mesenchymal stromal cells in cancer: be it friend or foe. Cytotherapy 2008; 10: 657-667
  • 13 McIntosh K, Zvonic S, Garrett S et al. The immunogenicity of human adipose-derived cells: temporal changes in vitro. Stem Cells 2006; 24: 1246-1253
  • 14 Liotta F, Angeli R, Cosmi L et al. Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing Notch signaling. Stem Cells 2008; 26: 279-289
  • 15 Waterman RS, Tomchuck SL, Henkle SL et al. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype. PLoS One 2010; 5: e10088
  • 16 Liechty KW, MacKenzie TC, Shaaban AF et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 2000; 6: 1282-1286
  • 17 Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 1986; 315: 1650-1659
  • 18 Kucerova L, Altanerova V, Matuskova M et al. Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Res 2007; 67: 6304-6313
  • 19 Beckermann BM, Kallifatidis G, Groth A et al. VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. Br J Cancer 2008; 99: 622-631
  • 20 Nicol S. Stem cell therapy in vascular medicine. Zentralbl Chir 2011; 136: 399-403
  • 21 Ji R, Zhang N, You N et al. The differentiation of MSCs into functional hepatocyte-like cells in a liver biomatrix scaffold and their transplantation into liver-fibrotic mice. Biomaterials 2012; 33: 8995-9008
  • 22 Kharaziha P, Hellstrom PM, Noorinayer B et al. Improvement of liver function in liver cirrhosis patients after autologous mesenchymal stem cell injection: a phase I–II clinical trial. Eur J Gastroenterol Hepatol 2009; 21: 1199-1205
  • 23 Knoefel WT, Alexander A, Tustas RY et al. Stem Cell-Induced Liver Regeneration. Zentralbl Chir 2013; 138: 166-172
  • 24 Krampera M. Mesenchymal stromal cell ‘licensing’: a multistep process. Leukemia 2011; 25: 1408-1414
  • 25 Duijvestein M, Vos AC, Roelofs H et al. Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohnʼs disease: results of a phase I study. Gut 2010; 59: 1662-1669
  • 26 Garcia-Olmo D, Herreros D, Pascual I et al. Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase II clinical trial. Dis Colon Rectum 2009; 52: 79-86
  • 27 Herreros MD, Garcia-Arranz M, Guadalajara H et al. Autologous expanded adipose-derived stem cells for the treatment of complex cryptoglandular perianal fistulas: a phase III randomized clinical trial (FATT 1: fistula Advanced Therapy Trial 1) and long-term evaluation. Dis Colon Rectum 2012; 55: 762-772
  • 28 He XW, He XS, Lian L et al. Systemic infusion of bone marrow-derived mesenchymal stem cells for treatment of experimental colitis in mice. Dig Dis Sci 2012; 57: 3136-3144
  • 29 Ciccocioppo R, Russo ML, Bernardo ME et al. Mesenchymal stromal cell infusions as rescue therapy for corticosteroid-refractory adult autoimmune enteropathy. Mayo Clin Proc 2012; 87: 909-914
  • 30 Zheng YB, Zhang XH, Huang ZL et al. Amniotic-fluid-derived mesenchymal stem cells overexpressing interleukin-1 receptor antagonist improve fulminant hepatic failure. PLoS One 2012; 7: e41392
  • 31 Xia X, Chen W, Ma T et al. Mesenchymal stem cells administered after liver transplantation prevent acute graft-versus-host disease in rats. Liver Transpl 2012; 18: 696-706
  • 32 de la Portilla F, Alba F, Garcia-Olmo D et al. Expanded allogeneic adipose-derived stem cells (eASCs) for the treatment of complex perianal fistula in Crohnʼs disease: results from a multicenter phase I/II a clinical trial. Int J Colorectal Dis 2013; 28: 313-323
  • 33 Spellman JE, Gollnick SO, Zhang PJ et al. Cytokine production by human soft tissue sarcomas: implications for immunosuppression within the tumour bed. Surg Oncol 1996; 5: 237-244
  • 34 Tada M, Sawamura Y, Sakuma S et al. Cellular and cytokine responses of the human central nervous system to intracranial administration of tumor necrosis factor alpha for the treatment of malignant gliomas. Cancer Immunol Immunother 1993; 36: 251-259
  • 35 Buchwalder PA, Buclin T, Trinchard I et al. Pharmacokinetics and pharmacodynamics of IFN-beta 1a in healthy volunteers. J Interferon Cytokine Res 2000; 20: 857-866
  • 36 Ashkenazi A, Pai RC, Fong S et al. Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 1999; 104: 155-162
  • 37 Studeny M, Marini FC, Champlin RE et al. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 2002; 62: 3603-3608
  • 38 Studeny M, Marini FC, Dembinski JL et al. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 2004; 96: 1593-1603
  • 39 Loebinger MR, Eddaoudi A, Davies D et al. Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res 2009; 69: 4134-4142
  • 40 Grisendi G, Bussolari R, Cafarelli L et al. Adipose-derived mesenchymal stem cells as stable source of tumor necrosis factor-related apoptosis-inducing ligand delivery for cancer therapy. Cancer Res 2010; 70: 3718-3729
  • 41 Zolochevska O, Yu G, Gimble JM et al. Pigment epithelial-derived factor and melanoma differentiation associated gene-7 cytokine gene therapies delivered by adipose-derived stromal/mesenchymal stem cells are effective in reducing prostate cancer cell growth. Stem Cells Dev 2012; 21: 1112-1123
  • 42 Eliopoulos N, Francois M, Boivin MN et al. Neo-organoid of marrow mesenchymal stromal cells secreting interleukin-12 for breast cancer therapy. Cancer Res 2008; 68: 4810-4818
  • 43 Xin H, Sun R, Kanehira M et al. Intratracheal delivery of CX3CL1-expressing mesenchymal stem cells to multiple lung tumors. Mol Med 2009; 15: 321-327
  • 44 Hu M, Yang JL, Teng H et al. Anti-angiogenesis therapy based on the bone marrow-derived stromal cells genetically engineered to express sFlt-1 in mouse tumor model. BMC Cancer 2008; 8: 306
  • 45 Xiang J, Tang J, Song C et al. Mesenchymal stem cells as a gene therapy carrier for treatment of fibrosarcoma. Cytotherapy 2009; 11: 516-526
  • 46 Uchibori R, Okada T, Ito T et al. Retroviral vector-producing mesenchymal stem cells for targeted suicide cancer gene therapy. J Gene Med 2009; 11: 373-381
  • 47 Miletic H, Fischer Y, Litwak S et al. Bystander killing of malignant glioma by bone marrow-derived tumor-infiltrating progenitor cells expressing a suicide gene. Mol Ther 2007; 15: 1373-1381
  • 48 Gao Z, Zhang L, Hu J et al. Mesenchymal stem cells: a potential targeted-delivery vehicle for anti-cancer drug, loaded nanoparticles. Nanomedicine 2013; 9: 174-184
  • 49 Kyriakou CA, Yong KL, Benjamin R et al. Human mesenchymal stem cells (hMSCs) expressing truncated soluble vascular endothelial growth factor receptor (tsFlk-1) following lentiviral-mediated gene transfer inhibit growth of Burkittʼs lymphoma in a murine model. J Gene Med 2006; 8: 253-264
  • 50 Sia KC, Chong WK, Ho IA et al. Hybrid herpes simplex virus/Epstein-Barr virus amplicon viral vectors confer enhanced transgene expression in primary human tumors and human bone marrow-derived mesenchymal stem cells. J Gene Med 2010; 12: 848-858
  • 51 Grabundzija I, Irgang M, Mates L et al. Comparative analysis of transposable element vector systems in human cells. Mol Ther 2010; 18: 1200-1209
  • 52 Nystedt J, Anderson H, Tikkanen J et al. Cell surface structures influence lung clearance rate of systemically infused mesenchymal stromal cells. Stem Cells 2013; 31: 317-326
  • 53 Von Luttichau I, Notohamiprodjo M, Wechselberger A et al. Human adult CD34- progenitor cells functionally express the chemokine receptors CCR1, CCR4, CCR7, CXCR5, and CCR10 but not CXCR4. Stem Cells Dev 2005; 14: 329-336
  • 54 Honczarenko M, Le Y, Swierkowski M et al. Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells 2006; 24: 1030-1041
  • 55 Azenshtein E, Luboshits G, Shina S et al. The CC chemokine RANTES in breast carcinoma progression: regulation of expression and potential mechanisms of promalignant activity. Cancer Res 2002; 62: 1093-1102
  • 56 Mishra PJ, Humeniuk R, Medina DJ et al. Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res 2008; 68: 4331-4339
  • 57 Zischek C, Niess H, Ischenko I et al. Targeting tumor stroma using engineered mesenchymal stem cells reduces the growth of pancreatic carcinoma. Ann Surg 2009; 250: 747-753
  • 58 Uchibori R, Tsukahara T, Mizuguchi H et al. NF-kappaB activity regulates mesenchymal stem cell accumulation at tumor sites. Cancer Res 2013; 73: 364-372
  • 59 Gao Y, Yao A, Zhang W et al. Human mesenchymal stem cells overexpressing pigment epithelium-derived factor inhibit hepatocellular carcinoma in nude mice. Oncogene 2010; 29: 2784-2794
  • 60 Francois S, Bensidhoum M, Mouiseddine M et al. Local irradiation not only induces homing of human mesenchymal stem cells at exposed sites but promotes their widespread engraftment to multiple organs: a study of their quantitative distribution after irradiation damage. Stem Cells 2006; 24: 1020-1029
  • 61 Friedman EJ. Immune modulation by ionizing radiation and its implications for cancer immunotherapy. Curr Pharm Des 2002; 8: 1765-1780
  • 62 Klopp AH, Spaeth EL, Dembinski JL et al. Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Res 2007; 67: 11687-11695
  • 63 Cheng Z, Ou L, Zhou X et al. Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance. Mol Ther 2008; 16: 571-579
  • 64 Xinaris C, Morigi M, Benedetti V et al. A novel strategy to enhance mesenchymal stem cell migration capacity and promote tissue repair in an injury specific fashion. Cell Transplant 2013; 22: 423-436
  • 65 Knoop K, Kolokythas M, Klutz K et al. Image-guided, tumor stroma-targeted 131I therapy of hepatocellular cancer after systemic mesenchymal stem cell-mediated NIS gene delivery. Mol Ther 2011; 19: 1704-1713
  • 66 Perin EC, Tian M, Marini 3rd FC et al. Imaging long-term fate of intramyocardially implanted mesenchymal stem cells in a porcine myocardial infarction model. PLoS One 2011; 6: e22949
  • 67 Niess H, Bao Q, Conrad C et al. Selective targeting of genetically engineered mesenchymal stem cells to tumor stroma microenvironments using tissue-specific suicide gene expression suppresses growth of hepatocellular carcinoma. Ann Surg 2011; 254: 767-774 discussion 774–775
  • 68 Houghton J, Stoicov C, Nomura S et al. Gastric cancer originating from bone marrow-derived cells. Science 2004; 306: 1568-1571
  • 69 Tolar J, Nauta AJ, Osborn MJ et al. Sarcoma derived from cultured mesenchymal stem cells. Stem Cells 2007; 25: 371-379
  • 70 Miura M, Miura Y, Padilla-Nash HM et al. Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells 2006; 24: 1095-1103
  • 71 Lalu MM, McIntyre L, Pugliese C et al. Safety of cell therapy with mesenchymal stromal cells (Safecell): a systematic review and meta-analysis of clinical trials. PLoS One 2012; 7: e47559
  • 72 Karnoub AE, Dash AB, Vo AP et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007; 449: 557-563
  • 73 Matuskova M, Hlubinova K, Pastorakova A et al. HSV-tk expressing mesenchymal stem cells exert bystander effect on human glioblastoma cells. Cancer Lett 2010; 290: 58-67
  • 74 Ryu CH, Park KY, Kim SM et al. Valproic acid enhances anti-tumor effect of mesenchymal stem cell mediated HSV-TK gene therapy in intracranial glioma. Biochem Biophys Res Commun 2012; 421: 585-590
  • 75 Conrad C, Husemann Y, Niess H et al. Linking transgene expression of engineered mesenchymal stem cells and angiopoietin-1-induced differentiation to target cancer angiogenesis. Ann Surg 2011; 253: 566-571
  • 76 Altaner C. Prodrug cancer gene therapy. Cancer Lett 2008; 270: 191-201
  • 77 Khan Z, Knecht W, Willer M et al. Plant thymidine kinase 1: a novel efficient suicide gene for malignant glioma therapy. Neuro Oncol 2010; 12: 549-558
  • 78 Ram Z, Culver KW, Oshiro EM et al. Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells. Nat Med 1997; 3: 1354-1361
  • 79 Lee PH, Kim JW, Bang OY et al. Autologous mesenchymal stem cell therapy delays the progression of neurological deficits in patients with multiple system atrophy. Clin Pharmacol Ther 2008; 83: 723-730
  • 80 Reagan MR, Seib FP, McMillin DW et al. Stem cell implants for cancer therapy: TRAIL-expressing mesenchymal stem cells target cancer cells in situ. J Breast Cancer 2012; 15: 273-282
  • 81 Ra JC, Shin IS, Kim SH et al. Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans. Stem Cells Dev 2011; 20: 1297-1308
  • 82 Sun CK, Chang CL, Lin YC et al. Systemic administration of autologous adipose-derived mesenchymal stem cells alleviates hepatic ischemia-reperfusion injury in rats. Crit Care Med 2012; 40: 1279-1290
  • 83 Qiao L, Xu Z, Zhao T et al. Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res 2008; 18: 500-507
  • 84 Qiao L, Zhao TJ, Wang FZ et al. NF-kappaB downregulation may be involved the depression of tumor cell proliferation mediated by human mesenchymal stem cells. Acta Pharmacol Sin 2008; 29: 333-340
  • 85 Jing Y, Han Z, Liu Y et al. Mesenchymal stem cells in inflammation microenvironment accelerates hepatocellular carcinoma metastasis by inducing epithelial-mesenchymal transition. PLoS One 2012; 7: e43272
  • 86 Zhao W, Ren G, Zhang L et al. Efficacy of mesenchymal stem cells derived from human adipose tissue in inhibition of hepatocellular carcinoma cells in vitro. Cancer Biother Radiopharm 2012; 27: 606-613
  • 87 Abdel aziz MT, El Asmar MF, Atta HM et al. Efficacy of mesenchymal stem cells in suppression of hepatocarcinorigenesis in rats: possible role of Wnt signaling. J Exp Clin Cancer Res 2011; 30: 49
  • 88 Huang WH, Chang MC, Tsai KS et al. Mesenchymal stem cells promote growth and angiogenesis of tumors in mice. Oncogene 2012; Oct 22 [Epub ahead of print] DOI: 10.1038/onc.2012.458.
  • 89 Li GC, Ye QH, Xue YH et al. Human mesenchymal stem cells inhibit metastasis of a hepatocellular carcinoma model using the MHCC97-H cell line. Cancer Sci 2010; 101: 2546-2553
  • 90 Tian LL, Yue W, Zhu F et al. Human mesenchymal stem cells play a dual role on tumor cell growth in vitro and in vivo. J Cell Physiol 2011; 226: 1860-1867
  • 91 You MH, Kim WJ, Shim W et al. Cytosine deaminase-producing human mesenchymal stem cells mediate an antitumor effect in a mouse xenograft model. J Gastroenterol Hepatol 2009; 24: 1393-1400
  • 92 Wang SS, Asfaha S, Okumura T et al. Fibroblastic colony-forming unit bone marrow cells delay progression to gastric dysplasia in a helicobacter model of gastric tumorigenesis. Stem Cells 2009; 27: 2301-2311
  • 93 Zhu X, Su D, Xuan S et al. Gene therapy of gastric cancer using LIGHT-secreting human umbilical cord blood-derived mesenchymal stem cells. Gastric Cancer 2013; 16: 155-166
  • 94 Kidd S, Caldwell L, Dietrich M et al. Mesenchymal stromal cells alone or expressing interferon-beta suppress pancreatic tumors in vivo, an effect countered by anti-inflammatory treatment. Cytotherapy 2010; 12: 615-625
  • 95 Kabashima-Niibe A, Higuchi H, Takaishi H et al. Mesenchymal stem cells regulate epithelial-to-mesenchymal transition and tumor progression of pancreatic cancer cells. Cancer Sci 2013; 104: 157-164
  • 96 Shinagawa K, Kitadai Y, Tanaka M et al. Mesenchymal stem cells enhance growth and metastasis of colon cancer. Int J Cancer 2010; 127: 2323-2333
  • 97 De Boeck A, Pauwels P, Hensen K et al. Bone marrow-derived mesenchymal stem cells promote colorectal cancer progression through paracrine neuregulin 1/HER3 signalling. Gut 2013; 62: 550-560
  • 98 Chen XC, Wang R, Zhao X et al. Prophylaxis against carcinogenesis in three kinds of unestablished tumor models via IL12-gene-engineered MSCs. Carcinogenesis 2006; 27: 2434-2441
  • 99 Wolf D, Rumpold H, Koeck R et al. Re: Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 2005; 97: 540-541 author reply 541–542
  • 100 Cousin B, Ravet E, Poglio S et al. Adult stromal cells derived from human adipose tissue provoke pancreatic cancer cell death both in vitro and in vivo. PLoS One 2009; 4: e6278