Zentralbl Chir 2015; 140(04): 397-406
DOI: 10.1055/s-0032-1328101
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Was muss der (Viszeral-)Chirurg von experimenteller Medizin wissen (?) – translationale Forschung in der (Viszeral-)Chirurgie[*]

What Must the (Abdominal) Surgeon Know about Experimental Medicine (?) – Translational Research in General (Abdominal) Surgery(Viszeral-)Chirurg & experimentelle Medizin
T. Wex
1   Klinik für Gastroenterologie, Hepatologie & Infektiologie, Universitätsklinikum Magdeburg A. ö. R., Magdeburg, Deutschland
,
D. Kuester
2   Institut für Pathologie, Universitätsklinikum Magdeburg A. ö. R., Magdeburg, Deutschland
,
F. Meyer
3   Klinik für Allgemein-, Viszeral- & Gefäßchirurgie, Universitätsklinikum Magdeburg A. ö. R., Magdeburg, Deutschland
› Author Affiliations
Further Information

Publication History

Publication Date:
21 May 2013 (online)

Zusammenfassung

Die experimentelle (Innere) Medizin hat in den letzten Jahrzehnten große Veränderungen erfahren. Insbesondere die Einführung molekularer Methoden und Techniken, In-vitro-Modelle, „knock-out“-/transgene Tiere und eine hocheffiziente Analytik biologischer Proben haben zu einem besseren Verständnis der Pathogenese geführt. Neben dem Erkenntnisgewinn haben die Ergebnisse teilweise auch Eingang in den klinischen Alltag gefunden. Beispiele sind hierfür die Analyse von molekularen Biomarkern für die Diagnose und das therapiebegleitende „Monitoring“ sowie die Etablierung zielgerichteter Therapien („targeted therapies“) in der Behandlung von Tumorerkrankungen und chronischen Entzündungen. Der hohe Grad der Spezialisierung in den einzelnen Fachdisziplinen sowohl in der Medizin als auch in der Biologie erfordert heute eine Vernetzung und Kooperation von Spezialisten, ohne die die effiziente Bearbeitung translationaler Themen in der Medizin gegenwärtig und in Zukunft unmöglich ist. Der nachfolgende Beitrag soll dem angehenden Arzt, insbesondere Viszeralchirurgen, Denkansätze und Möglichkeiten aufzeigen, die für eine fachübergreifende Kooperation in klinisch-translationalen Projekten bedeutsam sind.

Abstract

Experimental medicine has evolved tremendously in the last few years. In particular, the introduction of novel techniques, in-vitro models, knock-out/transgenic animals and high-through put analytical methodologies have resulted in a deeper understanding of cellular pathophysiology and diseases. The daily clinical management has benefited by the introduction of biomarkers and targeted therapies. This development has been accompanied by increasing specialisation across all fields of research and medicine. Therefore, clinical-translational research requires a team of competent partners nowadays. The visceral surgeon can contribute significantly to these projects. The present review highlights several aspects of translational research and put chances and potential pitfalls into perspective in context with the work of the visceral surgeon.

* Prof. Dr. Dr. H. Lippert gewidmet


 
  • Literatur

  • 1 Damia G, Broggini M, Marsoni S et al. New omics information for clinical trial utility in the primary setting. J Natl Cancer Inst Monogr 2011; 2011: 128-133
  • 2 Venter JC, Adams MD, Myers EW et al. The sequence of the human genome. Science 2001; 291: 1304-1351
  • 3 Ross JS, Cronin M. Whole cancer genome sequencing by next-generation methods. Am J Clin Pathol 2011; 136: 527-539
  • 4 Wong KM, Hudson TJ, McPherson JD. Unraveling the genetics of cancer: genome sequencing and beyond. Annu Rev Genomics Hum Genet 2011; 12: 407-430
  • 5 Pareek CS, Smoczynski R, Tretyn A. Sequencing technologies and genome sequencing. J Appl Genet 2011; 52: 413-435
  • 6 Dermitzakis ET. Cellular genomics for complex traits. Nat Rev Genet 2012; 13: 215-220
  • 7 Chandonia JM, Brenner SE. The impact of structural genomics: expectations and outcomes. Science 2006; 311: 347-351
  • 8 Chruszcz M, Domagalski M, Osinski T et al. Unmet challenges of structural genomics. Curr Opin Struct Biol 2010; 20: 587-597
  • 9 Shi D, Wang S, Gu D et al. The PSCA polymorphisms derived from genome-wide association study are associated with risk of gastric cancer: a meta-analysis. J Cancer Res Clin Oncol 2012; Apr 6 [Epub ahead of print]
  • 10 Sjödin P, Jakobsson M. Population genetic nature of copy number variation. Methods Mol Biol 2012; 838: 209-223
  • 11 Vilar E, Gruber SB. Microsatellite instability in colorectal cancer – the stable evidence. Nat Rev Clin Oncol 2010; 7: 153-162
  • 12 Yasui W, Oue N, Sentani K et al. Transcriptome dissection of gastric cancer: identification of novel diagnostic and therapeutic targets from pathology specimens. Pathol Int 2009; 59: 121-136
  • 13 Baine MJ, Chakraborty S, Smith LM et al. Transcriptional profiling of peripheral blood mononuclear cells in pancreatic cancer patients identifies novel genes with potential diagnostic utility. PLoS One 2011; 6: e17014
  • 14 Gusev Y, Brackett DJ. MicroRNA expression profiling in cancer from a bioinformatics prospective. Expert Rev Mol Diagn 2007; 7: 787-792
  • 15 Herrmann K, Walch A, Balluff B et al. Proteomic and metabolic prediction of response to therapy in gastrointestinal cancers. Nat Clin Pract Gastroenterol Hepatol 2009; 6: 170-183
  • 16 Hanash SM, Pitteri SJ, Faca VM. Mining the plasma proteome for cancer biomarkers. Nature 2008; 452: 571-579
  • 17 Paulo JA, Lee LS, Wu B et al. Mass spectrometry-based proteomics of endoscopically collected pancreatic fluid in chronic pancreatitis research. Proteomics Clin Appl 2011; 5: 109-120
  • 18 Liu Z, Ma Y, Yang J, Qin H. Upregulated and downregulated proteins in hepatocellular carcinoma: a systematic review of proteomic profiling studies. OMICS 2011; 15: 61-71
  • 19 Jones PA, Baylin SB. The epigenomics of cancer. Cell 2007; 128: 683-692
  • 20 Jordà M, Peinado MA. Methods for DNA methylation analysis and applications in colon cancer. Mutat Res 2010; 693: 84-93
  • 21 Kim MS, Lee J, Sidransky D. DNA methylation markers in colorectal cancer. Cancer Metastasis Rev 2010; 29: 181-206
  • 22 Andersen JB, Factor VM, Marquardt JU et al. An integrated genomic and epigenomic approach predicts therapeutic response to zebularine in human liver cancer. Sci Transl Med 2010; 2: 54ra77
  • 23 Davis VW, Bathe OF, Schiller DE et al. Metabolomics and surgical oncology: Potential role for small molecule biomarkers. J Surg Oncol 2011; 103: 451-459
  • 24 Jung HR, Sylvänne T, Koistinen KM et al. High throughput quantitative molecular lipidomics. Biochim Biophys Acta 2011; 1811: 925-934
  • 25 Bictash M, Ebbels TM, Chan Q et al. Opening up the “Black Box”: metabolic phenotyping and metabolome-wide association studies in epidemiology. J Clin Epidemiol 2010; 63: 970-979
  • 26 Narimatsu H, Sawaki H, Kuno A et al. A strategy for discovery of cancer glyco-biomarkers in serum using newly developed technologies for glycoproteomics. FEBS J 2010; 277: 95-105
  • 27 Goldsmith P, Fenton H, Morris-Stiff G et al. Metabonomics: a useful tool for the future surgeon. J Surg Res 2010; 160: 122-132
  • 28 Villanueva A, Chiang DY, Newell P et al. Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology 2008; 135: 1972-1983
  • 29 Wörns MA, Schuchmann M, Düber C et al. Sunitinib in patients with advanced hepatocellular carcinoma after progression under sorafenib treatment. Oncology 2010; 79: 85-92
  • 30 Malfertheiner P, Schultze V, Rosenkranz B et al. Safety and immunogenicity of an intramuscular Helicobacter pylori vaccine in noninfected volunteers: a phase I study. Gastroenterology 2008; 135: 787-795
  • 31 http://www.soramic.de (Aufrufdatum: 10.07.2012)
  • 32 Pech O, Ell C. Endoscopic therapy of Barrettʼs esophagus. Curr Opin Gastroenterol 2009; 25: 405-411
  • 33 Weber T, Link KH. Multimodal therapy for colon cancer: state of the art. Zentralbl Chir 2011; 136: 325-333
  • 34 Schiessling S, Diener MK, Post S et al. Clinical trials in surgery – health care research of the future?. Zentralbl Chir 2011; 136: 87-89
  • 35 Ebert MP, Krüger S, Fogeron ML et al. Overexpression of cathepsin B in gastric cancer identified by proteome analysis. Proteomics 2005; 5: 1693-1704
  • 36 Maeda K, Hazama S, Tokuno K et al. Impact of chemotherapy for colorectal cancer on regulatory T-cells and tumor immunity. Anticancer Res 2011; 31: 4569-4574
  • 37 Kandulski A, Wex T, Mönkemüller K et al. Proteinase-activated receptor-2 in the pathogenesis of gastroesophageal reflux disease. Am J Gastroenterol 2010; 105: 1934-1943
  • 38 Lim DM, Wang ML. Toll-like receptor 3 signaling enables human esophageal epithelial cells to sense endogenous danger signals released by necrotic cells. Am J Physiol Gastrointest Liver Physiol 2011; 301: G91-G99
  • 39 Yoshida N, Katada K, Handa O et al. Interleukin-8 production via protease-activated receptor 2 in human esophageal epithelial cells. Int J Mol Med 2007; 19: 335-340
  • 40 Weiss G, Tammer I, Wolff S. Antibiotic resistance: development in surgical intensive care. Zentralbl Chir 2011; 136: 143-151
  • 41 Lodes U, Lippert H, Meyer F. Molecular biological sepsis diagnostic using multiplex PCR in surgical intensive care as suitable alternative to conventional microbial culture – a representative overview. Zentralbl Chir 2011; 136: 135-142
  • 42 Venerito M, Treiber G, Wex T et al. Effects of low-dose aspirin on gastric erosions, cyclooxygenase expression and mucosal prostaglandin-E2 do not depend on Helicobacter pylori infection. Aliment Pharmacol Ther 2006; 23: 1225-1233
  • 43 Hu Y, Xu XB, Chen SY et al. Laryngoscopy findings and histological results in a rabbit gastroesophageal reflux model. Eur Arch Otorhinolaryngol 2012; 269: 1939-1944
  • 44 Farré R, van Malenstein H, De Vos R et al. Short exposure of oesophageal mucosa to bile acids, both in acidic and weakly acidic conditions, can impair mucosal integrity and provoke dilated intercellular spaces. Gut 2008; 57: 1366-1374
  • 45 Hao J, Liu B, Yang CS et al. Gastroesophageal reflux leads to esophageal cancer in a surgical model with mice. BMC Gastroenterol 2009; 9: 59
  • 46 Yurtsever AS, Pektas M, Ozkur M et al. Proton pump inhibitors omeprazole, lansoprazole and pantoprazole induce relaxation in the rat lower oesophageal sphincter. J Pharm Pharmacol 2011; 63: 1295-1300
  • 47 Gotley DC. Laparoscopic upper gut surgery. J Gastroenterol Hepatol 2009; 24 Suppl 3: S15-S19
  • 48 Kaiser AM, Saluja AK, Sengupta A et al. Relationship between severity, necrosis, and apoptosis in five models of experimental acute pancreatitis. Am J Physiol 1995; 269: C1295-C1304
  • 49 Sendler M, Dummer A, Weiss FU et al. Tumour necrosis factor α secretion induces protease activation and acinar cell necrosis in acute experimental pancreatitis in mice. Gut 2012; Apr 5 [Epub ahead of print]
  • 50 Buiakova OI, Xu J, Lutsenko S et al. Null mutation of the murine ATP7B (Wilson disease) gene results in intracellular copper accumulation and late-onset hepatic nodular transformation. Hum Mol Genet 1999; 8: 1665-1671
  • 51 Huster D. Wilson disease. Best Pract Res Clin Gastroenterol 2010; 24: 531-539
  • 52 Misra RP, Duncan SA. Gene targeting in the mouse: advances in introduction of transgenes into the genome by homologous recombination. Endocrine 2002; 19: 229-238
  • 53 Viney JL. Transgenic and gene knockout mice in cancer research. Cancer Metastasis Rev 1995; 14: 77-90
  • 54 Albanese C, Hulit J, Sakamaki T et al. Recent advances in inducible expression in transgenic mice. Semin Cell Dev Biol 2002; 13: 129-141
  • 55 Kong J, Crissey MA, Funakoshi S et al. Ectopic Cdx2 expression in murine esophagus models an intermediate stage in the emergence of Barrettʼs esophagus. PLoS One 2011; 6: e18280
  • 56 Miyagawa F, Gutermuth J, Zhang H et al. The use of mouse models to better understand mechanisms of autoimmunity and tolerance. J Autoimmun 2010; 35: 192-198
  • 57 Tu SP, Quante M, Bhagat G et al. IFN-γ inhibits gastric carcinogenesis by inducing epithelial cell autophagy and T-cell apoptosis. Cancer Res 2011; 71: 4247-4259
  • 58 Zhao Z, Hou N, Sun Y et al. Atp4b promoter directs the expression of Cre recombinase in gastric parietal cells of transgenic mice. J Genet Genomics 2010; 37: 647-652
  • 59 Schönig K, Bujard H, Gossen M. The power of reversibility regulating gene activities via tetracycline-controlled transcription. Methods Enzymol 2010; 477: 429-453
  • 60 Tronche F, Casanova E, Turiault M et al. When reverse genetics meets physiology: the use of site-specific recombinases in mice. FEBS Lett 2002; 529: 116-121
  • 61 Ray MK, Fagan SP, Brunicardi FC. The Cre-loxP system: a versatile tool for targeting genes in a cell- and stage-specific manner. Cell Transplant 2000; 9: 805-815
  • 62 Decaudin D. Primary human tumor xenografted models (‘tumorgrafts’) for good management of patients with cancer. Anticancer Drugs 2011; 22: 827-841
  • 63 Wang JG, Geddings JE, Aleman MM et al. Tumor-derived tissue factor activates coagulation and enhances thrombosis in a mouse xenograft model of human pancreatic cancer. Blood 2012; 119: 5543-5552
  • 64 Lee YH, Andersen JB, Song HT et al. Definition of ubiquitination modulator COP1 as a novel therapeutic target in human hepatocellular carcinoma. Cancer Res 2010; 70: 8264-8269
  • 65 Francia G, Cruz-Munoz W, Man S et al. Mouse models of advanced spontaneous metastasis for experimental therapeutics. Nat Rev Cancer 2011; 11: 135-141
  • 66 Feng YX, Wang T, Deng YZ et al. Sorafenib suppresses postsurgical recurrence and metastasis of hepatocellular carcinoma in an orthotopic mouse model. Hepatology 2011; 53: 483-492
  • 67 Hayden MS, Ghosh S. NF-κB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev 2012; 26: 203-234
  • 68 Torgersen KM, Aandahl EM, Taskén K. Molecular architecture of signal complexes regulating immune cell function. Handb Exp Pharmacol 2008; (186) 327-363
  • 69 Reicher B, Barda-Saad M. Multiple pathways leading from the T-cell antigen receptor to the actin cytoskeleton network. FEBS Lett 2010; 584: 4858-4864
  • 70 Klamt S, Saez-Rodriguez J, Lindquist JA et al. A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinformatics 2006; 7: 56
  • 71 Coppelli FM, Grandis JR. Oligonucleotides as anticancer agents: from the benchside to the clinic and beyond. Curr Pharm Des 2005; 11: 2825-2840
  • 72 Tilesi F, Fradiani P, Socci V et al. Design and validation of siRNAs and shRNAs. Curr Opin Mol Ther 2009; 11: 156-164
  • 73 Laitala-Leinonen T. Update on the development of microRNA and siRNA molecules as regulators of cell physiology. Recent Pat DNA Gene Seq 2010; 4: 113-121
  • 74 Backert S, Naumann M. What a disorder: proinflammatory signaling pathways induced by Helicobacter pylori. Trends Microbiol 2010; 18: 479-486
  • 75 Ohanian M, Cortes J, Kantarjian H et al. Tyrosine kinase inhibitors in acute and chronic leukemias. Expert Opin Pharmacother 2012; 13: 927-938
  • 76 Llovet JM, Ricci S, Mazzaferro V et al. SHARP Investigators Study Group. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008; 359: 378-390
  • 77 Perrier C, Rutgeerts P. Cytokine blockade in inflammatory bowel diseases. Immunotherapy 2011; 3: 1341-1352
  • 78 Okines AF, Cunningham D. Trastuzumab in gastric cancer. Eur J Cancer 2010; 46: 1949-1959
  • 79 Link A, Treiber G, Peters B et al. Impact of endoscopy-based research on quality of life in healthy volunteers. World J Gastroenterol 2010; 16: 467-473