Zentralbl Chir 2013; 138(5): 521-529
DOI: 10.1055/s-0032-1328005
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Das zweizeitige Vorgehen zur Reduktion der spinalen Ischämie bei der Ausschaltung thorakoabdomineller Aortenaneurysmen – eine Übersicht

The Staged Approach – An Overview on a Strategy to Reduce Spinal Cord Injury in Thoracoabdominal Aortic Aneurysm Repair
F. A. Kari
1   Abteilung für Herz- und Gefäßchirurgie, Universitäres Herzzentrum Freiburg-Bad Krozingen, Freiburg, Deutschland
,
R. M. Brenner
2   Department of Cardiothoracic Surgery, Mount Sinai School of Medicine, New York, New York, United States
,
C. S. Müller
3   Klinik für Kinderherzchirurgie, Universitätsklinikum Zürich, Schweiz
,
R. B. Griepp
2   Department of Cardiothoracic Surgery, Mount Sinai School of Medicine, New York, New York, United States
,
M. S. Bischoff
4   Klinik für Gefäßchirurgie und Endovaskuläre Chirurgie, Universitätsklinikum Heidelberg, Deutschland
› Author Affiliations
Further Information

Publication History

Publication Date:
04 March 2013 (online)

Zusammenfassung

Die spinale Ischämie (SI) mit dem klinischen Bild der Paraparese/Paraplegie gehört zu den schwerwiegendsten Komplikationen nach operativer Ausschaltung thorakoabdomineller Aortenaneurysmen (TAAA). Seit mehr als einem Jahrzehnt widmet sich die Mount Sinai Gruppe, New York, der Charakterisierung morphologischer und rheologischer Veränderungen der spinalen Perfusion im Rahmen von aortenchirurgischen Eingriffen. Die Synopsis der Forschungsergebnisse aus Labor und Klinik wird als Collateral Network Concept bezeichnet. Die aus diesem Konzept abgeleiteten Prinzipien zur Rückenmarksprotektion ermöglichen eine deutliche Reduktion der Inzidenz einer SI nach offener TAAA-Resektion. Unter der Hypothese, dass eine zeitliche Staffelung der chirurgischen TAAA-Resektion das Auftreten einer SI vermindert, wurde eine Reihe von klinischen und experimentellen Studien zum zweizeitigen Verfahren durchgeführt. In diesen konnte gezeigt werden, dass durch ein gestaffeltes Vorgehen, welches eine Ausschöpfung der vaskulären Ressourcen des Kollateralnetzwerks erlaubt, das postoperative Auftreten einer SI im Vergleich zum einzeitigen Vorgehen signifikant reduziert werden kann. Vor dem Hintergrund der gegenwärtigen und zukünftigen technischen Entwicklung erscheint ein zweizeitiges Verfahren insbesondere im Rahmen einer vollständig endovaskulären TAAA-Ausschaltung als wertvolle Option zur Minimierung der SI. Das vorliegende Manuskript gibt einen Überblick über die durchgeführten Studien hinsichtlich des gestaffelten Vorgehens und diskutiert die aktuelle themenbezogene Studienlage im klinischen Kontext. Des Weiteren wird das anatomische Fundament des Collateral Network Concept vorgestellt.

Abstract

The spinal cord is particularly susceptible to ischaemic injury following repair of extensive descending thoracic and thoracoabdominal aortic aneurysms (TAAA). For the past decade, the Mount Sinai group in New York has intensively studied the anatomy of the extensive vascular network surrounding the spinal cord, as well as its dynamic morphology in response to decreased blood pressure and flow. Along with clinical data, experimental findings gave rise to the Collateral Network Concept, by which spinal cord injury in open TAAA repair can be significantly reduced. With the more recent widespread use of endovascular repair, strategies to prevent ischaemic spinal cord damage after extensive segmental artery sacrifice/occlusion are still evolving. The hypothesis that dividing extensive aneurysm repair into two steps may mitigate the impact of diminished blood flow to the collateral network has led to a recently conducted series of staged repair experiments. By exploiting the resources of the collateral network, spinal cord injury could be minimised in staged open, as well as in staged hybrid repair and seems equally adoptable for endovascular procedures. The contribution presented herein provides an overview of clinical and experimental studies on the staged approach. Furthermore, it briefly assesses the anatomic rationale for the collateral network concept.

 
  • Literatur

  • 1 Zoli S, Roder F, Etz CD et al. Predicting the risk of paraplegia after thoracic and thoracoabdominal aneurysm repair. Ann Thorac Surg 2010; 90: 1237-1244 discussion 1245
  • 2 Langer S, Koeppel TA, Greiner A et al. [Intraoperative neuromonitoring for prevention of neurological complications in aortic surgery]. Zentralbl Chir 2010; 135: 421-426
  • 3 Jacobs MJ, Elenbaas TW, Schurink GW et al. Assessment of spinal cord integrity during thoracoabdominal aortic aneurysm repair. Ann Thorac Surg 2002; 74: S1864-1866 discussion S1892–S1898
  • 4 Coselli JS, Bozinovski J, LeMaire SA. Open surgical repair of 2286 thoracoabdominal aortic aneurysms. Ann Thorac Surg 2007; 83: S862-S864 discussion S890–S892
  • 5 Wong DR, Parenti JL, Green SY et al. Open repair of thoracoabdominal aortic aneurysm in the modern surgical era: contemporary outcomes in 509 patients. J Am Coll Surg 2011; 212: 569-579 discussion 579–581
  • 6 Griepp RB, Griepp EB. Spinal cord perfusion and protection during descending thoracic and thoracoabdominal aortic surgery: the collateral network concept. Ann Thorac Surg 2007; 83: S865-869 discussion S890–S892
  • 7 Mehta AC. The blood vessels of the spinal cord (a review). Neurol India 1972; 20: 190-205
  • 8 Lazorthes G, Gouaze A. [Supply routes of arterial vascularization of the spinal cord. Applications to the study of vascular myelopathies]. Bull Acad Natl Med 1970; 154: 34-41
  • 9 Lazorthes G, Manelfe C. [Arterial vascularization of spinal dura mater. Spiral arteries and vascular clusters]. C R Acad Sci Hebd Seances Acad Sci D 1970; 271: 88-91
  • 10 Lazorthes G, Poulhes J, Bastide G et al. [Arterial vascularization of the spine; anatomic research and applications in pathology of the spinal cord and aorta]. Neurochirurgie 1958; 4: 3-19
  • 11 Crock HV. The arterial supply and venous drainage of the vertebral column of the dog. J Anat 1960; 94: 88-99
  • 12 Biglioli P, Roberto M, Cannata A et al. Upper and lower spinal cord blood supply: the continuity of the anterior spinal artery and the relevance of the lumbar arteries. J Thorac Cardiovasc Surg 2004; 127: 1188-1192
  • 13 Uezu T, Koja K, Kuniyoshi Y et al. Blood distribution to the anterior spinal artery from each segment of intercostal and lumbar arteries. J Cardiovasc Surg (Torino) 2003; 44: 637-645
  • 14 Strauch JT, Lauten A, Zhang N et al. Anatomy of spinal cord blood supply in the pig. Ann Thorac Surg 2007; 83: 2130-2134
  • 15 Etz CD, Kari FA, Mueller CS et al. The collateral network concept: a reassessment of the anatomy of spinal cord perfusion. J Thorac Cardiovasc Surg 2011; 141: 1020-1028
  • 16 Nijenhuis RJ, Backes WH. Optimal preoperative imaging of spinal cord blood supply. AJNR Am J Neuroradiol 2009; 30: E38-E39 author reply E40
  • 17 Nakai M, Shimizu S, Ochi Y et al. Thoracodorsal artery as a collateral source to the artery of Adamkiewicz after endovascular aneurysm repair for descending thoracic aortic aneurysm. Eur J Vasc Endovasc Surg 2009; 37: 566-568
  • 18 Chang CK, Chuter TA, Reilly LM et al. Spinal arterial anatomy and risk factors for lower extremity weakness following endovascular thoracoabdominal aortic aneurysm repair with branched stent-grafts. J Endovasc Ther 2008; 15: 356-362
  • 19 Yoshioka K, Niinuma H, Kawazoe K et al. Three-dimensional demonstration of the Adamkiewicz artery and its collateral supply with contrast-enhanced magnetic resonance angiography. Eur J Cardiothorac Surg 2004; 26: 440-441
  • 20 Nijenhuis RJ, Jacobs MJ, Schurink GW et al. Magnetic resonance angiography and neuromonitoring to assess spinal cord blood supply in thoracic and thoracoabdominal aortic aneurysm surgery. J Vasc Surg 2007; 45: 71-77 discussion 77–78
  • 21 Griepp RB, Ergin MA, Galla JD et al. Looking for the artery of Adamkiewicz: a quest to minimize paraplegia after operations for aneurysms of the descending thoracic and thoracoabdominal aorta. J Thorac Cardiovasc Surg 1996; 112: 1202-1213 discussion 1213–1215
  • 22 Shiiya N, Wakasa S, Matsui K et al. Anatomical pattern of feeding artery and mechanism of intraoperative spinal cord ischemia. Ann Thorac Surg 2009; 88: 768-771 discussion 772
  • 23 Conrad MF, Ergul EA, Patel VI et al. Evolution of operative strategies in open thoracoabdominal aneurysm repair. J Vasc Surg 2011; 53: 1195-1201.e1
  • 24 Etz CD, Kari FA, Mueller CS et al. Remodeling of the arterial collateral network after experimental segmental artery sacrifice. J Thorac Cardiovasc Surg 2011; 141: 1029-1036
  • 25 Kari FA, Müller CS, Brenner R et al. New experimental approaches to prevent spinal ischemia after thoracic and thoracoabdominal aortic repair. Z Herz-Thorax-Gefäßchir 2010; 24: 42-48
  • 26 Griepp RB, Ergin MA, Galla JD et al. Minimizing spinal cord injury during repair of descending thoracic and thoracoabdominal aneurysms: the Mount Sinai approach. Semin Thorac Cardiovasc Surg 1998; 10: 25-28
  • 27 Etz CD, Halstead JC, Spielvogel D et al. Thoracic and thoracoabdominal aneurysm repair: is reimplantation of spinal cord arteries a waste of time?. Ann Thorac Surg 2006; 82: 1670-1677
  • 28 Tarlov IM. Spinal cord compression studies. III. Time limits for recovery after gradual compression in dogs. AMA Arch Neurol Psychiatry 1954; 71: 588-597
  • 29 Etz CD, Luehr M, Kari FA et al. Selective cerebral perfusion at 28 degrees C–is the spinal cord safe?. Eur J Cardiothorac Surg 2009; 36: 946-955
  • 30 Etz CD, Homann TM, Plestis KA et al. Spinal cord perfusion after extensive segmental artery sacrifice: can paraplegia be prevented?. Eur J Cardiothorac Surg 2007; 31: 643-648
  • 31 Zoli S, Etz CD, Roder F et al. Experimental two-stage simulated repair of extensive thoracoabdominal aneurysms reduces paraplegia risk. Ann Thorac Surg 2010; 90: 722-729
  • 32 Bischoff MS, Scheumann J, Brenner RM et al. Staged approach prevents spinal cord injury in hybrid surgical-endovascular thoracoabdominal aortic aneurysm repair: an experimental model. Ann Thorac Surg 2011; 92: 138-146 discussion 146
  • 33 Etz CD, Di Luozzo G, Zoli S et al. Direct spinal cord perfusion pressure monitoring in extensive distal aortic aneurysm repair. Ann Thorac Surg 2009; 87: 1764-1773 discussion 1773–1774
  • 34 Etz CD, Zoli S, Mueller CS et al. Staged repair significantly reduces paraplegia rate after extensive thoracoabdominal aortic aneurysm repair. J Thorac Cardiovasc Surg 2010; 139: 1464-1472
  • 35 Schlosser FJ, Mojibian H, Verhagen HJ et al. Open thoracic or thoracoabdominal aortic aneurysm repair after previous abdominal aortic aneurysm surgery. J Vasc Surg 2008; 48: 761-768
  • 36 Schlosser FJ, Verhagen HJ, Lin PH et al. TEVAR following prior abdominal aortic aneurysm surgery: increased risk of neurological deficit. J Vasc Surg 2009; 49: 308-314 discussion 314
  • 37 Coselli JS, Poli de Figueiredo LF, LeMaire SA. Impact of previous thoracic aneurysm repair on thoracoabdominal aortic aneurysm management. Ann Thorac Surg 1997; 64: 639-650
  • 38 Lombardi JV, Carpenter JP, Pochettino A et al. Thoracoabdominal aortic aneurysm repair after prior aortic surgery. J Vasc Surg 2003; 38: 1185-1190
  • 39 Patel HJ, Upchurch Jr. GR, Eliason JL et al. Hybrid debranching with endovascular repair for thoracoabdominal aneurysms: a comparison with open repair. Ann Thorac Surg 2010; 89: 1475-1481
  • 40 Böckler D, Kotelis D, Geisbusch P et al. Hybrid procedures for thoracoabdominal aortic aneurysms and chronic aortic dissections – a single center experience in 28 patients. J Vasc Surg 2008; 47: 724-732
  • 41 Black SA, Wolfe JH, Clark M et al. Complex thoracoabdominal aortic aneurysms: endovascular exclusion with visceral revascularization. J Vasc Surg 2006; 43: 1081-1089 discussion 1089
  • 42 Drinkwater SL, Bockler D, Eckstein H et al. The visceral hybrid repair of thoraco-abdominal aortic aneurysms–a collaborative approach. Eur J Vasc Endovasc Surg 2009; 38: 578-585
  • 43 Clough RE, Modarai B, Bell RE et al. Total endovascular repair of thoracoabdominal aortic aneurysms. Eur J Vasc Endovasc Surg 2012; 43: 262-267
  • 44 Kienz P, Austermann M, Tessarek J et al. [Treatment of complex aortic aneurysms with fenestrated endografts–first results]. Zentralbl Chir 2010; 135: 427-432
  • 45 Langer S, Franzen EL, Haiduk M et al. Aortenaneurysma 2012 – offen, hybrid oder total endovaskulär?. Zentralbl Chir 2012; 137: 418-424
  • 46 Reilly LM, Chuter TA. Reversal of fortune: induced endoleak to resolve neurological deficit after endovascular repair of thoracoabdominal aortic aneurysm. J Endovasc Ther 2010; 17: 21-29
  • 47 Moulakakis KG, Mylonas SN, Avgerinos ED et al. Hybrid open endovascular technique for aortic thoracoabdominal pathologies. Circulation 2011; 124: 2670-2680
  • 48 Etz CD, Zoli S, Bischoff MS et al. Measuring the collateral network pressure to minimize paraplegia risk in thoracoabdominal aneurysm resection. J Thorac Cardiovasc Surg 2010; 140: S125-S130 discussion S142–S146
  • 49 Kotelis D, Geisbusch P, Hinz U et al. Short and midterm results after left subclavian artery coverage during endovascular repair of the thoracic aorta. J Vasc Surg 2009; 50: 1285-1292
  • 50 Buth J, Harris PL, Hobo R et al. Neurologic complications associated with endovascular repair of thoracic aortic pathology: Incidence and risk factors. A study from the European Collaborators on Stent/Graft Techniques for Aortic Aneurysm Repair (EUROSTAR) registry. J Vasc Surg 2007; 46: 1103-1110 discussion 1110–1111